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My favorite statistics book by a statistician:
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T.	Has;e,	R.	Tibshirani,	J.	Friedman,	The	elements	of	Sta;s;cal	Learning,	Springer	2001	



Why we need probability in the particle world 
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Since Laplace’s times (1749–1827) the universe’s fate was deterministic 
and, in spite of technical difficulties, was considered predictible if 
the complete equation of state were known. 

Challenged by Heisenberg’s uncertainty principle (1927), Albert 
Einstein proclaimed “Gott würfelt nicht ” (“God does not play dice”),               
but hidden variables to bring back determinism through the back 
door into the quantum world were never found.

In quantum mechanics, particles are represented by wave functions. 
The size of the wave function gives the probability that the particle 
will be found in a given position. The rate, at which the wave function 
varies from point to point, gives the speed of the particle.

Quantum phenomena like particle reactions occur according to 
certain probabilities. Quantum field theory allows us to compute 
cross-sections of particle production in scattering processes, and 
decays of particles. It cannot, however, predict how a single event 
will come out. We use probabilistic “Monte Carlo” techniques to 
simulate event-by-event realisations of quantum probabilities. 
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Statistics of large systems
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Statistical physics uses probability theory and statistics to make statements about the 
approximate physics of large populations of stochastic nature, neglecting individuals.

Heavy-ion collisions at the LHC are modelled 
using hydrodynamics (strongly interacting medium 
behaves like perfect fluid)

Statistical mechanics provides a framework for 
relating the microscopic properties of individual 
atoms and molecules to the macroscopic 
properties of materials that can be observed in 
everyday life, therefore explaining 
thermodynamics as a natural result of statistics, 
classical mechanics, and quantum mechanics 
at the microscopic level.

Display of ATLAS Run-2 Heavy-Ion collision

Probability and statistics are fundamental ingredients & tools in all modern sciences



Statistical distributions

Measurement results typically follow some “distribution”, ie, the data do not appear at 
fixed values, but are “spread out” in a characteristic way

Which type of distribution it follows depends on the particular case

• It is important to know the occurring distributions to be able to pick the correct one 
when interpreting the data (example: Poisson vs. Compound Poisson)

• …and it is important to know their characteristics to extract the correct information

Note: in statistical context, instead of “data” that follow a distribution, one often (typically) 
speaks of a “random variable”

9



Terms	(Cranmer,	Cowan)	

 

‣  Random variables / “observables” x 

‣  Probability (mass) and probability density function (pdf) p(x) 

‣  Parametrized Family of pdfs / “model” p(x|α) 

‣  Parameter α  

‣  Likelihood L(α) 

‣  Estimate (of a parameter) α̂ (x) 



Random	variable	/	observable	
“Observables” are quantities that we observe or measure directly 
‣ They are random variables under repeated observation 

Discrete observables: 
‣ number of particles seen in a detector in some time interval 
‣ particle type (electron, muon, ...) or charge (+,-,0) 

Continuous observables: 
‣ energy or momentum measured in a detector 
‣  invariant mass formed from multiple particles 



Statistical Distributions 
• Measurements/Results	typically	follow	some	
probability	distribu.on	
•  i.e. data is not at a fixed value, but “spreads out” in a particular way 

• Which	type	of	distribu.on	it	follows	depends	on	the	par.cular	
case	
•  important	to	know	the	different	distribu.ons	

•  be able to pick the correct one when doing the analysis 
•  ..	and	know	their	characteris.cs	

•  be able to extract the “information” in the data 

Note: in statistical context:
instead of “data” that follows a distribution,
one often (typically) speaks of a “random variable” 



Probability Distribution/Density of a Random Variable 

random variable x or k : characteristic quantity of a point in sample space
discrete variables
 
𝑷  𝒌𝒊 = 𝒑𝒊

𝒌𝒊  = 𝑵𝒐𝒃𝒔.

continuous variables
 
𝑷  𝒙 ∊ 𝒙, 𝒙 + 𝒅𝒙 = 𝒑  𝒙  𝒅𝒙

normalisation (your parameter/event space covers all possibilities - unitarity ) 

𝒙 = 𝒎𝒐𝒃𝒔.

Probability Distribution/Density  
of a Random Variable 
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random variable x or k :   characteristic quantity of point in sample space 

discrete variables 

𝑷 𝒌𝒊 = 𝒑𝒊 

𝒌𝒊 = 𝑵𝒐𝒃𝒔. 
 

continuous variables 
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𝑷 𝒙 ∊ 𝒙, 𝒙 + 𝒅𝒙 = 𝒑 𝒙 𝒅𝒙 

 𝒑 𝒙 𝒅𝒙
∞

−∞
= 𝟏  𝑷 𝒌𝒊

𝒊

= 𝟏 

𝒙 = 𝒎𝒐𝒃𝒔. 
 

Probability Distribution/Density  
of a Random Variable 
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Cumulative distribution

=" " : probability density distribution for some “measurement” " under the assumption of 
some model and its parameters

The cumulative distribution > " is the probability to observe a random value " smaller 
than the one observed, "?@A
→ Examples for cumulative distributions: B2, p-values, confidence limits (will come back to this)
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Selected probability (density) distributions
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Imagine a monkey discovered a huge bag of alphabet 
noodles. She blindly draws noodles out of the bag and 
places them in a row before her. The text reads:        
“TO BE OR NOT TO BE”

The probability for this to happen is about 10–22

Infinite monkey theorem: provided enough time, 
the monkey will type Shakespeare's Hamlet



•  2 possible outcomes:
Yes/No 
Head/Tail
…. 

