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The Force Table

Introduction:

"The Force Table" is a simple tool for demonstrating Newton’s First Law and the

vector nature of forces.  This tool is based on the principle of “equilibrium”. An object is

said to be in equilibrium when there is no net force acting on it. An object with no net

force acting on it has no acceleration. By using simple weights, pulleys and strings placed

around a circular table, several forces can be applied to an object located in the center of

the table in such a way that the forces exactly cancel each other, leaving the object in

equilibrium. (The object will appear to be at rest.) We will use the force table and

Newton’s First Law to study the components of the force vector.

Theory:

As we saw in the inclined-plane experiment, any vector can be decomposed  into

several other vectors which, when added together, produce the original vector.  This was

essential to our study of the inclined plane, where the force we were concerned with was

the component of the weight vector which was parallel to the inclined plane.  Sometimes,

when doing calculations which involve adding several vectors, it is useful to break up the

individual vectors into components and then add the components.

How could this extra step actually facilitate the solution?  Most vectors are given

only by their magnitude and direction, with magnitude being some scalar positive number

and direction given by some angle.  If you are trying to add the vectors using a protractor

and ruler by the "parallelogram method", you will have to draw all the vectors, then add

them up graphically, one by one, until you have completed the task and with questionable

precision in your result.  The component method reduces the addition to one step.

Furthermore, this step is analytical (adding numbers) rather than graphical (drawing

pictures), yielding the best possible precision.

In the inclined-plane experiment, the down-hill force was the component of the

weight vector which was parallel to the plane.  We found this component by multiplying

the weight by the sine of the angle of the plane.  Now let us consider a more general case.

In the Cartesian coordinate system, a point on the graph is specified by two scalar

numbers, x and y.  The coordinate x gives the distance and direction along the x-axis, and

the coordinate y gives the distance and direction along the y-axis, from the origin to get to

the point in question.  The absolute value of the coordinate indicates the length along the
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axis, while the sign (positive or negative) tells the direction (left or right, up or down) of

motion.  How can this be used with vectors?

Consider the vector R which lies in the x-y plane.  If we place the tail of R at the

origin, R points away from the origin like the hand of a clock.  R also makes some angle θ
with the positive x -axis (measured counter-clockwise).  The tip of R rests on the
Cartesian coordinate (Rx , Ry ).  In fact, Rx  and Ry are called the components of the

vector R.  Now consider another vector S, its components, and the sum of R and S, the

vector T.
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Observe that the components of S are negative in this example.  The components
of the resultant vector T, (Tx , Ty ) are equal to (Rx + Sx  , Ry + Sy ).  Since the length of

T is the hypotenuse of a right-triangle with sides of lengths Tx and Ty , the magnitude of T

is:

T   =  Tx 2 + Ty 2 

The convenient thing about the component method is that you only have to add

scalar numbers to get the final vector.  This really speeds things up when you have more

than two vectors to add.  But how do you get the components from the magnitude and the

angle θ ?   The force table gives you the angle and the magnitude of the different vectors.

How can a vector as such be decomposed  into x and y components ?  Lets look at the

right-triangle O-A-H (notation for opposite, adjacent, hypotenuse):
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As we saw last week, the sine of angle θ  is the ratio 
O
H .  There is another function

called the cosine, which is the ratio 
A
H .  Therefore, if you know θ  and the length of side

H, you can calculate O and A:

O  =  H sin θ
A  =  H cos θ

Now if we set the right triangle O-A-H in such a way that side A lies along the x-

axis and side O lies along the y-axis, and treat side H as our vector R, we see a way to

calculate the x and y components:
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Rx  =  R cosθ
Ry  =  R sinθ

You will notice that for θ greater that 90°, the numbers Rx and Ry may be

negative.

For the force table, the components of the individual tensions will be calculated by

this method.  The x and y components of a force T in the direction given by the angle θ
will be:

Tx  =  Tcos θ
Ty  =  Tsin θ
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The angle will always be measured as above, with zero pointing along the positive

x-axis and increasing in a counter-clockwise direction.

Procedure:

Part One:

1.  Level the force table and put one of the pulleys at the angle 0°.

2.  Put the slot weights in the holders such that each one has a total mass of 200 g.

3.  Arrange the other two pulleys such that the ring connecting the different strings

remains fixed at the exact center of the table.  Tap the table to make sure that it remains

fixed.  At this point the ring is at equilibrium.

4.  Record as T1, T2 , and T3 , the tensions in each of the strings.

5.  Record as θ1 , θ2 , and θ3, the respective angular positions of the pulleys.

6.  Find the x and y components of each of the tensions.  Record these as T1x , T1y, et

cetera.

7.  Now find the resultant force vector by adding the respective components of the

individual string forces.  What do you find?

Part Two:

Repeat part one, but change the mass on the pulley #1 at 0° to 300 g.

Part Three:

Repeat part one, but with masses of 200, 300, and 400 g.

Conclusions:

1.  Write about what you learned in this experiment.  Remember to explain how

you reached your conclusion.

2.  When the three "tension vectors" were added, what was the resultant vector?

What does this tell you about Newton’s First Law?
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3.  Were forces produced by the three weights from the hanging masses the only

forces affecting the tensions in the strings?

4.  If the center ring were to have considerable mass, what effect would it have on

the experiment?

Error Analysis:

If your results are not what you expected, explain why.  What are possible sources

of error in this experiment?
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Name:__________________________Section: _________

Abstract:

Part One:

m1 T1 θ1 T1x T1y
m2 T2 θ2 T2x T2y
m3 T3 θ3 T3x T3y

ΣΤx ΣΤy
Calculations:

Part Two:

m1 T1 θ1 T1x T1y
m2 T2 θ2 T2x T2y
m3 T3 θ3 T3x T3y

ΣΣΤx ΣΣΤy
Calculations:
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Part Three:

m1 T1 θ1 T1x T1y
m2 T2 θ2 T2x T2y
m3 T3 θ3 T3x T3y

ΣΣΤx ΣΣΤy
Calculations:

Conclusions:

Sources of Error:

Data Collection / Calculations (40%)
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Abstract / Conclusions (40%)
Error Analysis (20%)
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