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Why we need probability in the particle world

Since Laplace’stimes (1749-1827)the universe’s fate was deterministic
and, in spite of technical difficulties, was considered predictible if
the complete equation of state were known.

Challenged by Heisenberg’s uncertainty principle (1927), Albert
Einstein proclaimed “Gott wdirfelt nicht” (*God does not play dice”),

but hidden variablesto bring back determinism through the back
door into the quantum world were never found.

In quantum mechanics, particles are represented by wave functions.
The size of the wave function gives the probability that the particle
will be found in a given position. The rate, at which the wave function
varies from point to point, gives the speed of the particle.

Quantum phenomena like particle reactions occur according to
certain probabilities. Quantum field theory allows us to compute
cross-sections of particle production in scattering processes, and
decays of particles. It cannot, however, predict how a single event
will come out. We use probabilistic “Monte Carlo” techniques to
simulate event-by-event realisations of quantum probabilities.

Pierre-Simon de Laplace

Albert Einstein

Werner Heisenberg



Statistics of large systems

Statistical physics uses probability theory and statistics to make statements about the
approximate physics of large populations of stochastic nature, neglecting individuals.

Heavy-ion collisions at the LHC are modelled

using hydrodynamics (strongly interacting medium
behaves like perfect fluid)

Statistical mechanics provides a framework for
relating the microscopic properties of individual
atoms and molecules to the macroscopic
properties of materials that can be observed in
everyday life, therefore explaining
thermodynamics as a natural result of statistics,
classical mechanics, and quantum mechanics
at the microscopic level.

, (RSN NN NN
Display of ATLAS Run-2 Heavy-lon collision

Probability and statistics are fundamental ingredients & tools in all modern sciences



Statistical distributions

Measurement results typically follow some “distribution”, ie, the data do not appear at
fixed values, but are “spread out” in a characteristic way
Which type of distribution it follows depends on the particular case

« |t isimportant to know the occurring distributions to be able to pick the correct one
when interpreting the data (example: Poisson vs. Compound Poisson)

« ...anditisimportant to know their characteristics to extract the correct information

Note: in statistical context, instead of “data” that follow a distribution, one often (typically)
speaks of a “random variable”



Terms (Cranmer, Cowan)

- Random variables / “observables™ x

- Probability (mass) and probability density function (pdf) p(x)
- Parametrized Family of pdfs / “model” p(x|a)

- Parameter o

- Likelihood L(a)

- Estimate (of a parameter) &\(x)



Random variable / observable

“Observables” are quantities that we observe or measure directly
» They are random variables under repeated observation

Discrete observables:
» number of particles seen in a detector in some time interval
» particle type (electron, muon, ...) or charge (+,-,0)

Continuous observables:
» energy or momentum measured in a detector
» invariant mass formed from multiple particles



Statistical Distributions

* Measurements/Results typically follow some
probability distribution
* i.e. data is not at a fixed value, but “spreads out” in a particular way

* Which type of distribution it follows depends on the particular
case

* important to know the different distributions

- be able to pick the correct one when doing the analysis
* .. and know their characteristics

- be able to extract the “information” in the data

Note: in statistical context:
instead of “data” that follows a distribution,
one often (typically) speaks of a “random variable”



Probability Distribution/Density of a Random Variable

random variable xork :  characteristic quantity of a point in sample space

discrete variables continuous variables

P(k;) = p;

(ki) = pi Plx e [xx+dx])=p(x)dx
normalisation (your parameter/event space covers all possibilities - unitarity )
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Cumulative distribution

p, (x): probability density distribution for some “measurement” x under the assumption of
some model and its parameters

The cumulative distribution P(x) is the probability to observe a random value x smaller
than the one observed, x ,ps

— Examples for cumulative distributions: y2, p-values, confidence limits (will come back to this)
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Selected probability (density) distributions

Imagine a monkey discovered a huge bag of alphabet
noodles. She blindly draws noodles out of the bag and
placesthem ina row before her. The text reads:

“TO BE OR NOT TO BE”

The probability for this to happenis about 10722

Infinite monkey theorem: provided enough time,
the monkey will type Shakespeare's Hamlet



Bernoulli Distribution

- 2 possible outcomes:
» Yes/No
» Head/Tail
» snmn

- (fair) coin: P (head)=p (e.9.= ), P(tail) =1 — P (head) =1 —p

N_f P :k=head=1 _ .. . 1-k

1 1 1

P(k;p)
P(k;p)
P(k;p)

o.s-— p=0.5 o.s; p=0. 0.8 p=0.7
o] 0.61 0.6
0.4 0.4- 0.4
0.2 0.2 0.2
35 o . : %5 o0 o5 1 15 1.5




Binomial distribution (very important!)

