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We consider introducing residual gauge degrees of freedom into the conventional formulation of the light-front
quantization of gauge field theories. For that purpose we construct the canonical formulation of axial gauge
fields of the type nµAµ = 0 in auxiliary coordinates:xµ = (xτ , xσ, x1, x2), where xτ = x0 sin φ + x3 cos φ and
xσ = x0 cos φ−x3 sin φ. We then show that, irrespective of the quantization surface, and irrespective of the gauge
fixing condition, residual gauge fields are indispensable in implementing the Mandelstam-Leibbrandt prescription
and in regularizing the infrared divergences which are inherent in the canonical quantization of space-like axial
gauge fields. With the residual gauge fields in place, we find that the infrared divergences are regulated with the
Mandelstam-Leibbrandt prescription in the light-front formulation obtained as the limit φ→π/4 of the n2 = 0
case. In addition we show that, because an explicit quantization surface dependence does not appear in the n2 = 0
case, the light-front temporal gauge limit φ→π/4−0 agrees with the light-front spatial gauge limit φ→π/4+0 and
that the perturbative Hamiltonian in the light-front formulation consists of physical degrees of freedom integrated
over the hyperplane x+

l = (x0+x3)/
√

2 = constant and residual degrees of freedom integrated over the hyperplane
x−l = (x0 − x3)/

√
2 = constant.

1. Introduction

In spite of extensive studies of the light-front
quantization of gauge fields, introducing residual
gauge degrees of freedom into the theories has re-
mained as an open issue. One knows that they
have to be introduced somehow, because light-
front quantization makes use of space-like ax-
ial gauges, so that one cannot construct canon-
ical formulations by making use of only physical
degrees of freedom without encoutering infrared
difficulties [1] and because equivalence between
the formulation in ordinary coordinates [2] and
the light-front formulation requires their intro-
duction, at least in perturbation theory.

A first step in this direction has been taken re-
cently by Morara and Soldati [3]. They have con-
structed the canonical light-front temporal gauge
formulation of QED, where x+

l = (x0 + x3)/
√

2

is chosen as the evolution parameter and A
(l)
+ =

(A0 + A3)/
√

2 = 0 is taken as the gauge fixing
condition, and have shown that residual gauge
degrees of freedom are indispensable to imple-
menting the Mandelstam-Leibbrandt (ML) pre-
scription [4,5] to the spurious singularities of the
gauge field propagator. They also show that with
the residual gauge degrees of freedom, equiva-
lence with Feynman methods holds up to the
one loop order. One therefore expects that a
consistent light-front spatial gauge formulation,
where x+

l is chosen as the evolution parameter
and A

(l)
− = (A0−A3)/

√
2=0 is taken as the gauge

fixing condition, can also be constructed by intro-
ducing the residual gauge degrees of freedom.

However, one notices that because the residual
gauge functions in the light-cone spatial gauge
formulation depend only on x+

l , x1 and x2, one
cannot obtain dynamical operators by integrating
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densities over the three dimensional hyperplane
x+

l = constant. Therefore, it is essential to extend
the conventional way of constructing the Hamil-
tonian to include the residual gauge fields. Mc-
Cartor and Robertson [6] obtained the Hamilto-
nian by integrating the divergence equation of the
energy-momentum tensor over a suitable closed
surface and found that the translational genera-
tor P+ consists of physical degrees of freedom in-
tegrated over the hyperplane x+

l = constant and
residual degrees of freedom integrated over the
hyperplane x−l = (x0−x3)/

√
2 = constant. How-

ever they have not succeeded in introducing the
residual gauge fields’ interactions consistently.

Because axial gauges of the type n·A = 0
could be viewed as continuous deformations of
the light-cone gauge, Lazzizzera [7] has extended
the canonical light-cone gauge formulation out-
side the light-cone gauge in ordinary coordinates
and implemented the ML prescription with the
help of the residual gauge fields. He has also no-
ticed that in space-like axial gauge formulations,
infrared divergences resulting from physical de-
grees of freedom are cancelled by those from the
residual gauge degrees of freedom.

