PROBLEM 2 Potential in a Rectangular Groove. Consider a rectangular groove that
runs from z = —oo to +00 and is open in the positive y-direction. The groove is bounded
by two parallel walls at x = 0, x = a, and at the y = 0 end. The walls at x = 0 and x = a
are at zero potential and the end is at a specified potential V[x] that is independent of the z-
coordinate. The boundary conditions suggest that the potential is independent of z. Express
the potential as a superposition of products X |[x]Y[y], where X[x] = {Sin[ax], Cos[ax]} and
Y[y] = {e*??, e7*}. The relation between the separation constants is a* = 2.

a. Express the expansion coefficients as integrals over the potential X[x] given on the
y = 0 end.

V(0,y,z)=0 Via,y,z)=0

Vix,0,2)=V(x)

b. Let X[x] = Sin[x] and write the first few terms of the potential. Plot the potential
using the command Plot3D. Use the user-defined command VEPlot to plot the
equipotential and electric field lines.

¢. Let X[x] = VO and sum the series to get an exact solution. Plot the potential using
Plot3D.

db. Consider the case where the potential on the end of the groove is V[x]=Sin[x].



7. Solve Problem 2 if the sides & = 0 and x = 1 are insulated.

19. A long conducting cylinder is placed parallel to the z axis in an originally uniform
electric field in the negative x direction. The cylinder is held at zero potential. Find
the potential in the region outside the cylinder. Hints: See Problem 7.13. You want
solutions of Laplace’s equation in polar coordinates (Problem 5.12).

##) For the Laplacian equation in Cartesian coordinates in

3-D: {x,y,z}

e separate the variables to obtain the differential equations
for the 3 coordinates.

* Find the function that satisfies each of the differential
equations.

##) For the Laplacian equation in Polar coordinates in 3-D:

{rz.¢}

* separate the variables to obtain the differential equations
for the 3 coordinates.

* Find the function that satisfies each of the differential
equations.

##) For the Laplacian equation in Spherical coordinates in 3-

D:{r,0 ,0}

* separate the variables to obtain the differential equations
for the 3 coordinates.

* Find the function that satisfies each of the differential
equations.



2.9 Separation of Variables; Laplace Equation
in Rectangular Coordinates

The partial differential equations of mathematical physics are often solved con-
veniently by a method called separation of vartables. In the process, one often
generates orthogonal sets of functions that are useful in their own right. Equa-
tions involving the three-dimensional Laplacian operator are known to be sep-
arable in eleven different coordinate systems (see Morse and Feshbach, pp. 509,
655). We discuss only three of these in any detail—rectangular, spherical, and
cylindrical —beginning with the simplest, rectangular coordinates.
The Laplace equation in rectangular coordinates is

Fh o @D
2 + 2 + 2
ax dy a7

0 (2.48)

A solution of this partial differential equation can be found in terms of three
ordinary differential equations, all of the same form, by the assumption that the
potential can be represented by a product of three functions, one for each
coordinate:

Plx, v, z) = X(x)¥(v)Z(z) (2.49)
Substitution into (2.48) and division of the result by (2.49) yvields
1 :FJ:'+ 1 d?}"_l_ 1 dEE__
X(x) dx*  Y(y) dv*  Z(z) d7?
where total derivatives have replaced partial derivatives, since each term involves

a function of one variable only. If (2.50) is to hold for arbitrary values of the
independent coordinates, each of the three terms must be separately constant:
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If we arbitrarily choose o® and B° to be positive, then the solutions of the three
ordinary differential equations (2.51) are ™', ¢™', ¢ ¥ The potential
(2.49) can thus be built up from the preduct solutions:

(P = p=it =iy = Nl + B {152]



3.7

Laplace Equation in Cylindrical Coordinates;
Bessel Functions

In cylindrical coordinates (p, ¢, z), as shown in Fig. 3.8, the Laplace equation
takes the form:
PO 100 15D P

-— + 0 3.71
3,02 p ap pz a¢2 322 ( )

The separation of variables is accomplished by the substitution:

T(p. b, z) = R(p)Q(d)Z(z) (3.72)
In the usual way this leads to the three ordinary differential equations:
d*Z
— — K7 = ' 3,
iz 0 (3.73)
d2Q
=+ 0 =10 3.74
o T e (3.74)
d°R 1dR :
AN i kl—%)ﬁ'=n (3.75)
dp= pdp o
The solutions of the first two equations are elementary:
Z(z) = ™ (3.76)
() = &=

where »» = m1 is an integer and & is a constant to be determined. The radial factor
s

Rip) = CJ, (kp) + DN, (kp)

If the potential is finite at p = 0, ) = 0. The requirement that the potential vanish
at p = a means that k can take on only those special values:

L]

Kppn = — (m=1,2,3....)

i

where x,,. are the roots of J,,,(x,,..) = 0.
Combining all these conditions, we find that the general form of the solution
15

Plp, ¢, z) = Z{ ZI J il ) sinhik,,.z WA,,,, sin mid (3.1052)
M= p= - i |
+ B, cosmidh)

At v = J. we are aiven the aantential ae LA A Tharafors ae hava



Laplace's spherical harmonics [eait]

Main article: Spherical harmonics § Laplace's spherical harmonics

Laplace's equation in spherical coordinates is:[“!

d ) a2
Vif= 19 (r2 f) + 1 0 (sinﬂ—f) o ! ! =0
r? or or 72 gin @ 06 o0 r2 sin? § Oyp?

Consider the problem of finding solutions of the form f{r, &, @) = R(r) ¥(#, @). By separation of
variables, two differential equations result by imposing Laplace's equation:

1d{,dR 1 1 o0 (., 0Y 1 1 8%Y
—— — | = A, ———— | sinf— | + — = —A
Y sinf 06 06 Y sin? 9 0p?

The second equation can be simplified under the assumption that ¥ has the form
Y16, @) = O(#) D(p). Applying separation of variables again to the second equation gives way to
the pair of differential equations

1 e,
T
inf d d
Asin® 6 + Sl; §7 (sinﬁ?i) = m?
Now set
p=cos 8, (12-11)

remembering that, for any function f(u),

df df du . df ——y
o e M i —=—(1- —. 12-12
26 dudo- "% (=) (12-12)
Then the ® equation becomes Legendre's equation:
d d®
— |:{l -,uzj—} +n(n+1)©=0. (12-13)
du du

When n is an integer, its solutions are the Legendre polynomials of Sec.



Cartesian
(x1, X3, X3 = x, Y, 2)

Cylindrical
(o, ¢, 2)

(r, 6, ¢)

Spherical

Explicit Forms of
Vector Operations

Let ey, e,, e; be orthogonal unit vectors associated with the coordinate directions
specified in the headings on the left, and A,, A,, A; be the corresponding com-
ponents of A. Then

Y e(w ea_lp

éxl axz 3 (9X3
dA JA dA
V-A = 1 2 4 3
axl (?xz an
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