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We calculate the lowest order cross–section for Dirac magnetic monopole production from photon
fusion (γγ) in pp̄ collisions at

√
s = 1.96 TeV, pp collisions at

√
s = 14 TeV, and we compare γγ

with Drell–Yan (DY) production. We find the total γγ cross–section is comparable with DY at
√

s = 1.96 TeV and dominates DY by a factor
>
∼ 50 at

√
s = 14 TeV. We conclude that both the

γγ and DY processes allow for a monopole mass limit m > 370 GeV based upon the null results
of the recent monopole search at the Collider Detector at Fermilab (CDF). We also conclude that
γγ production is the leading mechanism to be considered for direct monopole searches at the Large
Hadron Collider (LHC).

PACS numbers: 14.80Hv



2

I. INTRODUCTION

Magnetic monopoles have been a theoretical curiosity since the founding of electromagnetic theory and have mo-
tivated numerous innovative experimental searches. Maxwell’s equations possess a dual, electric–magnetic symmetry
that goes unrealized without the discovery of magnetic charges. Stronger motivation for monopole searches was pro-
vided by Dirac who showed that the existence of a single magnetic monopole is sufficient to explain the observed
quantization of electric charge [1], an empirical fact which goes otherwise unexplained. Magnetic monopoles are also
present in a majority of grand unified theories (GUT) of particle interactions where monopoles are produced as topo-
logical defects during the GUT phase transition [2]. Consequently, if a GUT were realized in the early universe, after
an era of inflation, then a population of magnetic monopoles would be left over as relics of the Big Bang [3].

Decades of interest in monopoles has inspired monopole searches in a wide range of physical settings [4]. It has been
proposed that relativistic monopoles could be observed as a component of the cosmic rays [5] and recent flux limits
have been reported [6] employing these techniques. Monopoles searches have been conducted in exotic materials like
moon rocks [7] and terrestrial materials exposed to excessive radiation [8]. Collider searches for directly produced
monopoles have been performed, most recently [9, 10]. Despite all efforts to date there are no definitive signals for
the existence of magnetic monopoles.

The quantization of angular momentum for magnetic and electric poles yields the Dirac quantization condition,
eg = n/2 (setting ~ = c = 1) for electric and magnetic charges e and g, respectively. The magnetic charge

g =
1

2e
=

( e

2α

)

' (68.5)e (1)

is large in units of the electric charge (where we choose n = 1 and define α ≡ e2 ' 1/137). The large monopole
charge implies a strong monopole–photon coupling, a characteristic of magnetic monopoles that will be exploited in
this article.

A useful theory of monopole interactions does not currently exist to perform direct production calculations. The
large monopole–photon coupling precludes the use of perturbation theory leaving us with a lowest order approximation
as our only means to proceed. Previous authors [8–11] have employed a minimal model of monopole interactions which
assumes a monopole–photon coupling that is proportional to the monopole’s induced electric field gβ for a monopole
moving with velocity β = v/c. We follow these authors and use this same minimal model in our photon fusion (γγ)
and Drell–Yan (DY) calculations that follow.

Monopole searches at colliders are restricted to Dirac–type monopoles (and antimonopoles), which are hypothesized
to be fundamental particles dual to the electron (and positron). GUT monopoles are excluded in collider searches as
they generally have too large a mass (M ∼ 100ΛGUT where ΛGUT is the GUT symmetry breaking scale) and their
internal structure exponentially suppresses their production cross–section. Models of Dirac monopole production
have relied extensively on the DY process in which a quark and antiquark (qq̄) from interacting protons annihilate to
produce a monopole–antimonopole pair (mm̄). (For an extensive review of the Drell–Yan process see [12].) The CDF
Collaboration at the Fermilab Tevatron recently reported the results of a search for the direct production of magnetic
monopoles [10]. With no monopole events found, CDF sets a mass limit m > 360 GeV assuming DY production of
monopoles. A particle collider that probes a new energy frontier, such as the Large Hadron Collider (LHC), will open
up new physics possibilities including the potential for the discovery of magnetic monopoles. Future monopole searches
are likely to be undertaken at the LHC and will require detailed simulations of monopole events based upon our best
knowledge of the leading monopole production mechanisms. Anticipating this need we investigate DY production at
the LHC and consider an alternative production mechanism, the γγ fusion process.