The aim of this contribution is to find ways
to introduce consistently the residual gauge fields
into the light-front interacting gauge theories.
For simplicity we confine ourselves to QED and
investigate light-front limits of canonical formula-
tions of the axial gauge fields specified by n·A = 0
in τσ-coordinates where xµ = (xτ , xσ, x1, x2)
with

xτ=x0 sin φ + x3 cosφ, xσ=x0 cos φ− x3 sin φ.(1)

A similar framework was used by others to an-
alyze two-dimensional models [8] and by Ji and
Mitchell [9] to construct the Poincaré algebra in-
terpolating between ordinary time and light-cone
time quantizations. In this framework we have
two independent free parameters at hand, so that
we can quantize axial gauge fields on surfaces
other than x0 = constant. In fact, taking xσ,
in the region 0≤φ < π/4, and xτ , in the re-
gion π/4 < φ≤π/2 respectively as the evolution
parameter enables us to construct, in quite the
same manner as in ordinary coordinates, canon-
ical formulations, in which the ML prescription

is implemented and in which the infrared diver-
gences are regularized. Especially, we find that
in case that n2 = 0, an explicit quantization sur-
face dependence does not appear at all. Conse-
quently, we obtain that the light-front temporal
gauge limit φ→π/4− 0 of the n2 = 0 case agrees
with the light-front spatial gauge limit φ→π/4+0
and that in both limits the free Hamiltonian con-
sists of physical degrees of freedom integrated
over the hyperplane x+

l = (x0 + x3)/
√

2 = con-
stant and residual degrees of freedom integrated
over the hyperplane x−l = (x0 − x3)/

√
2 = con-

stant. Furthermore, we find that in both lim-
its, propagators of fermion and gauge fields have
no contact terms, which reflects the fact that in
genuine light-front perturbation calculations con-
tact terms of fermion propagators are cancelled
by contact terms resulting from the noncovari-
ant interaction term and that those of gauge field
propagators are cancelled by terms included in
the Coulomb interaction term.

Before entering into details we denote our con-
ventions. The constant vector nµ is specified in
the ordinary coordinates to be (n0, n3, n1, n2) =
(cos θ,− sin θ, 0, 0), which yields n2 = cos 2θ. The
temporal, light-cone and axial gauges are realized
respectively when θ = 0, π/4 and π/2. In the
τσ-coordinates the nµ is expressed due to (1) as
(nτ , nσ, n1, n2) = (sin(φ− θ), cos(φ− θ), 0, 0) and
lower indices are given by the help of the metric
tensor

gσσ = −gττ = cos 2φ, gστ = gτσ = sin 2φ. (2)

To denote the component n·A simply as A−, we
define +−-coordinates by xµ = (x+, x−, x1, x2),
where

x+=x0 sin θ + x3 cos θ, x−=x0 cos θ − x3 sin θ.(3)

x+ and x− are described in terms of xτ and xσ

as

x+ = cos(φ− θ)xτ − sin(φ− θ)xσ

x− = sin(φ− θ)xτ + cos(φ− θ)xσ. (4)

Latin indices i, j will label the 1,2 component of
a given four-vector or tensor and Latin indices
r, s will label the σ, 1, 2 components a given four-
vector or tensor. We furthermore use the follow-
ing conventions;
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xσ = (xσ, x1, x2), d3xσ = dx1dx2dxσ,
kσ = (kσ, k1, k2), d3kσ = dk1dk2dkσ,
k+ = (k+, k1, k2), d3k+ = dk1dk2dk+.

2. Canonical formulation of n·A = 0 gauge
QED in τσ- coordinates

The n·A = 0 gauge formulation of QED is de-
fined by the Lagrangian

L = −1
4
FµνFµν −B(n·A) + ψ̄(iγµDµ −m)ψ (5)

where Dµ = ∂µ + ieAµ and B is the Nakanishi-
Lautrup field in the axial gauge formulations.
Field equations and the gauge fixing condition are
obtained to be

∂µFµν = nνB + Jν , (6)

(iγµDµ −m)ψ = 0, (7)

A− = cos(θ − φ)Aσ − sin(θ − φ)Aτ = 0. (8)

The field equation of B,

n·∂B = ∂−B = 0, (9)

is obtained by operating on (6) with ∂ν .
From (8) we see that as long as θ 6=φ, we can

choose either Aσ or Aτ as one of independent
canonical variables. Actually Aσ becomes the
time component, and hence the dependent one,
in the region 0≤φ < π/4 due to the fact that xσ

is chosen as the evolution parameter in that re-
gion, while Aτ becomes the dependent one in the
region π/4 < φ≤π/2. If we take these facts into
account, we can construct the canonical formu-
lation in both regions in quite the same manner
as in the ordinary coordinates; therefore in what
follows we only present the latter formulation.

