Physics 4321: Homework #9: Prof. Olness Spring 2025

PROBLEM #1: Consider the metric:

$$g_{\mu\nu} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

and vector:

$$v = \left(\begin{array}{c} x \\ y \end{array}\right)$$

- a) Compute the length-squared of the vector v.
- b) Write down a rotation matrix R.
- c) Show the length of **v** is invariant under a rotation.
- d) Using Mathematica, make a ContourPlot of the length of the vector in the $\{x,y\}$ space. Comment about the result.

PROBLEM #2: Consider the metric:

$$g_{\mu\nu} = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$$

and vector:

$$v = \left(\begin{array}{c} x \\ y \end{array}\right)$$

- a) Compute the length-squared of the vector v.
- b) Using Mathematica, make a ContourPlot of the length of the vector in the $\{x,y\}$ space. Comment about the result.
- c) Can you think of a physical example where this is the appropriate metric to use to measure distance??? (There are more than one answer, but the more natural the better.)

PROBLEM #3: Consider the metric:

$$g_{\mu\nu} = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

and vector:

$$v = \left(\begin{array}{c} t \\ x \end{array}\right)$$

- a) Compute the length-squared of the vector v.
- b1) Write down a boost matrix B in terms of β and γ .
 - c1) Show the length of v is invariant under a boost.
- b1) Write down a boost matrix B in terms of coshand sinh.
- c1) Show the length of v is invariant under a boost in terms of coshand sinh.
- d) Using Mathematica, make a ContourPlot of the length of the vector in the $\{t,x\}$ space. Comment about the result.

PROBLEM #4: For the general mass case of $p_1+p_2\to p_{12}$ compute the components of all 4-vectors in terms of invariants of the problem: $\{m_1^2,m_2^2,s\}$. Assume the 3-momentum lies along the z-axis. Hint: The z-component of the momentum should be proportional to: $\Delta(s,m_1^2,m_2^2)$, where $\Delta(a,b,c)=\sqrt{a^2+b^2+c^2-2(ab+bc+ca)}$.

PROBLEM #5: For the zero mass case of $p_1 + p_2 \rightarrow p_3 + p_4$ compute the components of all 4-vectors in terms of invariants of the problem: $\{s, t, u\}$. Assume the 3-momentum of $\{p_1, p_2\}$ lies along the z-axis.

PROBLEM #6: Consider the reaction: $p\bar{p} \rightarrow 3X$ where X has a rest mass of 140GeV. Compute the threshold beam energy for

- a) colliding beams, and
- b) for a fixed target experiment.

PROBLEM #7: Consider the rapidity y and the pseudo-rapidity η :

$$y = \frac{1}{2} \ln \left(\frac{E + P_L}{E - P_L} \right)$$

$$\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

- a) Make a parametric plot of $\{y, \eta\}$ as a function of m/E where m is the mas of the particle.
 - b) Show that in the limit $m \to 0$ that $y \to \eta$.
- c) Make a table of η for $\theta = [0^{\circ}, 180^{\circ}]$ in steps of 5 degrees.
- c) Make a table of θ for $\eta = [0, 10]$ in steps of 1.

PROBLEM #8: For one-particle phase space, show the following equality (with all the steps):

$$\frac{d^3\vec{P}}{(2\pi)^32E} = (2\pi)\delta(P^2 - m^2)\frac{d^4P}{(2\pi)^4}$$

PROBLEM #9: In a Tevatron detector, consider two particles traveling in the transverse direction:

$$p_1^{\mu} = \{E, 100, 0, 1\}$$

 $p_2^{\mu} = \{E, 100, 1, 0\}$

where the componets are expressed n in GeV units. ${\cal E}$ is defined such that the particles are massless.

- a) Compute E.
- b) For each particle, compute the pseudorapidity η and azimuthal angle ϕ .
- c) Explain how the above exercise justifies the correct jet radius definition to be:

$$R = \sqrt{\eta^2 + \phi^2}$$

In particular, why is the above correct and $R = \sqrt{\eta^2 + 2\phi^2}$, for example, incorrect.

PROBLEM #10: Consider the reaction: $pp \rightarrow pp$ (12 \rightarrow 34) with **CMS** scattering angle θ . The CMS energy is $\sqrt{s} = 2 \, TeV$.

- a) Compute the boost from the CMS frame to the rest frame of #2 (lab frame)
- b) Compute the energy of #1 in the lab frame
- c) Compute the scattering angle θ_{lab} as a function of the CMS θ and invariants.

PROBLEM #11: Write the 4×4 EM Field Strength tensor $F^{\mu\nu}$ in terms of $\{E,B\}$ fields.

Now apply a boost (Lorentz transformation) along the z axis and compute the transformed $F^{\mu\nu}$.

Examine how the $\{E,B\}$ fields transform and check against your EM textbook results.