•  (fair) coin: 𝑷  𝒉𝒆𝒂𝒅 = 𝒑 𝒆. 𝒈. = 𝟏
𝟐 , 𝑷  𝒕𝒂𝒊𝒍 = 𝟏 − 𝑷  𝒉𝒆𝒂𝒅 = 𝟏 − 𝒑

p=0.5 p=0.8 p=0.7

Bernoulli Distribution 
� 2 possible outcomes: 

Yes/No 
Head/Tail 
….  

� (fair) coin: 𝑷 𝒉𝒆𝒂𝒅 = 𝒑 𝒆. 𝒈. = 𝟏
𝟐

,  𝑷 𝒕𝒂𝒊𝒍 = 𝟏 − 𝑷 𝒉𝒆𝒂𝒅 = 𝟏 − 𝒑  
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𝑷 𝒌; 𝑝 =  
𝒑

𝟏 − 𝒑
: 𝒌 = 𝒉𝒆𝒂𝒅 = 𝟏
∶ 𝒌 = 𝒕𝒂𝒊𝒍    = 𝟎  =  𝒑𝒌 (1 − 𝒑)1−𝒌 
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p=0.5 p=0.8 p=0.7 



Binomial distribution (very important!)

Now let’s get more complex: throw N coins (or similar binary choices)

How often (likely) is !×`abc and d− ! ×ebfg ? 

• Each coin: # head = ', # tail = 1 − '

• Pick ! particular coins → the probability of all having ̀ abc is:	

• Multiply this by the probability that all remaining N–k coins land on ebfg:

• This was for a particular choice of k coins 

• Now include all 4
$
	permutations for any k coins
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# $×head = # head j # head j ⋯ j # head = # head J = 'J

# head J j # tail l1J = 'J (1 − ')l1J

#($; 4, ') = 'J (1 − ')l1J
4

$

where 4
$

=
J!

J!(l1J!)
is the binomial coefficient

#
(
$
;
4
,'
)

$

4 = 15,	

' = 0.5

Binomial distribution



Examples:

•  Expectation value: sum over all possible outcomes and “average” 


 
•  Variance:
 

•  𝑽  𝒌 = 𝑵𝒑(𝟏 − 𝒑)

Binomial Distribution 
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Examples: 

� Expectation value: sum over all possible outcomes and “average”   
  

� 𝐄 𝒌 =  𝒌𝑷 𝒌 = 𝑵𝒑 
 

� Variance: 
 

� 𝑽 𝒌 = 𝑵𝒑(𝟏 − 𝒑) 



•  Expectation value  E (mean value):




• Note: mean/expectation of 𝒇  𝒙  :

E[x] =  𝒙 = ∫ 𝒙𝑷  𝒙  𝒅𝒙
 
→ 𝑬  𝒇  𝒙 = ∫ 𝒇  𝒙  𝑷  𝒙  𝒅𝒙

•  Variance (𝑽 = 𝝈𝟐, with 𝝈: “spread”) :  𝑬 𝒙 − 𝒙 𝟐 = 𝑬  𝒙𝟐 − (𝑬  𝒙  )𝟐

 
𝒙 − 𝒙 𝟐𝑷 𝒙 𝒅𝒙



•  higher moments: Skew: 𝑬[  𝒙 −

𝐕 𝒙 = ∫
 
𝒙 𝟑] ….

discrete variables continuous variables

• Note: expectation and variance are properties of the full population. 
Unbiased estimates, derived from samples taken from the distribution:

Characteristic Quantities of Distributions Some Characteristic Quantities 
of Distributions 
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� Expectation value  E   (mean value): 
 
 

   
� Note: mean/expectation of 𝒇 𝒙 :          → 𝑬 𝒇 𝒙 = ∫ 𝒇 𝒙 𝑷 𝒙 𝒅𝒙 

 
� Variance (𝑽 = 𝝈𝟐,  with 𝝈: “spread”) :  𝑬 𝒙 − 𝒙 𝟐 = 𝑬 𝒙𝟐 − (𝑬 𝒙 )𝟐  

 

� higher moments: Skew:  𝑬[ 𝒙 − 𝒙 𝟑] …. 
  

discrete variables continuous variables 

𝐕 𝐤 =  𝒌− 𝒌 𝟐𝑷 𝒌
𝒂𝒍𝒍 𝒌

 𝐕 𝒙 = ∫ 𝒙 − 𝒙 𝟐𝑷 𝒙 𝒅𝒙 

� Note: expectation and variance Æ properties of the full population.  
Unbiased estimates,  derived from samples taken from the distribution: 

𝑽 =
𝟏

𝒏 − 𝟏
 𝒌𝒊 − 𝒌 𝟐𝒔𝒂𝒎𝒑𝒍𝒆𝒔

𝒊
 𝑽 =

𝟏
𝒏 − 𝟏

 𝒙𝒊 − 𝒙 𝟐
𝒔𝒂𝒎𝒑𝒍𝒆𝒔

𝒊
 

𝐄 = 𝒌 =   𝒌𝑷 𝒌
𝒂𝒍𝒍 𝒌

 E[x] = 𝒙 = ∫ 𝒙𝑷 𝒙 𝒅𝒙 

Some Characteristic Quantities 
of Distributions 
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Characteristic quantities of distributions (continued)
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Mean, Mode, Median:

• Mean: ( — defined before 

• Mode: most probable value (|5;8: '. (|5;8 ≥ '. ( , ∀(

• Median: 2-quantile: 50% of (	values are larger than (|8;�ÄÅ, 50% are smaller
Can generalise k-quantile : points at regular intervals of the cumulative distribution.
Boundaries of binning chosen such that each bin contains the 1/k-th of total integral of distribution.

mean = mode = median
Skewed curve:
mode   median     mean

Symmetric curve (& single peak):

( (

' .
(

' .
(



Poisson distribution

Recall: individual events each with two possible outcomes → Binomial distribution  

How about: number of counts in radioactive decay experiment during given time interval ÇÉ ?

