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Simple Harmonic Motion ===============================================

Goal

• To determine the spring constant k and effective mass meff of a real spring.

Equipment

Tapered spring, straight spring, apparatus rod, clamp, mass set, mass hanger, stop
watch.

The Big Picture

Simple harmonic motion (SHM), or sinusoidal motion with a constant oscillation fre-
quency, is a mathematical idealization (like point masses and frictionless surfaces) but one
that is very useful in approximating real systems such as the pendulum of a grandfather
clock, musical instruments of all types and tuning forks, electronic quartz watches which use
a resonating crystal, light waves including lasers, radio transmitters and receivers, and many
others.

For example, a tuning fork is a U-shaped piece of metal that when struck will vibrate
at specific frequencies, the fundamental note and higher frequencies called overtones. Typ-
ically tuning forks are designed so that the overtones decay quickly and then only produce
the fundamental note stamped into the fork. The frequency of the fork depends, among
other factors, on the mass and the elasticity of the metal used. Before the advent of elec-
tronic tuners, musicians used tuning forks to tune their instruments. The frequency of the
fork depends very slightly on temperature because the elasticity of the metal changes with
temperature, but not on other factors like humidity which affect the tuning of stringed
instruments, so forks are a good standard to which an orchestra can calibrate.

There is a tiny tuning fork made of the mineral crystal quartz inside electronic watches
and clocks. Quartz is “piezoelectric” which means that a voltage applied to the crystal will
cause the crystal to flex. The shape and size of the quartz crystal are chosen to produce a
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Figure 1: Three tuning forks of different
pitch mounted on resonance boxes. From
Ref 2.

Figure 2: Magnified image of a quartz
crystal cut into the shape of a tuning fork
used in quartz clocks. From Ref 3.

frequency of 215 vibrations per second. An electronic circuit in the timepiece applies voltage
to the crystal and monitors voltage across the crystal as it oscillates in a feedback loop to
keep accurate time.

Theory

Why is SHM ubiquitous in so many systems across diverse disciplines? Any system in
stable equilibrium can be represented as a point near the bottom of a graph of potential
energy. Remember that “equilibrium” means that the net force is zero, and “stable” means
that if the system is disturbed slightly, it will return to equilibrium. Figure 3 is a graph of
a system in stable equilibrium. A good model to think about is a marble rolling around the
bottom of a bowl.
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Figure 3: Potential energy U plotted versus displacement x for a system in stable equilib-
rium. The dot represents the current state of the system.

As long as the displacement from equilibrium (the minimum on the potential energy
curve) is small, the curve can be approximated by a parabola U(x) = kx2 + b, as in Figure 4
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Figure 4: A parabolic approximation (dashed) is overlaid on the previous potential energy
curve.

A parabolic potential energy gives rises to a linear restoring force

F = −

dU

dx
= −kx,

just as in the case of Hooke’s law for a spring.

We can go a bit further. According to Newton’s second law, the net force is equal to the
mass multiplied by the acceleration, and the acceleration is just the second time derivative
of the displacement

F = ma = m
d2x

dt2
.

So now we have a differential equation for the displacement x(t) as a function of time

−kx(t) = m
d2x(t)

dt2
.

This is one of the first and most important differential equations that you will learn to
solve eventually, but for now we can simply tell you the solution which you can verify by
plugging into the equation above. The solution is

x(t) = A sin(ωt + C),

where ω =
√

k

m
is the angular frequency of oscillation, A is the amplitude of the oscilla-

tion (how far the system gets from equilibrium), and C is a constant related to when you
start watching the system oscillate (you can safely set C = 0 by choosing the start time
appropriately).

In summary, then: small displacements from stable equilibrium result in sinusoidal mo-
tion with constant frequency of oscillation; that is, simple harmonic motion.
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Procedure

1. Attach one of the two springs to the metal rod. The tapered spring should be attached
with the narrow end up. (Why?) Attach the mass hanger to the bottom of the spring
and load it with some mass. You must use enough mass to achieve smooth oscillation,
but you must NOT exceed the elastic limit of the spring! For the tapered
spring, the limit is about 500 grams plus the hanger; for the straight spring, the limit
is about 1000 grams plus the hanger.

2. Ease the loaded mass hanger to its new equilibrium position. Pull down gently on the
hanger and release it to start the oscillation. The amplitude of oscillation only needs
to be about 5 cm.

3. Record the attached mass (remember the 50-gram hanger) and the time for one com-
plete oscillation (up and down). It is very difficult to time one oscillation – how can
we improve precision?

4. Remember to record error estimates with all of your measurements.

5. Use at least eight different masses spread over the allowable range (between smooth
oscillation and the maximum values given above). If you choose masses too close
together, your best fit line will be imprecise.

6. Change springs and repeat the experiment.

Analysis

1. Write the equation relating mass m, the spring constant k, and the period T for an ideal
massless Hooke’s law spring loaded with a mass undergoing simple harmonic motion.

2. The world of the physics laboratory is not ideal – real springs have their own mass
which oscillates with the load. In the equation you have written above, replace the
mass m with the sum of the load mass mload and the effective mass of the real spring
meff .

3. Which variables in this last equation are easy to measure in lab?

4. What combination of these variables would you plot to produce a graph that is a
straight line?

5. What variable which is not easy to measure directly in lab can be derived from the
slope of the best-fit straight line graph? Determine it. No error propagation is required.
(Mathematica may be useful.)

6. What variable which is not easy to measure directly in lab can be derived from the
y-intercept of the best-fit straight line graph? Determine it. No error propagation is
required. (Mathematica may be useful.)

7. Why should the narrow end of the tapered spring be up?

8. Identify at least two sources of statistical error.
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9. Identify at least two sources of systematic error.
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