The γγ production cross–section of heavy leptons, γγ → L−L+, has been studied in comparison with DY in pp
collisions at LHC energies [13]. The full γγ process includes the individual regimes of inelastic, semi–elastic, and
elastic scattering. The lepton production cross–section in each regime was found to be of the same order of magnitude
while the total γγ cross–section, the sum of the individual regimes, was found to be nearly 102 below the DY cross–
section. We repeat the γγ calculations for monopole production which entails replacing e (for leptons) with gβ (for
monopoles) that, in light of eq. (1), will lead to greatly enhanced cross–sections. The DY cross–section will also be
enhanced for monopole relative to lepton production, however it remains to be seen which process will dominate.

We restrict our calculations to Dirac monopoles (hereafter “monopoles”), assumed to be spin 1/2 fermions of
minimal charge, only consider electromagnetic interactions, and assume a monopole–photon coupling gβ for final
state monopoles of velocity β. In Section (II) we describe the γγ and DY calculations and discuss their relative
dominance for lepton versus monopole production. The details of the γγ and DY calculations, which have been
widely reported in the literature, are presented in Appendix (V) for the case of monopole production. In Section (III)
we present our results for pp̄ collisions at

√
s = 1.96 TeV, discuss the monopole lower mass bound reported by CDF,

give a mass limit based on our calculations, and present our results for pp collisions at
√

s = 14 TeV. Our concluding
remarks are given in Section (IV).
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FIG. 1: The Feynmann diagrams for the γγ fusion subprocess which produce a monopole-antimonopole pair (mm̄) in the final
state. Two incoming virtual photons (γ) are radiated from the interacting protons or antiprotons (not shown). The virtual
photons couple to the total charge distribution of the proton (during elastic scattering, which leaves the proton intact) or to
a constituent quark within the proton (during inelastic scattering). The monopole–photon coupling is found from minimal
assumptions of monopole interactions described in the text. The γγ cross–section formula for spin 1/2 monopoles is given in
eq. (7).
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FIG. 2: The Feynmann diagram for the Drell–Yan subprocess which produces a monopole-antimonopole pair (mm̄) in the final
state. An incoming quark and antiquark (qq̄), constituants of the colliding protons, annihilate into a virtual photon (γ) which
then pair produces the final state monopoles. The DY cross–section formula for spin 1/2 monopoles is given in eq. (14).

II. PHOTON FUSION VERSUS THE DRELL–YAN PROCESS FOR MONOPOLE PRODUCTION

The γγ and DY processes for lepton production have been widely studied in proton collisions. The γγ subprocess for
monopole production, depicted in Fig. (1), yields a monopole–antimonopole pair mm̄ in the final state. The incident
photons are radiated from the electric charge distribution of the colliding protons (or antiprotons). During elastic
scattering the photon couples to the whole proton charge e and during inelastic scattering couples to constituant quarks
of charge eq = ηe where η = 2/3(−1/3) for q = u, c, t(d, s, b). We will compare γγ with the DY process (Fig. (2))
which dominates for lepton production. The full γγ and DY cross–section formulae are presented in Appendix (V)
with the relevant couplings for monopole production.