Now let’'s get more complex: throw N coins (or similar binary choices)

How often (likely)is kxhead and (N — k) xtail ?

« Eachcoin: P(head) =p,P(tail) =1—p

» Pick k particular coins — the probability of all having head is:
P(kxhead) = P(head) - P(head) - ---- P(head) = P(head)* = p*

« Multiply this by the probability that all remaining N-k coins land on tail:

k. NN-k — k _ N-k Binomial distribution

P(head)” - P(tail) p* (1-p) -

. . E; 018 N = 15,

« This was for a particular choice of kcoins = ots- p=0.5
=2 0.14
N E: o.12§—
* Now include all (k) permutations for any k coins 015
0.08—
N 0.0GE—
. — k _ N—k 0_043_
P(k;N,p) = p* (1=p)V* ()

kKl 0 T

N . . o
where <k) = D is the binomial coefficient



Binomial Distribution

Examples:
n
[ Binomial distribut |
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- Expectation value: sum over all possible outcomes and “average”

E[k] = Y kP(k) = Np
« Variance:

* V(k) = Np(1—p)




Characteristic Quantities of Distributions

discrete variables continuous variables
- Expectation value E (mean value):
E = (k) = Z kP (k) E[x] = &) = [ xP G)dx
all k
- Note: mean/expectation of f (x). Elf(] = [ £GP G)dx

- Variance (V = ¢2, with o: “spread”): E [(x — (x))?]| = E[x2] — (E [x])?

V() = ) (k= ()2P() V) =J (x - ()2P(x)dx

all k
- higher moments: Skew: E[ x — (x))?] ...

- Note: expectation and variance are properties of the full population.
Unbiased estimates, derived from samples taken from the distribution:

1 samples _2 . 1 samples
n—1zi (ki = k) n—lzi (xi = %)



Mean, Mode, Median:

 Mean: (x) — defined before
« Mode: most probable value X o4 PxXmode) = Px(X), Vx

« Median: 2-quantile: 50% of x values are larger than x,.qjan, 90% are smaller

Can generalise k-quantile . points at regular intervals of the cumulative distribution.
Boundaries of binning chosen such that each bin containsthe 1/k-th of total integral of distribution.

Symmetric curve (& single peak): Skewed curve:
A , A )
< mean = mode = median < mode median mean
~ -~ ~ V's
=y QU




Poisson distribution

Recall: individual events each with two possible outcomes — Binomial distribution

How about: number of counts in radioactive decay experiment during given time interval At

« Events happen “randomly” but there is no such 2" outcome. At is continuous, no discrete trials
« u:average number of counts in At. What is the probability of observing N counts?
* Limit of Binomial distribution for N - o0 & p - 0 sothat Np - u.

N

— Poisson distribution: P(N;u) = %e‘”
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Expectation value: E[N] = Yy N - P(N) = u, Variance: V[N] = u

Poissonis good approximation for Binomial distribution for N > u (= Np)



Poisson distribution applies when:

e each event is independent of all other events

-> there are no correlations

* you know the mean/average value

It allows you to estimate the probability of a given fluctuation

Examples

Number of decays of radioactive nuclei per unit time

Number of junk email you receive per day

Probability of weather occurrences

Number of supernova star explosion within Milky Way (our) galaxy

On a particular river, overflow floods occur once every 100 years on average.

Calculate the probability of k=0, 1, 2, 3, 4, 5, or 6 overflow floods in a 100-year interval,
assuming the Poisson model is appropriate.

Because the average event rate is one overflow flood per 100 years,A=1



1le1 e 1

P(k = 1 overflow flood in 100 years) = —7 = 1T = 0.368
12e—1 e 1
P(k = 2 overflow floods in 100 years) — —S7 - — 3 = 0.184

The table below gives the probability for o to 6 overflow floods in a 100-year period.

ARk overflow floods in 100 years)
0.368

0.368

0.184

0.061

0.015

0.003

0.0005

O g~ WOWIN =2 O x>

Ugarte and colleagues report that the average number of goals in a World Cup soccer match is approximately 2.5 and the Poisson model is appropriate.[3]

Because the average event rate is 2.5 goals per match, A = 2.5.