• Events happen “randomly” but there is no such 2nd outcome. ÇÉ is continuous, no discrete trials
• Ñ : average number of counts in Çe. What is the probability of observing d counts?
• Limit of Binomial distribution for 4 → ∞ & ' → 0	so that 4' → Ü. 
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Poisson distribution: →

Expectation value: u 4 = ∑ 4 j # 4l = Ü, Variance: q[4] = Ü
Poisson is good approximation for Binomial distribution for 4 ≫ Ü	(= 4')

# 4;Ü = Ül
4! â

1ä

#
ã;
Ü

#
ã;
Ü

#
ã;
Ü

4 4 4

Ü = 1 Ü = 2 Ü = 10



On	a	par;cular	river,	overflow	floods	occur	once	every	100	years	on	average.	
	Calculate	the	probability	of	k	=	0,	1,	2,	3,	4,	5,	or	6	overflow	floods	in	a	100-year	interval,		
assuming	the	Poisson	model	is	appropriate.	
Because	the	average	event	rate	is	one	overflow	flood	per	100	years,	λ	=	1	

		

Examples	

Poisson	distribu;on	applies	when:	
•  each	event	is	independent	of	all	other	events	
->	there	are	no	correla;ons	
•  you	know	the	mean/average	value	
It	allows	you	to	es;mate	the	probability	of	a	given	fluctua;on	
	
	

Number	of	decays	of	radioac.ve	nuclei	per	unit	.me		
Number	of	junk	email	you	receive	per	day		
Probability	of	weather	occurrences		
Number	of	supernova	star	explosion	within	Milky	Way	(our)	galaxy	
	



The table below gives the probability for 0 to 6 overflow floods in a 100-year period. 

k P(k overflow floods in 100 years)

0 0.368

1 0.368

2 0.184

3 0.061

4 0.015

5 0.003

6 0.0005

Ugarte and colleagues report that the average number of goals in a World Cup soccer match is approximately 2.5 and the  Poisson model is appropriate.[3]

 
Because the average event rate is 2.5 goals per match, λ = 2.5. 



Gaussian (also: “Normal”) distribution

In limit of large Ñ a Poisson distribution approaches a symmetric Gaussian distribution

• This is the case not only for the Poisson distributions, but for almost any sufficiently large sum of 
samples with different sub-properties (mean & variance) → Central Limit Theorem (will discuss later)

• Gaussian distribution is of utter use, and luckily has simple properties

19

Gauss distribution: →

Symmetric distribution: 

• Expectation value: u ( = Ü
• Variance: q[(] = wx

• Probability content:

∫ # (; Ü, w -(çé
1é = 68.2%

∫ # (; Ü, w -(çxé
1xé = 95.4%				

# (; Ü, w = 1
2î j w â

1(.1ä)
ï

xéï

(



0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
0.22
0.24
0.26

-4 -2 0 2 4 6 8 10 12 14

Some other distributions

Uniform (“flat”) distribution

Exponential distribution

• Particle decay density versus time                                          
(in the particle’s rest frame!)

Relativistic Breit-Wigner distribution

• Distribution of resonance of unstable particle as function of 
centre-of-mass energy in which the resonance is produced 
(originates from the propagator of an unstable particle)

Chi-squared (B2) distribution

• Sum of squares of Gaussian distributed variables;                   
used to derive goodness of a fit to describe data

Landau distribution

• Fluctuation of energy loss by ionization of charged particle 
in thin matter (eg, charge deposition in silicon detector)

Many more, see http://pdg.lbl.gov/2015/reviews/rpp2015-rev-probability.pdf                      
for definitions and properties.

07/07/2016 https://upload.wikimedia.org/wikipedia/commons/9/96/Uniform_Distribution_PDF_SVG.svg

https://upload.wikimedia.org/wikipedia/commons/9/96/Uniform_Distribution_PDF_SVG.svg 1/1

0

1
b− a

a b x

f (x )

20



Central limit theorem (CLT)

CLT: the sum of ñ independent samples "ó (ò = 1,… , ã) drawn from any PDF ö("ó) with well 
defined expectation value and variance is Gaussian distributed in the limit ã → ∞

21

ö: 	uõ (% = Ü;	qõ (% = wõx	,	 and:

ã=1

ã=5ã=4

ã=2 ã=3

ã=6

Averaging reduces 
the variance

ù =3 (%
û

%{L
	⟹ 		uüÄ†77 ù = Ü; 	qüÄ†77 ù = wõx

ã

Example: summing up ensembles 
uniformly distributed within [0,1]



Central limit theorem (CLT)

CLT: the sum of ñ independent samples "ó (ò = 1,… , ã) drawn from any PDF ö("ó) with well 
defined expectation value and variance is Gaussian distributed in the limit ã → ∞

22

ã=1

ã=18ã=4

ã=2 ã=3

ã=36
Example: summing up exponential 
distributions

Central Gaussian limit works even if 
ö doesn’t look Gaussian at all 

ö: 	uõ (% = Ü;	qõ (% = wõx	,	 and: ù =3 (%
û

%{L
	⟹ 		uüÄ†77 ù = Ü; 	qüÄ†77 ù = wõx

ã
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10 Fundamental concepts 

F(x) = L P(xd· (1.16) 

A useful concept related to the cumulative distribution is the so-called quan-
tile of order a or a-point. The quantile Xa is defined as the value of the random 
variable x such that F(xa) = 0', with 0 ::; 0' ::; 1. That is, the quantile is simply 
the inverse function of the cumulative distribution, 

(1.17) 

A commonly used special case is xl/2, called the median of x. This is often used 
as a measure of the typical 'location' of the random variable, in the sense that 
there are equal probabilities for x to be observed greater or less than xl/2. 