To understand the relative strengths of γγ and DY production it is instructive to compare the electromagnetic
couplings in the total cross–sections. For the estimates to follow we only consider quark–photon couplings eq = ηe
where η = 2/3(−1/3) for q = u, c, t(d, s, b). The full γγ calculation includes couplings to the whole proton charge
which will provide a marginal increase to the γγ/DY enhancement we find in eq. (4) below. In the case of lepton

production, γγ suppression relative to DY is anticipated merely by counting the powers of electromagnetic couplings
in the total cross–sections. The ratio of electromagnetic couplings in the lepton production cross–sections for γγ
relative to DY is

rl =
e4
qe

4

e2
qe

2
= η̄2α2 (2)

where η̄ is the average fractional quark charge contributing to the cross–section. Going from lepton to monopole
production we simply replace e → gβ = eβ/2α in the final state couplings (as shown in Figs. (1) and (2)). In this
case the ratio of couplings is

rm =
e4
q

(

eβ
2α

)4

e2
q

(

eβ
2α

)2
= η̄2 β2

4
(3)

(where α ≡ e2). We can now estimate the change in the γγ/DY cross–section ratio expected for monopole versus
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FIG. 3: The total cross–sections for γγ and DY production of monopoles in pp̄ scattering vs. the mass of the produced monopole
at

√
s = 1.96 TeV. The CDF reported cross–section limit at 95% confidence level (shown above) can be used to set a lower

monopole mass limit assuming a production mechanism. The γγ and DY curves are nearly equal at the exclusion limit and
independently call for a mass limits m > 345 GeV and m > 350 GeV, respectively. We also plot the sum of γγ and DY and
find a monopole mass limit m > 370 GeV assuming both production mechanisms.

lepton production by taking a ratio of the ratios

R =
rm

rl
=

β2/4

α2
∼ 4700 (4)

setting β = 1. Drees, et al., find γγ production of leptons to be nearly 102 below DY [13] for pp collisions at√
s = 14 TeV, which implies a factor ∼ 50 dominance of γγ over DY for monopole production assuming β = 1 in

eq. (4). The effect of β < 1 for the production of slow moving monopoles is to be determined in our full calculation
which follows.

III. MONOPOLE PRODUCTION IN PROTON COLLISIONS

We calculate γγ fusion for monopoles production following the formalism of Drees, et al. [13]. The detailed formulae
are presented in Appendix (V) and full documentation of our γγ calculations is reported in a thesis of one of the
authors [14]. Unlike the DY process, γγ production yields equivalent results in pp and pp̄ scattering. The full γγ
calculation includes contributions from three individual regimes; inelastic, semi–elastic, and elastic scattering, and we
sum these individual regimes to find the total γγ cross–section. For inelastic scattering, pp → XXγγ → XXmm̄,
both intermediate photons are radiated from partons (quarks or antiquarks) in the colliding protons. To approximate
the quark distribution within the proton we use the Cteq6–1L parton distribution functions [15] and choose Q2 = ŝ/4
throughout. Following [13], we employ an equivalent–photon approximation [16] for the photon spectrum of the
intermediate quarks. In semi–elastic scattering, pp → pXγγ → pXmm̄, one intermediate photon is radiated from
a quark, as in the inelastic process, while the second photon is radiated from the other proton, coupling to the
total proton charge and leaving a final state proton intact. The photon spectrum associated with the interacting
proton must be altered from the equivalent–photon approximation for quarks to account for the proton structure.
To accommodate the proton structure we use the modified equivalent–photon approximation of [17]. For elastic
scattering, pp → ppγγ → ppmm̄, both intermediate photons are radiated from the interacting protons leaving both
protons intact in the final state.

The Fermilab Tevatron is a pp̄ collider at center–of–mass energy
√

s = 1.96 TeV. We have calculated γγ and DY
production of monopoles at the Tevatron and our results are presented in Fig. (3). The individual γγ scattering
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FIG. 4: The cross–sections for γγ fusion and DY processes in a pp interaction vs. the mass of the produced monopole at
√

s = 14 TeV. The γγ process is calculated in the elastic, semi–elastic and inelastic regimes shown above and the sum of the
individual processes gives the total γγ production cross–section (solid line).

regimes are all of similar magnitude and happen to fall near the DY curve. To avoid cluttering Fig. (3) the individual
regimes are not shown, but their contributions to the total γγ cross–section are roughly: inelastic (10%), semi–elastic
(50%), and elastic (40%). The total γγ and DY cross–sections shown in Fig. (3) happen to be nearly equal over the
range 300 to 500 GeV with γγ dominating at lower masses.