2_5]6 6—2.5

P(k goals in a match) =

k!
P(k = 0 goals in a match) = 2.50(;_2-5 = 6_12-5 = 0.082
P(k = 1 goal in a match) — 2°5116;_2-5 = g = 0.205
P(k = 2 goals in a match) — 2.5%e727 = 6.25e° = 0.257

2! 2



Gaussian (also: “Normal”) distribution

In limit of large u a Poisson distribution approaches a symmetric Gaussian distribution

« This is the case not only for the Poisson distributions, but for almost any sufficiently large sum of
samples with different sub-properties (mean & variance) — Central Limit Theorem (will discuss later)

» Gaussian distribution is of utter use, and luckily has simple properties

1 _(x=p)?
— Gauss distribution: P(x; u,0) = Z—e 202
V2w o

99.9%

0,
« Expectation value: E[x] = p 99.7%

« Variance: V[x] = o2 /\

/

Symmetric distribution:

« Probability content: / 341% 341%
o0 o oo
/77 PCx; p,0)dx = 68.2% /136% _68.2% 136
: 95.4 %
+20
. — 0
J_,5, P(x; p,0)dx = 95.4% . R e e




Some other distributions

Uniform (“flat”) distribution

Exponential distribution

« Particle decay density versus time
(in the particle’srest frame!)

Relativistic Breit-Wigner distribution

« Distribution of resonance of unstable particle as function of
centre-of-mass energy in which the resonance is produced
(originates from the propagator of an unstable particle)

Chi-squared (x?) distribution

« Sum of squares of Gaussian distributed variables;
used to derive goodness of a fit to describe data

Landau distribution

» Fluctuation of energy loss by ionization of charged particle
in thin matter (eg, charge depositionin silicon detector)

Many more, see http://pdg.lbl.gov/2015/reviews/rpp2015-rev-probability . pdf
for definitions and properties.
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Central limit theorem (CLT)

CLT: the sum of nindependentsamples x; (i = 1, ...,n) drawn from any PDF D(x;) with well
defined expectation value and variance is Gaussian distributed in the limitn — oo

n 0.2
D: Eplx] = Vplx] =05, and:y = 2 1xi = Egauss [Y] = & Vgauss[y] = Z
i=

n
n=1 n=2 n=3 T
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Averaging reduces
the variance

n=4 Y n=>5 ) n=6
Lot g Example: summing up ensembles
£ uniformly distributed within [0, 1]
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Central limit theorem (CLT)

CLT: the sum of nindependentsamples x; (i =1, ...,

n) drawn from any PDF D(x;) with well

defined expectation value and variance is Gaussian distributed in the limitn — oo

D: Ep[x;] =
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Example: summing up exponential
distributions

Central Gaussian limit works even if
D doesn’t look Gaussian at all
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What if a measurement consists of two variables?

Let:

. 16
A = measurement x in [x,x + dx]

B = measurementyin|[y,y + dy]

Joint probability: P(A N B) = p,,, (x,y)dxdy
(where py,(x,y) is joint PDF)

If the two variables are independent:
P(A,B) = P(A) - P(B) 2
Py (2,5) = D () - py, (1)

Marginal PDF: if one is not interested in
dependence on y (or cannot measure it),

— integrate out (“marginalise”) y, ie, project onto x

— resulting one-dimensional PDF: p, (x) = [ py, (x,y)dy

From: Glen Cowan,
Statistical data analysis

£

T

L@y R
L~ some event A

N ¢




Conditioning versus marginalisation

Conditional probability P(A|B): [ read: P(A|B) = “probability of A given B" |

P(ANB) _ pxy(x,y)dxdy
P(B)  p,(»)dx

P(A|B) =

Rather than integrating over the whole y region (marginalisation),
look at one-dimensional (1D) slices of the two-dimensional (2D) PDF p,,,, (%, y):

Py (Ylx1) = pyy (x = const = x4,y)

Xy X2
4 !
10 L L /g 0-5
Y (a) G,
BN
o 04 .
0.3
1 0.2
0.1
From: Glen Cowan,
0 Statistical data analysis




Covariance and correlation

Recall, for 1D PDF p, (x) we had: E[x] = u,; V[x]= o} E — expectation value
V - variance

For a 2D PDF p,,(x,y), one correspondingly has: py, py, 0y, 0y

How do x and y co-vary ? — C,,, = covariance,, = E[(x — ) (y — 1y,)] = E[xy] — pois,

Or the scale / dimension invariant correlation coefficient

= XY, wherep,, c [-1,+1]

