1 Mellin Transform Example:

1.1 Mellin Transform Definition:

Following the Wikipedia convention:

$$\widetilde{f}(n) = \int_0^1 dx \, x^{n-1} f(x)$$

$$f(x) = \frac{1}{2\pi i} \int_{c-\infty}^{c+\infty} dn \, x^{-n} \, \widetilde{f}(n)$$

Here, f(x) is the function in x-space, and $\widetilde{f}(n)$ is the Mellin transform in n-space.

1.2 Cauchy's integral formula:

We will make use of Cauchy's integral formula:

$$g(a) = \frac{1}{2\pi i} \oint \frac{g(z)}{z - a} dz$$

1.3 Single term: $:f(x) = x^3$.

Let's start with just a single term: $f(x) = x^3$.

$$\widetilde{f}(n) = \int_0^1 dx \, x^{n-1} \, x^3$$

$$= \int_0^1 dx \, x^{n+2}$$

$$= \frac{1}{n+3}$$

Now let's take the inverse Mellin transform. (Note the pole/singularity is at a negative integer.)

$$f(x) = \frac{1}{2\pi i} \int_{c-\infty}^{c+\infty} dn \ x^{-n} \widetilde{f}(n)$$
$$= \frac{1}{2\pi i} \oint \frac{g(n)}{n - (-3)} dn$$
$$= g(-3) = x^{-(-3)} = x^3$$

where $g(n) = x^{-n}$.

1.4 General term: $:f(x) = x^a$.

For a general term: $f(x) = x^a$.

$$\widetilde{f}(n) = \int_0^1 dx \, x^{n-1} \, x^a$$
$$= \int_0^1 dx \, x^{n+a-1}$$
$$= \frac{1}{n+a}$$

Now let's take the inverse Mellin transform. (Note, we'll assume a>0 so that the pole/singularity is at a negative integer.)

$$f(x) = \frac{1}{2\pi i} \int_{c-\infty}^{c+\infty} dn \ x^{-n} \, \widetilde{f}(n)$$
$$= \frac{1}{2\pi i} \oint \frac{g(n)}{n - (-a)} \, dn$$
$$= g(-3) = x^{-(-a)} = x^a$$

where $g(n) = x^{-n}$.

1.5 General Polynomial

We can apply to a general polynomial:

$$f(x) = \sum_{k} c_k x^k$$

 $\widetilde{f}(n) = \sum_{k} \frac{c_k}{n+k}$

1.6 Factorize convolution

Consider the convolution below; this is a function of z, as x and y are integrated over.

$$[f\otimes g](z) = \int dx \int dy f(x) g(y) \delta(z-xy)$$

Let's take the Mellin transform

$$\int z^{n-1} \left[f \otimes g \right](z) = \int dz \, z^{n-1} \int dx \int dy \, f(x) \, g(y) \, \delta(z - x \, y)$$

$$= \left[\int dx \, x^{n-1} f(x) \right] \left[\int dy \, y^{n-1} g(y) \right] \left[\int dz \, \delta(z - x \, y) \right]$$
$$= \widetilde{f}(n) \, \widetilde{g}(n)$$

Here, we have used the delta function to replace $z^{n-1} \to x^{n-1}y^{n-1}$, and then the delta function eliminates the $\int dz$ integral. Thus, we see that in Mellin n-space, the convolution becomes a simple production of the Mellin moments.