Mechanics Overview

Relativity:
E? = p? + m?

Note, I use the convention that ¢ = 1.

Classical:
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E= m2+p2:m\/1+p—zm+p—:m+fmv2
m? 2m 2

In classical mechanics, the energy is equal to approxi-
mately the rest mass m and the classical kinetic energy
%va. Note, if there is a potential V', then the kinetic

energy comes from the replacement: £ — FE — V.

Quantum Mechanics Wave Functions:

Start from an assumed wave equation:

. Et
Y(x,t) = exp [thm —ih} —expl+ik-z—iwt]
where p = Ak and E = hw; note, the exponent must be
dimensionless, so p - ¢ and F t have dimensions of A.
Taking derivatives of the wave function, we have:

Opple,t) = +igv(a,t)  thus

Op(x,t) = —i%w(x,t) thus

p = —ihd, = —ihV

Caution, the above definitions depend on the signs chosen
for ¥ (z,t); we’ll comment below in detail. To summarize:

p=—itV| |E=+iho,|

Schrédinger Equation:

Spelling: the [oe] can be replaced with the German [6].
The Schroedinger equation is simply the classical
equation (E = 1mwv?) extended to wave mechanics.

2
Starting from:

P v
E-V=— or equivalently EFE=—+4V
2m 2m
and multiplying through by v (z,t), we have:
L O0U(x,t) h* _,

Note here that because the momentum term p? is
quadratic, either sign of the exponential term in the wave

function ¥ (x,t) ~ exp|Lip-x/h] will satisfy the equation;
in practice, these two solutions represent left-moving and
right-moving waves. Also note that because the energy
term (FE) is linear, the relative sign here is important.

Klein-Gordon Equation:

We saw above that the Schroedinger equation used the
classical equation (E:%mzﬂ) which is an approximation
of the exact relavistic equation:

E*=p*+m?  orequivalently  E? —p® =m?
Thus, extending this to the wave mechanics and multi-

plying through by v (z,t), we have:
_hzatzw(xv t) + ﬁ2v21/1($7 t) = mzf/f(x,t) :

The challenge to interpreting the Klein-Gordon equation
is the existence of negative energy states. Starting
from E? = p? + m?, we thus have E = ++/p2 +m2.
The solution (over simplified) is to interpret the Klein-
Gordon equation as describing spin-zero particles where
the negative energy states are anti-particle states.

Dirac Equation:

The problem with the Klein-Gordon equation was the
negative energy states arising from the fact that the
starting equation was quadratic in energy E. Thus, Dirac
attempted to obtain a linear equation. Starting from
m? = E? —p? = (E — p)(E + p), we might guess a linear
equation could be:

m=FE+xp

or extending this to the wave function form:

[m = ihd, F ihV]Y(x,t) [schematic only]

The above equation is only schematic, and to make it
precise we can insert matrices {«, 8} such that [m/(ih) =
BO: F a- V](z,t), and we can relate {«, 8} to the usual
Dirac matrices v* = {3, Ba}. This yields:

(14" 0 — m)p(x,t) =0

where v* are the 4 x 4 anti-commuting Dirac matrices.
We can recover the Klein-Gordon equation essentially
by squaring the Dirac equation:

m? = (E —p)(E +p) = (ihd; — ihV)(ihdy + ihV)
= —R2O? +W2V?: — E?4p?

The Dirac equation describes spin-1/2 particles and
anti-particles.