- Ifx, y areindependent: p,,, =0, ie, they are uncorrelated (or they factorise)

Proof: E[xy] = [[ xy - pxy (x,y)dxdy = [ x - p,(x)dx - [ y - p, (0)dy = p,ie,

* Note that the contrary is not always true: non-linear correlations can lead to py,, =0,



Correlations

Figure from: https://en.wikipedia.org/wiki/Correlation_and_dependence

The correlation coefficient measures the noisiness and direction of a linear relationship:

Y4 1 = Pyxy 0.8 04 0 -04 -0.8 -1
x
1 1 1 -1 -1 -1
— ‘\\ \\
0 0 0
&, K
B, o
g

...and non-linear correlation patterns are not or only approximately captured by p,,, (seeabovefigures)



Correlations

Non-linear correlation can be captured by the “mutual information” quantity I,

_ . pxy(x;y) )
Ly = jf pxy(x:)’) In <px(x)py(y) dxdy

where I, =0 only if x, y are fully statistically independent
Proof: ifindependent, then p,,(x,y) = p,(x)py(¥) = In(...) =0

NB: I, = H, —H,(y) = H,— H,(x),
where H, = — [ p,(x) - In(p, (x)) dx is entropy, H,.(y) is conditional entropy




2D Gaussian

- If the 2 variables are independent: . Correlated Gaussians <
P(x,y)=P x)P(y) transformed (rotated) variables

ll""l"".llllll|||
- v

AN
R 40
~N~ B
I
N

o, =1
Oy=2 %

X

] PG) = 1 oG-V ()

T 21/ det(V)

x—x) V_( (x2) — (x1)? (x1x2>—(x1)<x2))co-

(x12x2) — (21 Xx2) (x2) — (x,)2 ) variance
matrix



Warning

Marginalization may lead to observation of non-existing correlations

uniform distribution A(x,y)
y

projections F(x) and G(y) peaked at 0

Correlation function

C(x,y) =A(x,y)-F(x)G(y)
will have an artificial minimum due to non-rectangular boundary.
Remember that event phase space has long-range correlation due to
energy-momentum conservation.



Cumulative Distribution

aussian distribution | P D F

%mz // (probability density function)
Cumulative distribution:

0.06 X
- j p(x")dx' = P(x)

— 00

R S p(x) = dP(x)/dx :
- p(x): probability distribution for some “measurement” x under the
assumption of some model (parameter)
Examples of Cumulative distribution usage:
- Imagine you measure x,ps

- how often one expects x far “off” the expectation (mean) value?
« 1-["°"s p (x")dx" = p — value for observing something at least as

far away from what you expect

- similar: y2-Probability



Functions of random variables

Any function of a random variable is itself a = 10

random variable ~
[
=

E.g., x with PDF p,(x) becomes: y = f(x)
y could be a parameter extracted from a measurement 6
What is the PDF p,,(y) ?

- Probability conservation: p, (y)|dy| = p,(x)|dx]|

« For a 1D function f(x) with existing inverse:

YDy oy e YDy

dv =
Y dx dy

d
* Hence: p,(»)=p,(f" ) ‘%‘

Note: this is not the standard error propagation but the full PDF !

(a)




Error propagation

Let's assume a measurement x with unknown PDF p,.(x), and a transformation y = f(x)

- X andV are estimates of u and variance a2 of p,(x)
What are E[y] and, in particular, af, ? — Taylor-expand f(x) around x:

. f(X)=f(f)+Z—£|x=f(x—f) +.- = E[f(x)]=f(x) (because: Elx—x]=01)

Now define y = f(x), and from the above follows:

— _d —
@ y-y=Z| -»

dx x:f

* Oy — (approximate) error propagation



Error propagation (continued)

In case of several variables, compute covariance matrix and partial derivatives

« Let f = f(xq,...,x,) be a function of n randomly distributed variables

n
2 of o
d ~ N
. (—f ) V, becomes: —f—f -Vi; (where:x = (Xy,..., %))
dxlx=x £ 0x;0x; ’
,j=1 X
« with the covariance matrix:
2
le O-xlxn
Vij= 3
O-xnxl O-xn

&, Theresulting “error” (uncertainty) depends on the correlation of the input variables
o Positive correlations lead to an increase of the total error

o Negative correlations decrease the total error
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Probability Functions

When dealing with discrete random variables, define a
Probability Function as probability for ith possibility

P(x;) = pi -
W e

N

Defined as limit of long term frequency

» probability of rolling a 3 := limit #rias—- (# rolls with 3 / # trials)
* you don't need an infinite sample for definition to be useful