The result of a search for the direct production of monopoles was recently reported by the CDF Collaboration
[10]. The search uses 35.7 pb−1 of CDF run II data where a special monopole trigger was employed. Monopole event
simulations and conservative estimates of their experimental acceptance were used to establish a cross–section limit
of approximately 200 femptobarns over a mass range 200 to 700 GeV at 95% confidence level based upon a lack
of observed monopole events (see Fig. (3)). Assuming DY production of monopoles, CDF establishes a monopole
mass limit of m > 360 GeV. Their monopole acceptance depends upon the production kinematics, but they estimate
a limit in the total variation in acceptance to be less than 10% and conclude that mass limits from production
mechanisms other than DY can be set with reasonable accuracy. Thus, we are justified in considering mass limits
from γγ production based upon the CDF 95%CL limit.

The DY curve shown in Fig. (3) of [10] crosses the 95% CL limit near 360 GeV while our DY curve is slightly lower
and crosses near 350 GeV. Therefore, our DY calculation calls for a slightly lower mass limit than CDF reports,
but the addition of the γγ contribution to the DY production argues for an increase in the mass limit of 20 GeV to
m > 370 GeV. See the γγ+DY curve in Fig. (3).

The LHC is designed to produce pp collisions copiously at
√

s = 14 TeV. The results of our calculations at LHC

are presented in Fig. (4). We find that each of the individual γγ scattering regimes dominates DY by a factor
>∼ 10

and the total γγ cross–section is a factor
>∼ 50 larger than DY. Based upon our results we conclude that γγ fusion

will be the leading mechanism for direct monopole production at LHC and argue for further investigation of the γγ
process in detailed simulations of LHC monopole events.

If the LHC were to attain 100 fb−1 of integrated luminosity our calculations predict greater than 700,000 monopole
events from γγ fusion for a monopole mass of 1 TeV. By comparison, the yield of 1 TeV monopoles from DY production
is less than 15,000 events over the same period of time. The γγ process will allow LHC to extend their monopole
search to relatively high masses. After collecting 100 fb−1 of data we predict in excess of 50 monopole events at
monopole masses approaching 3 TeV.
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IV. CONCLUSIONS

Motivated by recent monopole searches at the Fermilab Tevatron and the expectation of future monopole searches
at the LHC we have calculated monopole production from the Drell–Yan and γγ fusion processes. We have compared
these processes for both pp̄ collsions at

√
s = 1.96 TeV and pp collisons at

√
s = 14 TeV. Our calculations are limited

to a lowest order estimate assuming a monopole–photon coupling proportional to the induced electric field of a moving
monopole. The monopole–photon coupling is strong for monopole velocities β ∼ 1 which has prohibited our use of a
pertubative expansion.

In pp̄ collisions at the Tevatron we showed that the γγ total cross–section is approximately equal to DY in the
mass range where the CDF collaboration sets a 95% confidence level cross–section limit. Based on our results, DY
can be used set a mass limit m > 350 GeV and γγ can be used independently to set a mass limit m > 345 GeV.
When both γγ and DY production are considered, the sum of the cross–sections implies the monopole mass limit of
m > 370 GeV.

In pp collisions at the LHC we found that γγ fusion is the dominant production mechanism for magnetic monopoles
by more than a factor 50 over the DY process. The inelastic, semi–elastic, and elastic regimes each dominate DY by
a factor 10 or greater. We conclude that the γγ process should be considered the leading production mechanism for
monopole searches at the LHC and emphasize the need for detailed studies of monpole events using the γγ process.

