
Electric forces and electric charges  

in everyday life 
 

 

Electric force & charge: The electric force is one of the main forces encountered in nature. 

The strength of the electric force varies depending on the object. When an object is able to 

interact by an electric force, we say that this object carries an electric charge. The charge can 

be transferred from one object to another. Furthermore, you will observe today that the 

electric force can be repelling or attractive, which can be explained by assuming that the 

charges can be either positive or negative.  A charged object will repel another object with a 

like-sign charge, while it will attract another object with an opposite-sign charge. At the 

atomic level, the positive charge is carried by tiny particles called protons, and the negative 

charge is carried by electrons. In most situations, opposite charges cancel one another by 

forming neutral atoms and molecules that contain equal amount of positive and negative 

charges (so that the total charge of the atom is zero). Nevertheless, there are processes such as 

friction of two objects, deformation and rupture, in which the opposite charges are forced to 

separate, resulting in a nonzero net charge that can be observed. 

 

Point charges and Coulomb’s law. In general, the computation of the electric force requires 

lengthy calculations, but the mathematical description becomes very simple for point 

charges. If a charged object has a very small size compared to the distance r to the other 

charges, it essentially behaves as a charge located at a single point.  The electric force 

between two point charges, q1 and  q2, is given by Coulomb’s law, which states that the force 

F1←2 that q2 exerts on q1 is given by  

F1←2 = k q1 q2 / r
2
,
 

where k is a proportionality constant. The direction of the force is along the line between the 

two charges. Like-signed charges repel, and unlike-signed charges attract. Here the concept of 

the point charge is important, because without this idealization the distance between the two 

charges and the direction of the force would be ambiguous. For two point charges, the 

distance r and the direction of the force are well defined, and Coulomb’s law is accurate. 

     

Superposition principle: When dealing with systems containing more than two charges, 

Coulomb’s law still applies to each charge pair. This means that the force between any two 

charges in the system is independent of the presence of the other charges nearby.  

 

The net force F exerted on a charge Q is the summation of the pair-forces Fi exerted by each 

of the other charges qi:  

                                                 F=FQ←q1+F Q←q2+…+F Q←qN, 

 

where each pairwise force is found by using the Coulomb’s law, 
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Keep in mind that each electric force is a vector (denoted by the bold face font in this 

write-up or by an arrow in your textbook). It is directed along the unit vector 
iqQr̂  pointing 

from the source charge qi  to the test charge Q. The addition of several forces must be done 

under the rules of vector summation.  

 

The following figure shows an example of applying the superposition principle stated above 

to a four particle system. To obtain the net force exerted on particle B, we first find the forces 

exerted on it by each of the other three particles using Coulomb’s Law, and after that sum 

these three force vectors. 

 

 

 

 

 

 

 

 

 

Charge distributions & volume charge density. The point charge model describes a certain 

amount of charge concentrated in a very small volume that could be seen as a point. To 

address situations when charge is spread over three dimensional objects whose sizes cannot be 

neglected, it is convenient to introduce the idea of a volume charge density, denoted by 

(x,y,z).  

 

If dq is the charge contained in a small volume dV=dxdydz around a point P with coordinates 

x, y, z, then the volume charge density at this point is defined as 

                                                     (x,y,z)=dq/dV. 

The volume charge density is reminiscent of the volume mass density m(x,y,z)=dm/dV  that 

was encountered in the determination of the center-of-mass in the mechanics class. However, 

(x,y,z) describes the distribution of electric charge and not of mass.  

 

In the case of a uniform charge distribution, charge density is the same at all points,                                                     

=q/V independently of x,y,z, where q and V are the total charge and volume. But in general 

its value varies at different space points inside charged objects. 

Charge density can be used to compute the electric force between charged objects with non-

negligible size. You will encounter many examples of such calculations in your textbook. In 

this lab, we will perform a few simple exercises to help you get used to manipulating the 

charge density. This experience will help you to solve various problems in the later parts of 

the course. 

  



Linear charge density. In one common situation, the charged object has a large extension in 

one direction and small extensions in two other directions. For instance, a charged wire or rod 

often may have a significant length L and a much smaller diameter D. In this case, using a 

linear charge density (x) instead of the volume charge density (x,y,z) is more convenient, 

where (x) is defined as the charge per unit length x of the wire: 

                                                      (x)=dq/dx. 

Just like (x,y,z), (x) can be used to find the total electric force produced by the wire, but 

the calculations now depend only on one coordinate (x) instead of three (x,y,z). The 

calculations are simplified by using . 

The linear density  can be found from volume density  by integrating the volume charge 

distribution over the transverse directions y and z: 
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(x) can always be found if (x,y,z)  is known. It is not an independent function, but a 

simplified representation for the full 3-dimensional charge distribution when the dependence 

on y and z is small or irrelevant. 

 

Derivation of Eq. (1). To see where this relation 

between  and  comes from, consider a part of the 

wire shown in the figure and divide its volume into 

many small blocks V(x,yi,zj)=x yi zj.   The charge 

of each block is q(x,yi,zj)=(x,yi,zj)x yi zj. If we 

sum charge of all blocks in the interval between x and 

x+x, we get the charge q(x) in the interval between 

x and x+x: 
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Dividing both sides by x, we get 
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This relation becomes Eq. (1) in the limit x→0, yi→0, and zj→0.  
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