ZP(:CZ-) =1

Normalization



Probability Density Functions

When dealing with continuous random variables, need to
introduce the notion of a Probability Density Function

P(x E [x,x+ dx])= f(x)dx

Note, f (x) is NOT a probability

Xo04
0.35

PDFs are always normalized o
to unity: 02

0.2
0.15

/ O; foyde=1

0



What is Probability

- Axioms of probability: Kolmogorov (1933)
- P(4) =0
* JyP(A)dU =1
cif:(AandB)=(ANnB)=0
(i.e disjoint/independent/exclusive)
P(AorB )= (AUB) =P(A) + P(B)

define e.g.:  conditional probability

PUnB)
P(B)

P(A|B) = P(A given B is true) =

U niverse U niverse

Venn-Diagram Venn-Diagram



What is Probability

« Axioms of probability: - pure “set-theory”

1) a measure of how likely an event will occur, expressed
as a the ratio of favourable—to—all possible cases in
repeatable trials

» Frequentist (classical) probability

P(”Event”) = lim ( soutcome is "Event" )

7 — 00
ntrials

2)the “degree of belief” that an event is going to happen

« Bayesian probability:
« P(“Event”): degree of belief that "Event” is going
to happen -> no need for “repeatable trials”

 degree of belief (in view of the data AND previous
knowledge(belief) about the parameter) that a

parameter has a certain “true” value




Frequentist vs. Bayesian

PBIOPG)  _ p(g|p) 22

Bayes’ Theorem —
y P(4IB) P(B) &)

 This follows simply from the “conditional probabilities”:



Derivation of Bayes’ Theorem

... in picture ...taken from Bob Cousins

Whole space

18>

Bob Cousins, CMS, 2008

P(A) =

P(B) =




Frequentist vs. Bayesian

P(B|A)P(A) _ P(4)
e = pel) 2

Bayes’ Theorem P(A|B) =

* This follows simply from the “conditional probabilities”:
P(A|B)P(B) =P(ANnB)=P(BnA) =P(B|AP(A)
P(A|B)P(B) = P(B|A)P(A)

P(B|A)P(A)

P(A|B) = P(E)




Frequentist vs. Bayesian

P (nlp): Likelihood function
P(n|p)P(u) - P(uln):posterior probability of p
P(n) « P(u): the “prior”
- P(n): just some normalisation

Bayes’ Theorem P(u|n) =

Nobody doubts Bayes’ Theorem:
discussion starts ONLY if it is used to turn
frequentist statements:

« probability of the observed data given a certain model: P(Data| Model)

into Bayesian probability statements:

- probability of a the model being correct (given data): P(Model | Data)

- ... there can be heated debates about ‘pro’ and ‘cons’ of either....



P (Data|Theory) # P (Theory|Data)

- Higgs search at LEP: the statement
- the probability that the data is in agreement with the Standard

Model background is less than 1% (i.e. P(datal SMbkg) < 1%)
went out to the press and got turned round to:

P(datwgldata) < 1% P(Higgsldata) > 99% !
WRONG!

+ easy Example: Theory = fish (hypothesis) .. mamal (alternative)
Data = swim or not swim
P (swimt | fish) ~ 100% but P (fish | swim) =??

-0.k... but what DOES it say?



The correct frequentist

interpretation

we know: P (Data | Theory) # P (Theory | Data)
P(Theory)
Bayes Theorem: P (DatalTheory) = P (TheoryiData) P(Data)

Frequentists answer ONLY: P (Data | Theory)
In reality - we are all interested in P(Theory...)

We only learn about the “probability” to observe certain data under a
given theory. Without knowledge of how likely the theory (or a possible
“alternative” theory ) is .. we cannot say anything about how unlikely our
current theory is !

We can define “confidence levels” ... e.g., if P(data) < 5%, discard theory.

- can accept/discard theory and state how often/likely we will be
wrong in doing so. But again: It does not say how “likely” the
theory itself (or the alternative) is true

- note the subtle difference !!



Frequentist vs. Bayesian

 Certainly: both have their “right-to-exist”

- Some “probably” reasonable and interesting questions cannot even
be ASKED in a frequentist framework :

* “How much do | trust the simulation”
* “How likely is it that it will raining tomorrow?”
- “How likely is it that climate change is going to...

- after all.. the “Bayesian” answer sounds much more like what you
really want to know: i.e.
“How likely is the “parameter value” to be correct/true ?”