V. APPENDIX

Our γγ calculations follow the formalism and approximations of Drees et al., [13]. We calculate inelastic, semi–
elastic, and elastic processes and assume throughout this report that the final state monopoles are Dirac–type of
minimal charged (n = 1), spin 1/2 fermions, and only consider their electromagnetic couplings. The γγ subprocess
must satisfy the kinematic constraint ŝ = (k1 + k2)

2 ≥ 4m2 where k1 and k2 are the virtual photon four–momenta
and the final state monopole pair has a total rest mass 2m. We assume an effective photon approximation [16] to
describe the photon spectrum of the interacting quark during inelastic scattering. The total cross–section for inelastic
scattering is

σinel.
pp (s) =

∑

q, q′

∫ 1

4m2/s

dx1

∫ 1

4m2/sx1

dx2

∫ 1

4m2/sx1x2

dz1

∫ 1

4m2/sx1x2z1

dz2 e2
qe

2
q′

· fq/p(x1, Q2) fq′/p(x2, Q2)fγ/q(z1) fγ/q′(z2) σ̂γγ(x1x2z1z2s) (5)

where m is the monopole mass, eq = ηe where η = 2/3(−1/3) for q = u, c, t(d, s, b), and σ̂γγ is the production

subprocess cross–section with the center–of–mass energy
√

ŝ =
√

x1x2z1z2s. The structure function fq/p is the
quark density inside the proton and fγ/q is the equivalent–photon spectrum of a quark. We use the Cteq6-1L

parameterization of the parton densities [15] and chose the scale Q2 = ŝ/4. With

fγ/q(z) = fγ/q′(z) =
α

2π

(1 + (1 − z)2)

z
ln(Q2

max/Q
2
min) (6)

where Q2
max = ŝ/4 − m2 and Q2

min = 1 GeV2.

The final state monopole velocity is β = (1−4m2/ŝ)1/2 for the subprocess center–of–mass energy
√

ŝ. The γγ → mm̄
total cross–section is

σ̂(γγ → mm̄) =
πβ5

4α2ŝ

[

3 − β4

2β
ln

1 + β

1 − β
− (2 − β2)

]

. (7)

where g4β4 = β4/16α2 using the Dirac quantization condition. The factor α−2 will be cancelled by two powers of α
from eqs. (6) and (9).

The semi-elastic cross section for pp → mm̄pX is given by

σsemi−el.
pp (s) = 2

∑

q

∫ 1

4m2/s

dx1

∫ 1

4m2/sx1

dz1

∫ 1

4m2/sx1z1

dz2 e2
q fq/p(x1, Q2)

· fγ(z1) fel.
γ/p(z2) σ̂γγ(x1z1z2s) (8)

The subprocess energy now is given by
√

ŝ =
√

sx1z1z2.



7

For the elastic photon spectrum f el.
γ/p(z) we use an analytic expression from [17] given by

fel.
γ/p(z) =

α

2πz
(1 + (1 − z)2)

[

ln A −
11

6
+

3

A
−

3

2A2
+

1

3A3

]

, (9)

for

A = 1 +
0.71(GeV)2

Q2
min

, (10)

and where

Q2
min = −2m2

p +
1

2s

[

(s + m2
p)(s − zs + m2

p)

− (s − m2
p)

√

(s − zs − m2
p)

2 − 4m2
pzs

]

. (11)

At high energies Q2
min is approximately m2

pz
2/(1 − z).

The purely elastic scattering cross–section where both protons remain intact in the final state is

σel.
pp (s) =

∫ 1

4m2/s

dz1

∫ 1

4m2/z1s

dz2 fel.
γ/p(z1) fel.

γ/p(z2) σ̂γγ(ŝ = z1z2s). (12)

In the DY process the annihilating qq̄ pair must satisfy ŝ = (p1 + p2)
2 ≥ 4m2, for quark four–momenta p1 and p2,

to produce a final state monopole pair of total rest mass 2m. The Drell–Yan cross–section for monopole production
is

σDY
pp (s) =

∑

q

∫ 1

4m2/s

dx1

∫ 1

4m2/x1s

dx2 fq/p(x1) fq̄/p(x2) σ̂qq̄(ŝ = x1x2s) (13)

for the DY subprocess

σ̂(qq̄ → mm̄) =
πη2β3

12ŝ

[

2 −
2

3
β2

]

(14)

where η is the fractional quark charge in units of e and the quark sum ranges from t̄, b̄, ..., b, t, ensuring that only
quarks and antiquarks of the same flavor contribute.
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