Another commonly used measure of location is the mode, which is defined 
as the value of the random variable at which the p.d.f. is a maximum. A p.d.f. 
may, of course, have local maxima. By the most commonly used location 
parameter is the expectation value, which will be introduced in Section 1.5. 

Consider now the case where the result of a measurement is characterized not 
by one but by several quantities, which may be regarded as a multidimensional 
random vector. If one is studying people, for example, one might measure for each 
person their height, weight, age, etc. Suppose a measurement is characterized by 
two continuous random variables x and y. Let the event A be 'x observed in 
[x, x + dx] and y observed anywhere', and let B be 'y observed in [y, y + dy] and 
x observed anywhere', as indicated in Fig. 1.4. 

y 
10 

",I--- event A 
8 

4 ... .. 1' . '\ B 
•. -. .. ... dy 

.' .. '. . 
2 ... ' .. 

... : . -7 E- dx 

o 
o 2 4 6 8 

x 

The joint p.d.f. f(x, y) is defined by 

10 

Fig. 1.4 A scatter plot of two ran-
dom variables x and y based on 1000 
observations. The probability for a 
point to be observed in the square 
given by the intersection of the two 
bands (the event A n B) is given by 
the joint p.d.f. times the area element, 
f(x, y)dxdy. 

P(A n B) probability of x in [x, x + dx] and y in [y, y + dy] 
f(x, y)dxdy. (1.18) 

i

some event “¢”

some event “§”

Multidimensional random variables

What if a measurement consists of two variables? 

Let:
¢ = measurement " in ["," + •"]
§ = measurement ¶ in [¶,¶ +•¶]

Joint probability: # ß∩ © = '.™ (,ù -(-ù
(where '.™ (, ù is joint PDF)

If the two variables are independent:
# ß, © = # ß j # ©
'.™ (,ù = '. ( j '™ (ù)

Marginal PDF: if one is not interested in 
dependence on ¶ (or cannot measure it),        

→ integrate out (“marginalise”) ¶, ie, project onto "
→ resulting one-dimensional PDF: '. ( = ∫ '.™ (, ù -ù
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Fig. 1.6 (a) A scatter plot of random variables x and y indicating two infinitesimal bands 
in x of width dx at Xl (solid band) and X2 (dashed band). (b) The conditional p.d.f.s h(ylxt) 
and h(ylx2) corresponding to the projections of the bands onto the y axis. 

I: g(xly)fy(y)dy, I: h(Ylx)fx(x)dx. 

(1.27) 

(1.28) 

These correspond to the law of total probability given by equation (1.7), gener-
alized to the case of continuous random variables. 

If 'x in [x,x+dx] with any y' (event A) and 'y in [y+dy] with any x' (event 
B) are independent, i.e. P(A n B) = P(A) P(B), then the corresponding joint 
p.d.f. for x and y factorizes: 

f(x, y) = fx(x) fy(y)· (1.29) 

From equations (1.24) and (1.25), one sees that for independent random variables 
x and y the conditional p.d.f. g(xly) is the same for all y, and similarly h(ylx) 
does not depend on x. In other words, having knowledge of one of the variables 
does not change the probabilities for the other. The variables x and y shown in 
Fig. 1.6, for example, are not independent, as can be seen from the fact that 
h(ylx) depends on x. 

1.4 Functions of random variables 
Functions of random variables are themselves random variables. Suppose a(x) is 
a continuous function of a continuous random variable x, where x is distributed 
according to the p.d.f. f(x). What is the p.d.f. g(a) that describes the distribution 
of a? This is determined by requiring that the probability for x to occur between 

Conditioning versus marginalisation

Conditional probability > ¢ § : [ read: #(ß|©) = “probability of ß given ©” ]

Rather than integrating over the whole ù region (marginalisation),                                           
look at one-dimensional (1D) slices of the two-dimensional (2D) PDF '.™ (, ù :

> ¢ § = # ß ∩©
# © = '.™ (, ù -(-ù

'™ ù -(

'™ ù (L = '.™(( = const = (L,ù)

From: Glen Cowan, 
Statistical data analysis
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Covariance and correlation 

Recall, for 1D PDF =" " we had: u ( = Ü.; 		q[(] = w.x

For a 2D PDF ="¶ ", ¶ , one correspondingly has: Ü., Ü™, w., w™

How do " and ¶ co-vary ?  →

Or the scale / dimension invariant correlation coefficient:    

C.™ = covariance.™ = u ( − Ü. ù− Ü™ = u (ù − Ü.Ü™

±.™ = 	
C.™
w.w™

• If (, ù are independent: ±.™ = 0, ie, they are uncorrelated (or they factorise)
Proof:u (ù = ∬(ù j '.™ (, ù -(-ù = ∫ ( j '. ( -( j ∫ ù j '™ ù -ù = Ü.Ü™

• Note that the contrary is not always true: non-linear correlations can lead to ±.™ = 0,              
→ see next page 

,  where ±.™ ⊂ [−1,+1]

25

E	–	expecta.on	value	
V	-	variance	



Correlations

Figure from: https://en.wikipedia.org/wiki/Correlation_and_dependence

…and non-linear correlation patterns are not or only approximately captured by ±.™ (see above figures)

…it does not measure the slope ±.™ (see above figures)

The correlation coefficient measures the noisiness and direction of a linear relationship:

26

(

ù = ±.™



Correlations

Non-linear correlation can be captured by the “mutual information” quantity ¥"¶: 

µ.™ =∂'.™ (,ù j ln '.™ (,ù
'. ( '™ ù

-(-ù

where µ.™ =0  only if ", ¶	are fully statistically independent
Proof: if independent, then '.™ (, ù = '. ( '™ ù ⇒ ln … = 0

