

1) With Mathematica, plot the Re and Im part of $z=x+Iy$ in the complex plane.

`Plot3D[Im[Sqrt[x + I y]],{x,-4,4},{y,-4,4}]`

`Plot3D[Re[Sqrt[x + I y]],{x,-4,4},{y,-4,4}]`

Comment on your answer.

2) In George Gamow's 123... Infinity, solve

(by hand) the treasure hunter puzzle on
Page 36. [*The answer is in the book, just work
through it.*]

3) For each of the following numbers, plot the
number and label it in five ways as in
Figure 3.3. **Also** plot the complex conjugate
of the number.

a) $1+I$, b) $I-1$, c) $1-I\sqrt{3}$, d) $I-\sqrt{3}$,

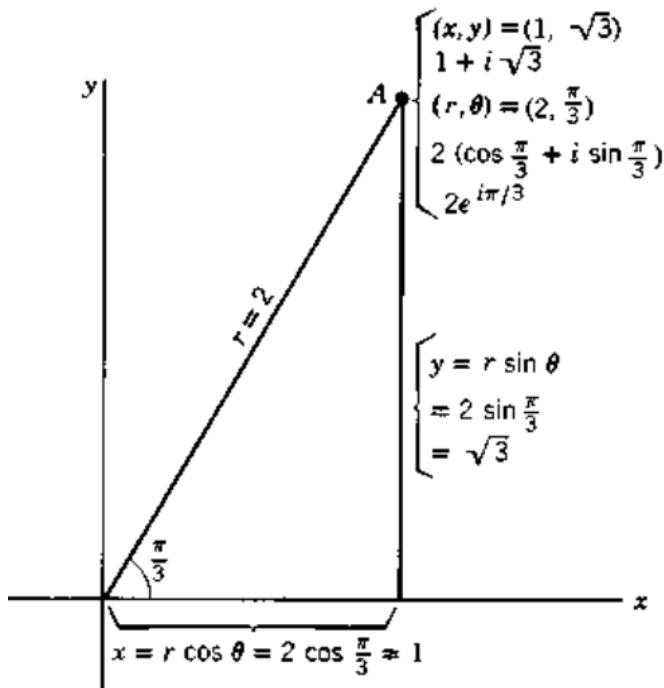


Figure 3.3

4) Compute the Re and Im part of:

a) $(3+I)/(2+I)$ b) $[(1+I)/(1-I)]^3$ c) $(3I - 7)/(I+4)$

b) Convert this into polar form.

c) Compute the absolute value

5) Solve for all possible values of the real numbers x and y in the following equations.

a) $x + Iy = 3I - 4$ b) $(2x - 3y - 5) + I(x + 2y + 1) = 0$

6) Show that multiplying two complex numbers $z_1=x_1+Iy_1$, $z_2=x_2+Iy_2$ can be represented as a rotation and rescaling of z_1 by z_2 . Hint: convert to polar coordinates to show the property, but express the final result in terms of $\{x_1, x_2, y_1, y_2\}$.

7) Compute the Re and Im parts of $\ln[z]$ where a) $z1 = r \text{Exp}[I\theta]$ and b) $z2 = z1^* \text{Exp}[2\pi I]$