In the region π/4 < φ≤π/2 we can choose xτ

as the evolution parameter. Canonical conjugate
momenta turn out to be

πτ = 0, πσ = Fτσ, πi = F τ
i,

πB = 0, πψ = iψ̄γτ , πψ∗ = 0 (10)

and as long as θ 6=φ, we can choose As, πs (s =
1, 2, σ) and ψ, ψ∗ as independent canonical vari-
ables and eliminate the dependent ones by

Aτ = cot(θ − φ)Aσ, B = (∂sπ
s − Jτ )/nτ . (11)

Consequently, equal xτ -time canonical quantiza-
tion conditions can be imposed on the indepen-
dent canonical variables; the nonvanishing com-
mutators are

[Ar(x), πs(y] = iδrsδ
(3)(xσ − yσ),

{ψ(x), ψ∗(y)} = γ0γτ

− cos 2φδ(3)(xσ − yσ). (12)

The Hamiltonian, H = H0+HI , is given in terms
of the independent canonical variables by

H0 = (πσ)2

2 + (πi−sin 2φFσi)
2

−2 cos 2φ + − cos 2φ
2 (Fσi)2

+ 1
2 (F12)2 + πs∂sAτ + ψ̄(m− iγs∂s)ψ, (13)

HI = eAµψ̄γµψ. (14)

To restore the Gauss law in the physical sub-
space, we Fourier-expand B, which satisfies (9)
and hence depends only on x+ = cos(θ − φ)xτ +
sin(θ − φ)xσ, x1 and x2, in the form

B(x) = 1√
(2π)3

∫ d3k+√
k+

θ(k+)(k2
⊥ + n2k2

+)

×{B(k+)e−ik·x + B∗(k+)eik·x} (15)

where k·x = k+x+ + kix
i = kτxτ + kσxσ + kix

i

with

kτ = k+ cos(θ − φ), kσ = k+ sin(θ − φ), (16)

and define the physical subspace Vphys by

Vphys = { |phys〉 |B(k+)|phys〉 = 0 }. (17)

The S-operator is given by

S =
∑∞

n=0
(−i)n

n!

∫
d4x(1)· · · ∫ d4x(n)

×T[HI(x(1))· · ·HI(x(n))]. (18)

In what follows, to avoid inessential complica-
tions, we use the same notations for the vari-
ables in the interaction picture as for those in the
Heisenberg picture.

3. Quantization of the free gauge field in
the τσ-coordinates

We can canonically quantize the free gauge field
in the same manner as we did in [10]. We begin
by solving the free gauge field equations

∂µFµν = nνB (19)
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under the constraints

n·∂B = ∂−B = 0, n·A = A− = 0. (20)

On multiplying (19) with nν we obtain

−∂−(∂µAµ) = n2B (21)

due to the gauge fixing condition A− = 0. Then
multiplying (21) with ∂− provides us with

(∂−)2(∂µAµ) = 0 (22)

because ∂−B = 0. It follows from (22) and
∂−B = 0 that Aν is required to satisfy

2(∂−)2Aν = 0. (23)

We see from (23) that Aν consists of a free mass-
less part and a linear function of x−. It turns out
that the free massless part, which we denote as
uν , satisfies

n·u = 0, ∂µuµ = 0, 2u = 0 (24)

and that x− has to be expressed in terms of xτ

and x+ as

x− = − xτ

sin(θ − φ)
+

cos(θ − φ)
sin(θ − φ)

x+ (25)

for Aν to satisfy the equal xτ -time quantization
conditions. Consequently we obtain

Aµ(x) = uµ(x)− nµ

∇2
B(x) + ∂µΓ(x) (26)

where

∇2 = ∂ 2
1 + ∂ 2

2 +
n2∂ 2

σ

sin2(θ − φ)
, (27)

Γ = −1
∇2

(
C + n2xτ

sin(θ−φ)B − n2nσ

sin2(θ−φ)∇2 ∂σB
)

.

