PHYS7314: Quantum field theory I

Fall 2018

Time and location:	Tuesdays and Thursdays, 9:30am-10:50pm, 152 Fondren Science
Instructor:	Pavel Nadolsky
E-mail:	nadolsky@smu.edu
Phones:	(214) 768-1756 (office)
Mailbox:	102 Fondren Science
Office:	203 Fondren Science
Office hours:	By appointment, request an appointment at doodle.com/pavelnadolsky.
Course webpage	Posted on SMU Canvas (courses.smu.edu). To view, enter your 8-digit SMU ID and password.

Textbook, learning objectives, grading, policies

Text	1, Quantum field theory, by Mark Srednicki, 1st Edition
	2. Gauge theories in particle physics: a practical introduction, vol. 1, by Ian Aitchison and Anthony Hey, CRS Press, 4th edition
Recommended reading	 Classical Electromagnetism in a nutshell, by Anupam Garg (selected sections)
	2. Quantum Field Theory in a nutshell, by Anthony Zee
and materials	3. An Introduction to Quantum Field Theory, by G. Sterman
	 Introduction to Quantum Field Theory, by M. Peskin and D. Schroeder
	5. The Quantum Theory of Fields, volumes 1, 2,3 by Steven Weinberg
	 Fields, by Warren Siegel (free, hep-th/9912205).
	 Simon DeDeo's online course on an <u>Introduction to</u> <u>Renormalization.</u>

 Grading Your grade will be based on weekly homework problems (70%) and a final project (30%)
 Late Homework: 15% off per day for the first four days, or until graded (whichever is first). Thereafter I'll accept (but won't grade) them at any time for 25% credit.

Homework assignments

In the Assignments folder on the website.

PHYS 7314 Syllabus

Sections from Srednicki's book

Plan to read 3-4 chapters per week

Part I. Spin Zero:

- 1. Attempts at relativistic quantum mechanics
- 2. Lorentz invariance
- 3. Canonical quantization of scalar fields
- 4. The spin-statistics theorem
- 5. The LSZ reduction formula
- 6. Path integrals in quantum mechanics
- 7. The path integral for the harmonic oscillator
- 8. The path integral for free field theory
- 9. The path integral for interacting field theory
- 10. Scattering amplitudes and the Feynman rules
- 11. Cross sections and decay rates
- 12. Dimensional analysis with hbar=c=1
- 13. The Lehmann-Källén form
- 14. Loop corrections to the propagator
- 15. The one-loop correction in Lehmann-Källén form
- 16. Loop corrections to the vertex
- 17. Other 1PI vertices
- 18. Higher-order corrections and renormalizability
- 19. Perturbation theory to all orders
- 20. Two-particle elastic scattering at one loop

- 21. The quantum action
- 22. Continuous symmetries and conserved currents
- 23. Discrete symmetries: P, T, C, and Z
- 24. Nonabelian symmetries (skip until later)
- 25. Unstable particles and resonances (elective)
- 26. Infrared divergences
- 27. Other renormalization schemes
- 28. The renormalization group
- 29. Effective field theory (skip until later)
- 30. Spontaneous symmetry breaking (skip until later)
- 31. Broken symmetry and loop corrections (elective)
- 32. Spontaneous breaking of continuous symmetries (skip until later)

Part II. Spin One Half

- 33. Representations of the Lorentz Group
- 34. Left- and right-handed spinor fields
- 35. Manipulating spinor indices
- 36. Lagrangians for spinor fields
- 37. Canonical quantization of spinor fields I
- 38. Spinor technology
- 39. Canonical quantization of spinor fields II
- 40. Parity, time reversal, and charge conjugation
- 41. LSZ reduction for spin-one-half particles
- 42. The free fermion propagator
- 43. The path integral for fermion fields
- 44. Formal development of fermionic path integrals (skip until later)
- 45. The Feynman rules for Dirac fields
- 46. Spin sums
- 47. Gamma matrix technology
- 48. Spin-averaged cross sections
- 49. The Feynman rules for majorana fields (elective)
- 50. Massless particles and spinor helicity (elective)
- 51. Loop corrections in Yukawa theory
- 52. Beta functions in Yukawa theory
- 53. Functional determinants (skip until later)

Part III. Spin One

- 54. Maxwell's equations
- 55. Electrodynamics in coulomb gauge
- 56. LSZ reduction for photons

- 57. The path integral for photons
- 58. Spinor electrodynamics
- 59. Scattering in spinor electrodynamics
- 60. Spinor helicity for spinor electrodynamics (elective)
- 61. Scalar electrodynamics (elective)
- 62. Loop corrections in spinor electrodynamics
- 63. The vertex function in spinor electrodynamics
- 64. The magnetic moment of the electron
- 65. Loop corrections in scalar electrodynamics (elective)
- 66. Beta functions in quantum electrodynamics
- 67. Ward identities in quantum electrodynamics I
- 68. Ward identities in quantum electrodynamics II
- 24.
- 69. Nonabelian gauge theory
- 70. Group representations
- 44.
- 53.
- 71. The path integral for nonabelian gauge theory
- 72. The Feynman rules for nonabelian gauge theory
- 73. The beta function for nonabelian gauge theory
- 74. BRST symmetry (elective)
- 75. Chiral gauge theories and anomalies
- 76. Anomalies in global symmetries
- 77. Anomalies and the path integral for fermions
- 78. Background field gauge
- 79. Gervais-Neveu gauge
- 80. Feynman rules for NxN matrix fields
- 81. Scattering in quantum chromodynamics
- 82. Wilson loops, lattice theory, confinement
- 84. Spontaneous breaking of gauge symmetries
- 85. Spontaneously broken abelian gauge theory
- 86. Spontaneously broken nonabelian gauge theory
- 87. The standard model: Gauge and Higgs sector
- 88. The standard model: Lepton sector
- 89. The standard model: Quark sector
- 90. Electroweak interactions of hadrons
- 91. Neutrino masses