Due: 30 September

1. Show that these two forms of the radial derivative in the spherical Laplacian are equivalent:

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\Phi}{\partial r}\right) = \frac{1}{r}\frac{\partial^2}{\partial r^2}(r\Phi)$$

- 2. If $\Phi = \frac{3z^2}{(x^2 + y^2 + z^2)^{3/2}}$, find the gradient $\vec{\nabla}\Phi$.
- 3. Show that $\frac{d}{dt}(v^2) = 2\vec{\boldsymbol{v}}\cdot\vec{\boldsymbol{a}}$. [The left-hand side contains the magnitude of the velocity (speed) squared; the right-hand side is a dot product between two vectors.]
- 4. Marion & Thornton 1.27
- 5. Marion & Thornton 1.34
- 6. (a) Show that the curl of the gradient of any scalar function vanishes.
 - (b) Show that the divergence of the curl of any vector function vanishes.
- 7. Consider a point mass in free fall $(\vec{a} = -g\hat{\jmath})$ with the following initial conditions: $\vec{v}(0 \ sec) = 50 \ m/s \ \hat{\imath}$ and $\vec{x}(1 \ sec) = 20 \ m \ \hat{\imath} + 100 \ m \ \hat{\jmath}$. Find the displacement at 4 seconds, $\vec{x}(4 \ sec)$.