1 Mellin Transform Example:
1.1 Mellin Transform Definition:

Following the Wikipedia convention:
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Here, f(z) is the function in z-space,and f(n) is the Mellin transform in
n-space.

1.2 Cauchy’s integral formula:

We will make use of Cauchy’s integral formula:
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1.3 Single term: :f(z) = z°.

Let’s start with just a single term:f(z) = 23.
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Now let’s take the inverse Mellin transform. (Note the pole/singularity is at
a negative integer.)
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1.4 General term: :f(x) =z

For a general term:f(z) = z°.
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Now let’s take the inverse Mellin transform. (Note, we’ll assume a > 0 so
that the pole/singularity is at a negative integer.)
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1.5 General Polynomial

We can apply to a general polynomial:
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1.6 Factorize convolution

Consider the convolution below; this is a function of z, as x and y are integrated
over.
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Let’s take the Mellin transform
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Here, we have used the delta function to replace z"~' — 2" ly"~1 and
then the delta function eliminates the [ dz integral. Thus, we see that in Mellin
n-space, the convolution becomes a simple production of the Mellin moments.