NB: µ.™ = ∏. −∏. ù = ∏™− ∏™ ( ,   
where ∏. = −∫ '. ( j ln '. ( -( is entropy, ∏. ù is conditional entropy
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co- 
variance 
matrix  

𝑷  𝐱, 𝐲 = 𝟏

𝟐𝝅𝝈𝒙
𝟐

−
𝒆

𝒙−𝝁𝒙  𝟐

𝟐𝝈𝟐
𝒙

𝟏

𝟐𝝅𝝈𝒚
𝟐

−
𝒆

𝒚−𝝁𝒚
𝟐

𝟐𝝈𝟐
𝒚

•  If the 2 variables are independent:
𝑷  𝒙, 𝒚 = 𝑷  𝒙  𝑷(𝒚)

• Correlated Gaussians ⟺
transformed (rotated) variables

𝑷  𝒙 =
𝟏

𝟐𝝅 𝒅𝒆𝒕(𝑽)
𝒆−𝟐  𝒙−𝝁

𝟏 𝑻 −𝟏𝑽 (𝒙−𝝁)

𝒙𝟏  − 𝒙𝟏

𝒙 𝟐
  −

𝒙
𝟐

V= 
𝒙𝟏

𝒙𝟏𝒙𝟐

𝟐 − 𝒙𝟏   𝟐

− 𝒙𝟏 𝒙𝟐

𝒙𝟏𝒙𝟐

𝒙𝟐

− 𝒙𝟏 𝒙𝟐

− 𝒙𝟐   𝟐𝟐
x−  𝒙

y−
𝒚





Warning	
Marginaliza.on		may	lead	to	observa.on	of	non-exis.ng	correla.ons	

uniform	distribu.on	A(x,y)	

projec.ons	F(x)	and	G(y)	peaked	at	0		

Correla.on	func.on			
	 	 	C(x,y)	=A(x,y)-F(x)G(y)		

will	have	an	ar.ficial	minimum	due	to	non-rectangular	boundary.	
Remember	that	event	phase	space	has	long-range	correla.on	due	to		
energy-momentum	conserva.on.			

x	

y	



PDF 
(probability density function) 

Cumulative distribution: 

•  𝒑  𝒙  : probability distribution for some “measurement” 𝒙 under the 
assumption of some model (parameter)

Examples of Cumulative distribution usage:
•  imagine you measure 𝒙𝒐𝒃𝒔

•  how often one expects x far “off” the expectation (mean) value? 
•  1-∫𝑥 𝑜 𝑏 𝑠   𝑝  𝑥′  𝑑𝑥′ ≡ 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for observing something at least as−∞

far away from what you expect

•  similar: 𝝌𝟐-Probability

p(
x)

P(
x)

𝒙𝒐𝒃𝒔

Cumulative Distribution 

Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012  21 

Cumulative distribution: 

PDF  
(probability density function) 

 𝑝 𝑥′ 𝑑𝑥′
𝑥

−∞
≡ 𝑃(𝑥) 

� 𝒑 𝒙 : probability distribution for some “measurement” 𝒙 under the 
assumption of some model (parameter)  

Example of Cumulative distribution usage: 
� imagine you measure 𝒙𝒐𝒃𝒔 

� how often expect I s.th. as far “off” the expectation (mean) value 
� 1-∫ 𝑝 𝑥′ 𝑑𝑥′𝑥𝑜𝑏𝑠

−∞ ≡ 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for observing something at least as 
far away from what you expect  

   (one tailed as in example if “new physics” would be at higher x) 

� similar: 𝝌𝟐-Probability 

→ 𝒑 𝒙 = 𝒅𝑷(𝒙)/𝒅𝒙 

we will come back to this... 

p(
x)

 

P(
x)

 

𝒙𝒐𝒃𝒔 



Functions of random variables

Any function of a random variable is itself a 
random variable

E.g., " with PDF ="(")	becomes: ¶ = «(")
¶ could be a parameter extracted from a measurement

32

What is the PDF =¶(¶)	?

• Probability conservation: '™ ù |-ù| = '.(()|-(|

• For a 1D function »(() with existing inverse:

• Hence:

-ù = -» (
-( -(		⟺ 		-( = -»1L ù

-ù -ù	

=¶(¶) = '. »1L(ù)
-(
-ù

Note: this is not the standard error propagation but the full PDF !

14 Fundamental concepts 

.--.. 10 3: 10 

(b) 
8 8 

6 6 

4 4 

2 2 

0 0 
0 2 4 6 8 10 0 2 4 6 8 10 

x x 

Fig. 1.7 Transformation of variables for (a) a function q( x) with a single-valued inverse x( a) 
and (b) a function for which the interval da corresponds to two intervals dXl and dX2' 

x and x + dx be equal to the probability for a to be between a and a + da. That 
IS, 

g(a')da' = 1 J(x)dx, 
dS 

(1.30) 

where the integral is carried out over the infinitesimal element dS defined by the 
region in x-space between a (x) = a' and a (x) = a' + da', as shown in Fig. 1. 7 ( a) . 
If the function a(x) can be inverted to obtain x(a), equation (1.30) gives 

11
x (a+da) I l x (aH, *,da 

g(a)da = J(x')dx' = J(x')dx', 
x(a) x(a) 

(1.31) 

or 

g(a) = f(x(a)) 1 I· (1.32) 

The absolute value of dx/da ensures that the integral is positive. If the function 
a(x) does not have a unique inverse, one must include in dS contributions from all 
regions in x-space between a(x) = a' and a(x) = a' +da', as shown in Fig. 1.7(b). 

The p.d.f. g(a) of a function a(xl, ... , xn) of n random variables Xl, ... , Xn 
with the joint p.d.f. J(XI,.'" xn) is determined by 

g(a')da' = J .. ·15 J(XI, ... , Xn)dXI ... dxn, (1.33) 

where the infinitesimal volume element dS is the region in Xl, ... ,xn-space be-
tween the two (hyper)surfaces defined by a(xI, ... , xn) = a' and a(xI, ... , xn) = 
a' + da'. 