(28)

From (24) we see that two degrees of freedom are
carried by uµ, so that the remaining degrees of
freedom are carried by a pair of residual gauge
fields B and C, which depend on x+, x1 and x2.
As a matter of fact, the equal xτ -time quanti-
zation conditions require that uµ, B and C are
fundamental fields satisfing the following commu-
tation relations:

[uµ(x), uν(y)] = i(−gµν + nµ∂ν+nν∂µ

∂−

−n2 ∂µ∂ν

∂ 2
−

)D(x− y), (29)

[B(x), C(y)] = −i∇2δ(3)(x+ − y+) (30)

where D(x) is the commutator function of the free
massless field and x+ = (x+, x1, x2). All other
commutators among uµ, B and C are zero. Con-
sequently Aµ satisfies the following 4-dimensional
commutation relations

[Aµ(x), Aν(y)] = i{−gµνD(x− y) + (nµ∂ν

+nν∂µ)∂−E(x− y)− n2∂µ∂νE(x− y)} (31)

where

E(x) = 1
∂ 2
−

D(x)− 1
∇2

(
Ds(x)

+ 2nσ

sin2(θ−φ)∇2 ∂σ∂−Ds(x)
)

(32)

with

Ds(x) = − xτ

sin(θ − φ)
δ(3)(x+). (33)

Other properties of Aµ are enumerated as fol-
lows:
(1) As a consequence of the fact that dipole ghost
fields cannot be manifest Lorentz scalars, explicit
quantization surface dependences appear in the
second and third terms of the Γ, except for the
case of n2 = 0.
(2) The factor xτ/ sin(θ−φ) of the second term of
Γ is not well-defined in the limit φ→θ, which re-
flects the fact that we cannot construct the canon-
ical formulation in the same manner in that limit.
Actually Aσ vanishes in that limit and as a result
πσ = Fτσ becomes a constraint. Whereas in the
region 0≤φ < π/4 the limit φ→θ is well-defined
so that we can construct the temporal gauge for-
mulation in the τσ-coordinates.
(3) When θ tends to φ in the region π/4 < φ≤π/2,
the gauge A− = 0 becomes a pure space-like ax-
ial gauge , so that we encounter the same dif-
ficulty as that in the ordinary coordinates. We
notice however, that the quantization surface de-
pendences disappear when we calculate the xτ -
time ordered propagator in momentum space, so
that we can obtain well-defined limits in momen-
tum space. We show this below.
(4) Translational generators for the free gauge
field are described as follows:

Pτ =
∫

d3xσ[θ σ
τ − 1

2B n2

∇2 B −B nσ

∇2 ∂σC],

Ps =
∫

d3xσ[θ σ
s + B nτ

∇2 ∂sC] (34)
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where s = σ, 1, 2 and θ σ
τ and θ σ

s are the canon-
ical energy-momentum tensor composed only of
the physical uµ. Due to the second term of Pτ ,
we obtain the Heisenberg equation [Γ(x), Pτ ] =
i∂τΓ(x) in spite of the fact that Γ has the ex-
plicit xτ dependence.
(5) The operator ∇2 becomes hyperbolic when
n2 < 0. We regularize singularities of its inverse
by the Cauchy principal value prescription.
(6) The inverse of ∇2 also appears in the physical
part as we see from the fact that the operator 1

∂−
in (29) and (32) is rewritten for D(x) as

1
∂−

= cos(θ+φ)∂σ−sin(θ−φ)∂τ

sin2(θ−φ)∇2

= cos(θ+φ)∂σ−sin(θ−φ)∂τ

∂2
⊥ sin2(θ−φ)+n2∂ 2

σ
. (35)

(7) Therefore when n2 < 0, infrared divergences
necessarily appear in the physical part irrespec-
tive of the quantization surface. These diver-
gences are cancelled by corresponding ones from
the residual gauge field’s part.

Properties in the n2 = 0 case are given sepa-
rately in section 5. We close this section by cal-
culating the xτ -time ordered propagator of the
gauge field. The constituent fields are expressed
in terms of creation and annihilation operators.
From (29) we see that uµ can be written as

uµ(x) = 1√
2(2π)3

∫ d3qσ√
qτ

∑2
λ=1 ε

(λ)
µ (q)

×{aλ(qσ)e−iq·x + a∗λ(qσ)eiq·x} (36)

where qτ is the on mass-shell energy given by

qτ =
√

q 2
σ − cos 2φq 2

⊥ (37)

and qσ and qτ are expressed in terms of qσ and
qτ respectively as

qσ =
qσ − sin 2φqτ

cos 2φ
, qτ =

sin 2φqσ − qτ

cos 2φ
. (38)

The polarization vector ε
(λ)
µ satisfies

qµε(λ)
µ (q) = 0, nµε(λ)

µ (q) = 0, (λ = 1, 2) (39)

∑2
λ=1 ε

(λ)
µ (q)ε(λ)

ν (q)

= −gµν + nµqν+nνqµ

q−
− n2 qµqν

q 2
−

(40)

where q− = cos(θ−φ)qσ− sin(θ−φ)qτ . B and C
are expressed in terms of zero-norm creation and
annihilation operators as follows

