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Mechanics Overview

Relativity:
E2 = p2 +m2

Note, I use the convention that c = 1.

Classical:

E =
√
m2 + p2 = m
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1

2
mv2

In classical mechanics, the energy is equal to approxi-
mately the rest mass m and the classical kinetic energy
1
2mv

2. Note, if there is a potential V , then the kinetic
energy comes from the replacement: E → E − V .

Quantum Mechanics Wave Functions:
Start from an assumed wave equation:

ψ(x, t) = exp

[
+i

p · x
ℏ

− i
E t

ℏ

]
= exp [+i k · x− i ω t]

where p = ℏ k and E = ℏω; note, the exponent must be
dimensionless, so p · x and E t have dimensions of ℏ.

Taking derivatives of the wave function, we have:

∂xψ(x, t) = +i
p

ℏ
ψ(x, t) thus p = −iℏ∂x = −iℏ∇

∂tψ(x, t) = −iE
ℏ
ψ(x, t) thus E = +iℏ∂t

Caution, the above definitions depend on the signs chosen
for ψ(x, t); we’ll comment below in detail. To summarize:

p = −iℏ∇ E = +iℏ∂t

Schrődinger Equation:
Spelling: the [oe] can be replaced with the German [ő].

The Schroedinger equation is simply the classical
equation (E = 1

2mv
2) extended to wave mechanics.

Starting from:

E − V =
p2

2m
or equivalently E =

p2

2m
+ V

and multiplying through by ψ(x, t), we have:

iℏ
∂ψ(x, t)

∂t
= − ℏ2

2m
∇2ψ(x, t) + V (x, t)ψ(x, t) .

Note here that because the momentum term p2 is
quadratic, either sign of the exponential term in the wave

function ψ(x, t) ∼ exp[±ip·x/ℏ] will satisfy the equation;
in practice, these two solutions represent left-moving and
right-moving waves. Also note that because the energy
term (E) is linear, the relative sign here is important.

Klein-Gordon Equation:
We saw above that the Schroedinger equation used the

classical equation (E= 1
2mv2) which is an approximation

of the exact relavistic equation:

E2 = p2 +m2 or equivalently E2 − p2 = m2

Thus, extending this to the wave mechanics and multi-
plying through by ψ(x, t), we have:

−ℏ2∂2t ψ(x, t) + ℏ2∇2ψ(x, t) = m2ψ(x, t) .

The challenge to interpreting the Klein-Gordon equation
is the existence of negative energy states. Starting
from E2 = p2 + m2, we thus have E = ±

√
p2 +m2.

The solution (over simplified) is to interpret the Klein-
Gordon equation as describing spin-zero particles where
the negative energy states are anti-particle states.

Dirac Equation:
The problem with the Klein-Gordon equation was the

negative energy states arising from the fact that the
starting equation was quadratic in energy E. Thus, Dirac
attempted to obtain a linear equation. Starting from
m2 = E2 − p2 = (E − p)(E + p), we might guess a linear
equation could be:

m = E ± p

or extending this to the wave function form:

[m = iℏ∂t ∓ iℏ∇]ψ(x, t) [schematic only]

The above equation is only schematic, and to make it
precise we can insert matrices {α, β} such that [m/(iℏ) =
β∂t ∓α · ∇]ψ(x, t), and we can relate {α, β} to the usual
Dirac matrices γµ = {β, βα}. This yields:

(iγµ∂µ −m)ψ(x, t) = 0

where γµ are the 4× 4 anti-commuting Dirac matrices.
We can recover the Klein-Gordon equation essentially

by squaring the Dirac equation:

m2 = (E − p)(E + p) = (iℏ∂t − iℏ∇)(iℏ∂t + iℏ∇)

= −ℏ2∂2t + ℏ2∇2 −→ E2 + p2

The Dirac equation describes spin-1/2 particles and
anti-particles.