-ù

ù
=
»(
()

Glen Cowan: Statistical data analysis

-(

(



Error propagation

Let’s assume a measurement " with unknown PDF ="("), and a transformation ¶ = «(")

• (̅ and q are estimates of Ü and variance wx	of '.(()

What are u ù and, in particular, À¶Ã ? → Taylor-expand » ( around (̅:

• » ( = » (̅ + ÕŒ
Õ.œ.{.̅

( − (̅ +⋯ ⇒ u » ( ≃ » (̅ 	 (because: u ( − (— = 0 !)

Now define ù“ = » (̅ , and from the above follows:

⬄ ù− ù“ ≃ ÕŒ
Õ.œ.{.̅

( − (̅

⬄ u (ù− ù“)x = ÕŒ
Õ.œ.{.̅

x
u (( − (̅)x

⬄ q ™ = ÕŒ
Õ.œ.{.̅

x
q .

⬄ w™ = ÕŒ
Õ.œ.{.̅

j w.

33

→ (approximate) error propagation



Error propagation (continued)

In case of several variables, compute covariance matrix and partial derivatives

• Let « = «("”, … , "ñ) be a function of ñ randomly distributed variables

• ÕŒ
Õ.œ.{.̅

x
q . becomes:                                  (where: (̅ = ((̅L,… , (̅û))

• with the covariance matrix:

34

3 ‘»
‘(%

‘»
‘(¡

’
.̅

û

%,¡{L
j q %,¡

q %,¡ =
w.÷

x ⋯ w.÷.◊
⋮ ⋱ ⋮

w.◊.÷ ⋯ w.◊
x

® The resulting “error” (uncertainty) depends on the correlation of the input variables

o Positive correlations lead to an increase of the total error

o Negative correlations decrease the total error
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Probability Functions 
When dealing with discrete random variables, define a 
Probability Function as probability for ith  possibility 

 
P (x i ) =  pi  

 
Defined as limit of long term frequency 
‣  probability of rolling a 3 := limit #trials→∞ (# rolls with 3 / # trials) 

● you don’t need an infinite sample for definition to be useful 

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Summer School, July 2013

Probability Mass Functions
When dealing with discrete random variables, define a 
Probability Mass Function as probability for ith possibility

Defined as limit of long term frequency
‣ probability of rolling a 3 := limit #trials→∞ (# rolls with 3 / # trials)

● you don’t need an infinite sample for definition to be useful

And it is normalized

10

P (xi) = pi

X

i

P (xi) = 1

Normalization 



Probability Density Functions 
When dealing with continuous random variables, need to 
introduce the notion of a Probability Density Function 

 

P (x  E [x, x  +  dx]) =  f  (x )dx 

Note, f  (x ) is NOT a probability 

PDFs are always normalized 
to unity: 

3
x

-3 -2 -1 0 1 2

f(x
)
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Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN Summer School, July 2013

Probability Density Functions

When dealing with continuous random variables, need to 
introduce the notion of a Probability Density Function 

Note,          is NOT a probability

PDFs are always normalized to unity:

11

P (x � [x, x + dx]) = f(x)dx

� ⇥

�⇥
f(x)dx = 1

f(x)

x
-3 -2 -1 0 1 2 3

f(x
)
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0.15
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0.25
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0.4



•  Axioms of probability: Kolmogorov (1933)
•  𝑷  𝑨 ≥ 𝟎
•  ∫𝑼 𝑷  𝑨  𝒅𝑼 = 𝟏
•  if: (𝑨 𝐚𝐧𝐝 𝑩) ≡ (𝑨 ∩ 𝑩) = 𝟎

(i.e disjoint/independent/exclusive)
 𝑷 ( 𝑨 𝐨𝐫 𝑩 ≡ 𝑨 ∪ 𝑩 = 𝑷  𝑨 + 𝑷(𝑩)

 define e.g.: conditional probability 

𝑷  𝑨 𝑩 ≡ 𝑷(𝑨 𝐠𝐢𝐯𝐞𝐧 𝑩 is true) = 𝑷  𝑨∩𝑩
𝑷  𝑩

Universe 

A
BA∩B 

Venn-Diagram 

B
A

Universe 

Venn-Diagram 



•  Axioms of probability:  - pure “set-theory” 
 
1) a measure of how likely an event will occur, expressed 

as a the ratio of favourable—to—all possible cases in 
repeatable trials

•  Frequentist (classical) probability 

P(“Event”) =  lim (  #out come is "Event" )𝑛 →∞

2) the “degree of belief” that an event is going to happen 

•  Bayesian probability: 
•  P(“Event”): degree of belief that “Event” is going 

to happen -> no need for “repeatable trials” 

•  degree of belief (in view of the data AND previous 

knowledge(belief) about the parameter) that a 

parameter has a certain “true” value 

ntrials	



Bayes’ Theorem 𝑷  𝑨 𝑩 = 	A  𝑷(𝑩|𝑨)𝑷
𝑷(𝑩)

= 𝑷  𝑩 𝑨 𝑷  𝑨
𝑷  𝑩

•  This follows simply from the “conditional probabilities”: 



Derivation of Bayes’ Theorem 
… in picture  …taken from Bob Cousins 



Bayes’ Theorem 

•  This follows simply from the “conditional probabilities”: 

Frequentist vs. Bayesian 

Helge Voss Introduction to Statistics and Machine Learning – CERN Summer Student Program 2012  26 

Bayes’ Theorem 𝑷 𝑨 𝑩 =
𝑷(𝑩 𝑨)𝑷 𝑨

𝑷(𝑩)
 = 𝑷 𝑩 𝑨  𝑷 𝑨

𝑷 𝑩
 

� This follows simply from the “conditional probabilities”: 