« BUT:
« NO Bayesian interpretation exist w/o “prior probability” of the
parameter
- where do we get that from?
- all the actual measurement can provide is “frequentist’!




Bayesian Prior Probabilties

- “flat” prior (0) to state “no previous” knowledge (assumptions)
about the theory?
» often done, BUT WRONG:
- e.g. flat prior in My, 445 -> not flat in MHzl-ggS
® Choose a prior that is invariant under parameter transformations
Jeffrey’s Prior - objective Bayesian”:
- “flat” prior in Fisher’s information space

- (@) x V1) (@) /detl 6 ) if several parameters)

10) = —Ex [Z51log(f(x ;0)]:

« f (x; 8 ) Likelihood function of 6, probability to observe x for a give parameter 6
«amount of “information” that data x is ‘expected’ to contain about the
parameter 6
 personal remark: nice idea, but “WHY” would you want to do that?
- still use a “arbitrary” prior, only make sure everyone does the same way
 loose all “advantages” of using a “reasonable” prior if you choose already to



Frequentist or Bayesian?

“Bayesians address the question everyone is
interested in, by using assumptions no-one believes”

“Frequentists use impeccable logic to deal with an
issue of no interest to anyone”

Louis Lyons, Academic Lecture at Fermilab, August 17, 2004

 Traditionally: most scientists are/were “frequentists”

* no NEED to make “decisions” (well.. unless you want to
announce the discovery of the Higgs particle..)

* it’s ENOUGH to present data, and how likely they are under
certain scenarios

- keep doing so and combine measurements
- Bayesian approch is expanding

- now we have the means to do lots of prior comparisons:
Computing power/ Markov Chain Monte Carlos



Spares



Binomial Distribution

throw N coins: (anything with two different possible outcomes)
> 2 how likely (often): k x head and W — k )x tail ?

» each coin: P head )=p, P tail)=1-p

® pick k particular coins - the probability of all having head is:
P(k x head) = P(head) * P(head) ...+ P(head) = P(head)*

» at the same time: probability that all remaining N-1 coins land on tail

P(head)* P(tai)V=* = p* (1 — p)N -k

» That was for k particular coins:

[ Binomial distribution |

o 02F
= o018

N = . - v 0.16
(k) possible permutations for any k coins T o
.0.1
0.08
0.06

P(k;N,p)=p* (1 -p"* (V) :1::1:

0
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Poisson Distribution

- Binomial distribution: Individual events with 2 possible outcomes

- How about: # counts in radioactive decays during At ?
- events happen “randomly” but there is no 2"d outcome

- At: continuum  # “N- discrete trials”
What'’s the probability for n counts?

U : average #counts in At.
Limit of Binomial distribution for N - co with Np = u fixed
- Poisson P(n) = “-e#

[ Poisson distribution |

u=1.0

=]
=] -
T[T [T [T [T T[T T[T
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- Expectation value:

Elnl
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b.t.w. it’s a good approximation of Binomials for N > Np =u



Gaussian Distribution

 For large u the Poisson distribution already looked fairly “Gaussian”
* in fact in the limit it “becomes” Gaussian
- just like almost everything: Central Limit Theorem
- Gaussian is the probably the most important distribution

1 (x—p)? 6\0.5_ LA B B B B S Y A B
Gauss: P (&) = e~ 2° = )
TR0 Koal P(O) -
- Expectation value: 2t :
Elx] = p 0'3: P(0)e 2
C e
- Variance: 02 1
V(%) = g2 :
- Probability content: o Ci
4 i 2 4
20 (x-n) o

f P(x)dx = 68% f P(x)dx = 95%
—0

o FWHM = 2.360



expectation value and variance
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Central Limit Theorem

- The mean y of n samples x; from any distribution D with well defined
lim - Gaussian
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summation

AN

> Egauss [y] = U, VGauss [y] =

Averaging reduces
the error



Central Limit Theorem

« even if D doesn‘t look ,,Gaussian“ at all !
e.d. ,,exponential distribution®

Measurement errors:
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Some Other Distributions

- Exponential — distribution

® time distr. until particle decays (in it’s own rest frame) "

- Breit=Wigner (Cauchy) — distribution w2l

® mass peaks (resonance curve)

M-2I" M-I M M+I" M+2

~

« x% — distribution
® sum of squares of Gaussian distributed variables
- goodness-of-fit

 Landau - distribution

® charge deposition in a silicon detector

« Uniform — distribution 1/(b-a)}

* ... and many more:




