Last update: 10 January 2003: FIO Errata for P.343, Problem 6.2.6 Original: 27 August 2002: FIO Eratta for P.174, Problem 6.3.3 =============================================================================== =============================================================================== Mathematica For Physics: 2nd Edition Robert L. Zimmerman and Fredrick I. Olness WebSite: www.physics.smu.edu/~olness darkwing.uoregon.edu/~phys600/ MathSource Number: 0206-862 ISBN 0-201-53796-6 =============================================================================== NOTES AND ERRATA: =============================================================================== =============================================================================== 2nd Edition: Chpt.6, Problem 6.3.3 p.174: Sphere Rolling on a Fixed Sphere. 1st Edition: Chpt.4, Problem 4.2.5 p.343: Sphere Rolling on a Fixed Sphere. The figure in the first edition was incorrect. This is fixed in the 2nd edition. The second angle (theta-2) is measured from the contact point of the two spheres. Although this definition may be less conventional, it simplifies our particular problem. We thank Kevin J. McCann for finding this error. =============================================================================== =============================================================================== 2nd Edition: Chpt.6, Problem 6.2.6 p.334: Spring Pendulm In the solution shown on p.334, there is a typo in In[142]. All the expressions should consistenly be {rc[t],\[Theta]c[t]}. Inside the definition of Point, the incorrect radius rd[t] was used instead of the correct value rc[t]. In the animation, this error will generate a mismatch between the line and the point shown. The correct input should read: ------------------------------------------------------ In[142]:= line[t_] := Show[ Graphics[ {{Line[{{0, 0}, rc[t]{Sin[\[Theta]c[t]], -Cos[\[Theta]c[t]]}}], {PointSize[0.1], Point[ rc[t]{Sin[\[Theta]c[t]], -Cos[\[Theta]c[t]]}]}}}, PlotRange -> {{-10, 10}, {-13, 13}} ] ] ] ------------------------------------------------------ We thank Jerry Blimbaum for finding this error. =============================================================================== =============================================================================== We will post other notes and errata here as issues arise. FIO 27 Aug 2002 ---------------------------------------------------------------------------