Frequentist vs. Bayesian 
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Bayes’ Theorem 𝑷 𝑨 𝑩 =
𝑷(𝑩 𝑨)𝑷 𝑨

𝑷(𝑩)
 = 𝑷 𝑩 𝑨  𝑷 𝑨

𝑷 𝑩
 

� This follows simply from the “conditional probabilities”: 

𝑷 𝑨 𝑩 𝑷 𝑩 = 𝑷 𝑨 ∩ 𝑩) = 𝑷(𝑩 ∩ 𝑨 = 𝑷 𝑩 𝑨 𝑷(𝑨) 

𝑷 𝑨 𝑩 𝑷 𝑩 = 𝑷 𝑩 𝑨 𝑷(𝑨) 

𝑷 𝑨 𝑩 =
𝑷 𝑩 𝑨 𝑷 𝑨

𝑷 𝑩
 



Bayes’ Theorem 

.:  Nobody doubts Bayes’ Theorem: 
discussion starts ONLY if it is used to turn

 
frequentist statements:

 
•  probability of the observed data given a certain model: 𝑷(𝑫𝒂𝒕𝒂|𝑴𝒐𝒅𝒆𝒍)
 

into Bayesian probability statements:
•  probability of a the model being correct (given data): 𝑷  𝑴𝒐𝒅𝒆𝒍  𝑫𝒂𝒕𝒂)

• 𝑷  𝒏 𝝁  : Likelihood function
• 𝑷  𝝁 𝒏  :posterior probability of µ 
• 𝑷  𝝁  : the “prior” 
• 𝑷  𝒏  : just some normalisation

• … there can be heated debates about ‘pro’ and ‘cons’ of either…. 

Frequentist vs. Bayesian 
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Bayes’ Theorem 𝑷 𝝁 𝒏 =
𝑷(𝒏 𝝁)𝑷 𝝁

𝑷(𝒏)
 

B.t.w.:   Nobody doubts Bayes’ Theorem:  
discussion starts ONLY if it is used to turn  

 
frequentist statements: 

 
 
 

 into Bayesian probability statements: 

� probability of the observed data given a certain model: 𝑷(𝑫𝒂𝒕𝒂 𝑴𝒐𝒅𝒆𝒍)  
 
 
 

� probability of a the model begin correct (given data): 𝑷 𝑴𝒐𝒅𝒆𝒍 𝑫𝒂𝒕𝒂) 

�𝑷 𝒏 𝝁 : Likelihood function  
�𝑷 𝝁 𝒏 :posterior probability of μ  
�𝑷 𝝁 : the “prior” 
�𝑷 𝒏 : just some normalisation 

� … there can be heated debates about ‘pro’ and ‘cons’ of either…. 



Theory  = 
Data =

fish (hypothesis) .. mamal (alternative) 
swim or not swim

P (swimt | fish) ~ 100% but P (fish | swim) = ??  

•  easy Example:

• Higgs search at LEP: the statement
•  the probability that the data is in agreement with the Standard

Model background is less than 1% (i.e. P(data| SMbkg) < 1%)     
went out to the press and got turned round to:

 
P(data|SMbkg) = P(SMbkg|data) < 1%  P(Higgs|data) > 99% !

WRONG!

-o.k… but what DOES it say? 



we know: P (Data | Theory) ≠ P (Theory | Data)

 Bayes Theorem: P (Data|Theory) = P (Theory|Data) 

Frequentists answer ONLY: P (Data | Theory)

in reality  -  we are all interested in P(Theory…) 

𝐏(𝐓𝐡𝐞𝐨𝐫𝐲)
𝐏(𝐃𝐚𝐭𝐚)

We only learn about the “probability” to observe certain data under a 
given theory. Without knowledge of how likely the theory (or a possible 
“alternative” theory ) is .. we cannot say anything about how unlikely our 
current theory is !
We can define “confidence levels” … e.g., if P(data) < 5%, discard theory.
- can accept/discard theory and state how often/likely we will be 

wrong in doing so. But again: It does not say how “likely” the 
theory itself (or the alternative) is true

- note the subtle difference !!



• Certainly: both have their “right-to-exist” 

•  Some “probably” reasonable and interesting questions cannot even 
be ASKED in a frequentist framework :

 
•  “How much do I trust the simulation” 
•  “How likely is it that it will raining tomorrow?” 
•  “How likely is it that climate change is going to… 

•  after all.. the “Bayesian” answer sounds much more like what you 
really want to know: i.e.

“How likely is the “parameter value” to be correct/true ?” 
 
• BUT:

• NO Bayesian interpretation exist w/o “prior probability” of the 
parameter 

•  where do we get that from?
•  all the actual measurement can provide is “frequentist”! 



•  “flat” prior 𝝅(𝜽) to state “no previous” knowledge (assumptions) 
about the theory?

often done, BUT WRONG:
•   e.g. flat prior in 𝑀𝐻𝑖𝑔𝑔𝑠  -> not flat in 𝑀𝐻𝑖𝑔𝑔𝑠

Choose a prior that is invariant under parameter transformations
Jeffrey’s Prior à  objective Bayesian”: 

•  “flat” prior in Fisher’s information space 

2

•  𝜋  𝜃 ∝ I  𝜃 (𝜋  𝜃 ∝ det I  𝜃 if several parameters) 

𝐼  𝜃 = −𝐸𝑥 [𝜕 2

𝜕 𝜃 2𝑙𝑜𝑔(𝑓(𝑥 ; 𝜃)] : 

•𝑓  𝑥; 𝜃  : Likelihood function of 𝜃, probability to observe 𝑥 for a give parameter 𝜃
•amount of “information” that data 𝑥 is ‘expected’ to contain about the 
parameter 𝜃

•  personal remark: nice idea, but “WHY” would you want to do that? 
•  still use a “arbitrary” prior, only make sure everyone does the same way 
•  loose all “advantages” of using a “reasonable” prior if you choose already to 



“Bayesians address the question everyone is 
interested in, by using assumptions no-one believes” 
“Frequentists use impeccable logic to deal with an
issue of no interest to anyone” 

Louis Lyons, Academic Lecture at Fermilab, August 17, 2004 
 
•  Traditionally: most scientists are/were “frequentists” 

•  no NEED to make “decisions” (well.. unless you want to 
announce the discovery of the Higgs particle..)