B(x) = 1√
(2π)3

∫ d3k+√
k+

θ(k+)(k2
⊥ + n2k2

+)

×{B(k+)e−ik·x + B∗(k+)eik·x},
C(x) = i√

(2π)3

∫
d3k+

√
k+θ(k+)

×{C(k+)e−ik·x − C∗(k+)eik·x}, (41)

where

[B(k+), C∗(q+)] = −δ(3)(k+ − q+),

[C(k+), B∗(q+)] = −δ(3)(k+ − q+). (42)

Consequently we can calculate the xτ -time orderd
propagator

〈0|T (Aµ(x)Aν(y))|0〉=∫
d4q

(2π)4 Tµν(q)e−iq·(x−y).

(43)

We must keep θ < φ in order for all the terms con-
taining the inverse of ∇2 to cancel. Thus, speci-
fying θ and φ as required, we obtain

Tµν(q) = i
q2+iε

(
−gµν + nµqν+nνqµ

[q−] − n2qµqν

[q−]2

)

(44)

where

[q−] = q− + iεsgn(q+). (45)

It is remarkable that the ML prescription has
been realized in the manner which does not de-
pend on the quantization surface. Consequently
we can take the limit φ→θ of the propagator and
define it to be that of the gauge field in the pure
space-like axial gauge formulation in the τσ- co-
ordinates. We can similarly define that of the
pure space-like axial gauge field in the ordinary
coordinates. We keep the relation θ < φ by first
fixing the value of φ to be π/2 and then by taking
the limit θ→π/2 and obtain

i
−gµν + nµqν+nνqµ

[q3]
+ qµqν

[q3]2

q2 + iε
, (46)

where [q3] = −q3 + iεsgn(q0).
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4. Quantization of the free Dirac field and
the light-front limit

We employ the following representation of the
Dirac’s matrices:

γ0 = i

(
0 −I
I 0

)
, γ3 = i

(
0 I
I 0

)
,

γ1 = i

( −σ1 0
0 σ1

)
, γ2 = i

( −σ2 0
0 σ2

)
(47)

where I is 2×2 unit matrix. Matrices γτ and γσ

are defined by

γτ=γ0 sin φ+ γ3 cos φ, γσ=γ0 cosφ− γ3 sinφ(48)

and then γ·p−m is expressed as

γ·p−m=i



−(m + iσipi) −i pτ+pσ√

1+sin 2φ

i pτ−pσ√
1−sin 2φ

−(m− iσipi)


(49)

so that the plane wave solutions of the free Dirac
equation are obtained in the same manner as in
the ordinary coordinates. It turns out that the
positive energy solution, u(r)(pσ) (r = 1, 2), and
the negative energy solutions, v(r)(pσ) (r = 1, 2),
are given by

u(r)(pσ) = Nu

(
χ(r)

i
√

1+s
pτ+pσ

(m + iσipi)χ(r)

)
,

v(r)(pσ) = Nv

(
i
√

1−s
pτ−pσ

(m + iσipi)χ(r)

χ(r)

)
(50)

where pτ =
√

p 2
σ − cos 2φ(p 2

⊥ + m2), χ(r) is the
two-component spinor, s = sin 2φ and Nu and Nv

are normalization factors given by

Nu =
√

pτ + pσ

2m
√

1 + s
, Nv =

√
pτ − pσ

2m
√

1− s
. (51)

We see that when pσ < 0, the lower two-
component spinor is not well-defined in the limit
φ→π/4. This reflects the fact that the lower
two-component spinor cannot be an independent
canonical variable in the light-front formulation.

Nevertheless, the xτ -time ordered propagator
of the free Dirac field ψ is well-defined in the
limit. As a matter of fact, because the ψ is de-
scribed in terms of the particle annihilation oper-
ator b(r)(pσ) and the antipaticle creation operator

d∗(r)(pσ) as

ψ =
∫ d3pσ

(2π)
3
2

√
m
pτ

∑2
r=1{b(r)(pσ)u(r)(pσ)e−ip·x

+d∗(r)(pσ)v(r)(pσ)eip·x} (52)

we obtain the xτ -time ordered propagator

〈0|T (ψ(x)ψ̄y))|0〉 =
∫

d4q

(2π)4
S(q)e−iq·(x−y) (53)

where S(q) consists of the particle and antiparti-
cle contributions in the form

S(q) = i
γτpτ (qσ) + γσqσ + γiqi + m

2pτ (qσ)(qτ − pτ (qσ) + iε)

