Due: 9 September

Read Marion & Thornton Chapter 1, Shankar Chapter 8.

1. Use MKS units throughout and give the answers both analytically and numerically. From the following four fundamental constants (and only these)

$$G = 6.67259 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{kg^2}$$
 $c = 2.99792458 \times 10^8 \text{ m/s}$
 $\hbar = 1.05457266 \times 10^{-34} \text{ J} \cdot \text{s}$ $k_B = 1.380658 \times 10^{-23} \text{ J/K}$

using dimensional analysis, construct quantities with the dimensions of:

- (a) length
- (b) time
- (c) velocity
- (d) mass
- (e) energy
- (f) temperature
- 2. (a) In the matrix equation $\underline{\underline{D}} = \underline{\underline{A}} \underline{\underline{B}} \underline{\underline{C}}$, if $\underline{\underline{D}}$ is a 2×2 matrix, $\underline{\underline{A}}$ is a 2×5 matrix, and $\underline{\underline{C}}$ is a 2×2 matrix, what are the dimensions of $\underline{\underline{B}}$? How many rows and how many columns?
 - (b) Write the matrix equation $\underline{\underline{D}} = \underline{\underline{A}} \ \underline{\underline{B}} \ \underline{\underline{C}}$ in index notation. Include limits on the sums.
- 3. If \boldsymbol{x} is the column vector $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$, what is the result of the following matrix multiplications?
 - (a) **x** x^T
 - (b) $\boldsymbol{x^T} \boldsymbol{x}$
- 4. Marion & Thornton 1.2 b)
- 5. (a) Marion & Thornton 1.3
 - (b) What is the effect of this rotation on the vector $\begin{pmatrix} 2\\1\\5 \end{pmatrix}$?
- 6. Shankar 8.1.1