•  it’s ENOUGH to present data, and how likely they are under 
certain scenarios

•  keep doing so and combine measurements
• Bayesian approch is expanding

•  now we have the means to do lots of prior comparisons: 
Computing power/ Markov Chain Monte Carlos



Spares	



throw 𝑵 coins: (anything with two different possible outcomes) 

à? how likely (often): 𝒌 × 𝒉𝒆𝒂𝒅 and 𝑵 − 𝒌 × 𝒕𝒂𝒊𝒍 ?

each coin: 𝑷  𝒉𝒆𝒂𝒅 = 𝒑, 𝑷  𝒕𝒂𝒊𝒍 = 𝟏 − 𝒑

pick 𝒌 particular coins à the probability of all having 𝒉𝒆𝒂𝒅 is:

at the same time: probability that all remaining N-1 coins land on 𝒕𝒂𝒊𝒍

That was for 𝒌 particular coins:

𝑵
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𝑵
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𝐄  𝒏 = 𝒏𝑷  𝒏 = 𝝁
 

•  Expectation value:

• Binomial distribution: Individual events with 2 possible outcomes
• How about: # counts in radioactive decays during 𝚫𝐭 ?

- events happen “randomly” but there is no 2nd outcome
- 𝚫𝐭: continuum ≠  “N- discrete trials” 

•  𝝁 : average #counts in 𝚫𝐭. What’s the probability for 𝒏 counts?
•  Limit of Binomial distribution for 𝑵 → ∞ 𝒘𝒊𝒕𝒉 𝑵𝒑 = 𝝁 𝒇𝒊𝒙𝒆𝒅

- Poisson 𝑷  𝒏 = 𝝁𝒏

𝒏!
𝒆−𝝁

•  Variance:
𝑽  𝒏 = 𝝁

b.t.w.  it’s a good approximation of Binomials for 𝑵 ≫ 𝑵𝒑 =𝝁



•  For large 𝝁 the Poisson distribution already looked fairly “Gaussian” 
•  in fact in the limit it “becomes” Gaussian 

•  just like almost everything: Central Limit Theorem
•  Gaussian is the probably the most important distribution

𝐆𝐚𝐮𝐬𝐬:  𝑷  𝐱 =
𝟏

𝟐𝝅𝝈𝟐𝒆
−

𝒙−𝝁  𝟐

𝟐𝝈𝟐

•  Expectation value:
𝐄  𝒙 = 𝝁

 
•  Variance:

𝑽  𝒙 = 𝝈𝟐

𝑷(𝟎)

𝑷  𝟎  𝒆−𝟐
𝟏

𝑷  𝟎  𝒆− 𝟐
𝟐𝟐

•  Probability content:


Gaussian Distribution 
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� For large 𝝁 the Poisson distribution already looked fairly “Gaussian” 
� in fact in the limit it “becomes” Gaussian 

� just like almost everything: Central Limit Theorem   
Æ Gaussian is the probably the most important distribution   

𝐆𝐚𝐮𝐬𝐬:  𝑷 𝐱 =
𝟏
𝟐𝝅𝝈𝟐

𝒆−
𝒙−𝝁 𝟐

𝟐𝝈𝟐  

� Expectation value: 
𝐄 𝒙 = 𝝁 

� Variance: 
𝑽 𝒙 = 𝝈𝟐 

 

𝑷(𝟎) 

𝑷 𝟎 𝒆−
𝟏
𝟐 

𝑷 𝟎 𝒆−
𝟐𝟐
𝟐  

� Probability content: 

 𝑷 𝒙 𝒅𝒙
𝝈

−𝝈
≅ 𝟔𝟖% 𝑷 𝒙 𝒅𝒙

𝟐𝝈

−𝟐𝝈
≅ 𝟗𝟓%     

 
 

FWHM	=	2.36σ	



•  The mean y of n samples xi  from any distribution D with well defined
expectation value and variance lim → Gaussian

𝑛 →∞

𝑫: 𝑬𝑫  𝒙 = 𝝁; 𝑽𝑫  𝒙 = 𝝈𝑫
𝟐 summation 𝑬𝑮𝒂𝒖𝒔𝒔 𝒚 = 𝝁;  𝑽𝑮𝒂𝒖𝒔𝒔  𝒚 = 𝒏

𝝈𝑫
𝟐

 Averaging reduces 
the error

n=1

n=5n=4

n=2 n=3

n=6



•   even if D doesn‘t look „Gaussian“ at all ! 
e.g. „exponential distribution“ 

Measurement errors:
- Typically: many 

contributions
-> Gaussian !

n=1 n=2 n=3
 
 
 
 
 
 

n=4 n=5 n=6

n=1

n=18n=6

n=2 n=3

n=36



•  Exponential – distribution
time distr. until particle decays (in it’s own rest frame) 

• Breit−Wigner (Cauchy) – distribution 
mass peaks (resonance curve) 

• 𝝌𝟐  − distribution
sum of squares of Gaussian distributed variables

•  goodness-of-fit 

•  Landau – distribution
charge deposition in a silicon detector 

• Uniform – distribution
• … and many more: 

𝝌𝟐