+ i
γτpτ (−qσ)− γσqσ − γiqi −m

2pτ (qσ)(qτ + pτ (−qσ)− iε)
(54)

with

pτ (qσ) =
pτ (qσ)− sin 2φqσ

− cos 2φ
. (55)

Thus they combine to give the standard expres-
sion

S(q) = i
γ·q + m

q2 −m2 + iε
(56)

from which follows the covariant part of the light-
front fermion propagator in the limit. Moreover,
analizing the limit φ→π/4 of (53), we see that
contact terms have appeared in the limit but they
have cancelled among themselves. In fact, when
qσ≤0, pτ (qσ) diverges in the limit, as is seen from

lim
φ→π

4

pτ (qσ) =

{
q2
⊥+m2

2qσ
(qσ > 0)

+∞ (qσ≤0)
(57)

the divergent pτ (qσ) gives rise to a finite contact
term

limθ→π
4

S(q) = i
γτ q2

⊥+m2

2qσ
+γσqσ+γiqi+m

q2−m2+iε + iγτ

2qσ
.

(58)

However, in the limit q2 = 2qτqσ − q 2
⊥ , it cancels

the one resulting from the first term, as is seen
from
γτ

2qσ
(1 +

q 2
⊥ + m2

q2 −m2 + iε
) =

γτqτ

q2 −m2 + iε
. (59)

We can conclude from (55) that we can obtain
the covariant fermion propagator irrespective of
the quantization surface as long as the lower two-
component spinor is the independent canonical
variable.
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5. Light-front formulation of light-cone
gauge QED

As has been pointed out in section 4, in case of
n2 = 0, namely the light-cone gauge, the manifest
quantization surface dependences disappear from
the free gauge field, as is seen from

Aµ = uµ − nµ

∇ 2
⊥

B − ∂µ

∇ 2
⊥

C (60)

where ∇ 2
⊥ = ∂ 2

1 + ∂ 2
2 . Accordingly, the sec-

ond term of Pτ in (34) also vanishes so that if we
calculate quantities made of the residual gauge
fields by using equal xτ -time commutation rela-
tions, then the quantities do not have xτ depen-
dences so that we can obtain the same results by
using the translational generators with the inte-
gration variable dxσ changed into dx+/ sin(π

4−φ).
Thus, in that sense, the translational generators
can be identified with

Pτ = [
∫

d3xσθ σ
τ − ∫

d3x+B
cos( π

4−φ)

∇ 2
⊥

∂+C],

Ps = [
∫

d3xσθ σ
s − ∫

d3x+B 1
∇ 2
⊥

∂sC] (61)

where the second term of Pτ has been obtained
by using ∂σ = sin(π

4 − φ)∂+. Now we can obtain
the light-front limit φ→π/4

Pτ = [
∫

d3xσθ σ
τ − ∫

d3x+B 1
∇ 2
⊥

∂+C],

Ps = [
∫

d3xσθ σ
s − ∫

d3x+B 1
∇ 2
⊥

∂sC]. (62)

These are equations given previously by McCar-
tor and Robertson [6]. Now that we have the
free Hamiltonian, we can construct the light-front
perturbation theory of light-cone gauge QED
by employing the light-front limit of the light-
cone gauge interaction Hamiltonian as that of
the light-front theory. By construction, the free
gauge field possesses x− independent residual
gauge fields regularizing the infrared divergences
so that we obtain a well-defined gauge field propa-
gator [10]. Note that the regularizations are done
most effectively by carrying out x−-integrations
after calculating the propagators. Then we ob-
tain i

q2+iε (−gµν + nµqν+nνqµ
[q−] ) as the gauge field

propagator and i γ·q+m
q2−m2+iε as the fermion propa-

gator.

We end this contribution by making remarks.
In our formulation the light-front temporal gauge
limit agrees with the light-front spatial gauge
limit, because the free light-cone gauge field given
in (60) is identical with that in the formulation
where the xσ is chosen as the evolution param-
eter. From the fact that light-cone gauge QED
gives rise to the covariant interaction term as well
as the propagators without the contact terms in
the light-front limit, we see that in the genuine
light-front perturbation calculations the contact
terms resulting from the fermion propagators are
cancelled by the terms provided by the noncovari-
ant interaction term

e2ψ̄γµAµ
γ+

2i∂−
γνAνψ. (63)

And the contact terms resulting from the gauge
field propagators are cancelled by the terms pro-
vided by the Coulomb interaction term.
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