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Abstract

We present a new class of quantum field theories which are exactly solv-
able. The theories are generated by introducing Pauli—Villars fermionic and
bosonic fields with masses degenerate with the physical positive metric fields.
An algorithm is given to compute the spectrum and corresponding eigenso-
lutions. We also give the operator solution for a particular case and use it to
illustrate some of the tenets of light-cone quantization. Since the solutions of
the solvable theory contain ghost quanta, these theories are unphysical. How-
ever, we also discuss how perturbation theory in the difference between the
masses of the physical and Pauli—Villars particles could be developed, thus
generating physical theories. The existence of explicit solutions of the solvable
theory also allows one to study the relationship between the equal-time and
light-cone vacua and eigensolutions.
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I. INTRODUCTION

Exact solutions to quantum field theories in physical space-time with non-trivial interac-
tions are rare. In this paper we shall show how one can obtain the complete eigenspectrum
and eigensolutions of a quantum field theory of interacting massive fermions and bosons
in 3+1 space-time dimensions. The basic format of the solvable theory is the conventional
Yukawa theory with g¢1) interactions, accompanied by negative-metric Pauli-Villars (PV)
boson and fermion fields with masses degenerate with the physical quanta. An algorithm
is then given which generates the complete eigenspectrum and the corresponding eigensolu-
tions, with respect to a light-cone-quantized Fock basis.

Since the solutions of the solvable theory contain ghost quanta, these theories are un-
physical. However, we will discuss how perturbation theory in the difference between the
masses of the physical and PV particles can be developed, thus ultimately generating physi-
cal theories in which the wave functions allow one to compute space-like and time-like form
factors and other quantities of phenomenological interest. Conversely, the exact solutions
provide boundary conditions for the wave functions of the physical theory in the limit of
degenerate masses. The explicit solutions of the solvable theory also allow one to study
the relationship between the equal-time and light-cone vacua and eigensolutions, and they
display properties due to covariance, such as light-cone spin conservation, which are char-
acteristic of physical nonperturbative eigensolutions. In addition, such solutions provide
important checks of computer codes for discretized light-cone quantization (DLCQ) [[B] of
nondegenerate theories [§].

Pauli-Villars regularization [ is an important method for regulating the ultraviolet
divergences of light-cone Hamiltonian theories. We have previously shown that the use of
PV regulation provides a correct renormalization of DLCQ, for Yukawa theory at least to
one loop; in contrast, a momentum cutoff of DLCQ does not preserve the chiral properties
of the theory [B]. We have also made a number of studies showing the practicality of
using PV regulation in 3+1 nonperturbative DLCQ calculations [§,0,B]. In an important
development, Paston and Franke [[]], and Paston, Franke and Prokhvatilov [§] have now
shown that regulation with the correct combination of PV fields always gives perturbative
agreement with Feynman theory, and they have given a complex set of rules for deciding
which set of PV fields are sufficient to regulate a given theory at all orders.

In the present paper we will show that if a theory is regulated with PV fields and the
masses of the PV fields are set equal to the masses of the physical fields, the resulting theory
is easy to solve. After some discussion of PV-regulated Yukawa theory in Sec. [, we give
the general procedure for finding eigenvalues and eigenvectors in Sec. [I]. We then give in
Sec. [V] an operator solution for Yukawa theory and use it to find the relation between the
light-cone basis states and the equal-time basis states. We show that, not only is the light-
cone perturbative vacuum equal to the physical vacuum while the equal-time perturbative
vacuum is not, but that all the eigenstates are much simpler when expressed in the light-cone
representation than when expressed in the equal-time representation. In Sec. [V] we show
that the procedure works for the case of several PV fields of the same type and give an
explicit example.

Since the masses of the ghost metric quanta are degenerate with the masses of physical
particles, the solutions of the solvable theories will violate unitarity, and they are thus



not physical. Since the exact solutions exist for any value of the coupling constant, one
can construct the solution of a theory with large values of the PV masses as a perturbative
expansion, not in powers of the coupling constant, but in powers of the difference between the
PV masses and the physical masses. Such a perturbation theory would require the expansion
parameter to have large values, so its practical utility will depend on the analytic properties
of the solution in the mass differences. The calculation of scattering matrix elements and
other physical quantities as a perturbation theory in powers of the mass differences involves
polynomials in the coupling constant of no higher order than the order of the expansion in
the masses. Therefore, although it might at first seem otherwise, low orders of the new series
will not contain information from higher order Feynman graphs. The solutions may be of
use in studying various general properties of quantum field theories even if the convergence
of the new perturbation series is not very good. We do know that the solutions have at least
one use: we have used them to help debug the computer code used in the calculations of [J].
Additional conclusions and applications are discussed in Sec. V1. Our light-cone conventions
and definitions are collected in an appendix.

II. PAULI-VILLARS REGULARIZATION OF YUKAWA THEORY

We begin our discussion with the light-cone quantization of Yukawa theory in 3 + 1
dimensions. In order to keep the notation as simple as possible, we shall first introduce just
one PV boson and one PV fermion although this is not sufficient to regulate the full Yukawa
theory; the results of Paston and Franke [[]] show that one bosonic PV field and two PV
fermion fields will regulate the theory in such a way that it is perturbatively equivalent to
Feynman theory. However, for the purposes of this section, one can omit fermion loops (the
theory studied in [f]), or introduce an additional transverse momentum cutoff. Paston et
al. [@] have suggested that one bosonic PV field and one PV fermion field plus a transverse
cutoff regulates the theory in such a way as to generate only mass, coupling constant, and
wave function renormalization.

Taking the physical fields to be ¢ and ¢; and the PV (negative-metric) fields to be 1,

and ¢9, the action becomes
1 1 1
/d4 [ Fur)? 5#%‘?? - 5(@@2)2 + §“§¢§
+%@17“8p — (@@1)7“)% — myh Yy — %@27“@1 — (@@2)7“)% + Moyt
g0 1)

where the Yukawa three-point interaction is expressed in terms of

7@1 +12), 9= —(<Z>1 + ¢a) . (2.2)

For simplicity, we have not considered here a ¢* term; it is, however, easily included. We
also define
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nZE(@Dl—@Dz), CZE(%—@)- (2.3)

Notice that n and ( are zero-norm fields. In terms of these fields we have

5= [ da | 5(0,00°C + 0,C0%) ~ §30 + 1<+ Co) + 5508~ (e + ¢
%@W% — (800" )n + %(ﬁv“@u — (9" )0
a4 ) (B4 76) + 5 = ) (0 + )
g0 2.4)

The light-cone Hamiltonian P~ can be constructed using the methods of [[I0]:

1
P = §/dx-dm T+ (2.5)
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where we have defined

12

P2, P =pE -t m=my, A=my—my, (2.7)

and ! = %4 are the original Dirac matrices. The fields 1_ and r_ are nondynamical and
must be eliminated via the constraint relations; these take the form

2i0_n_ = {—z’o/&- + (m + %A)yo} Ny + {—%Avo + gvoqb} y (2.8)
and
2i0_1_ = [—ia'd; + (m + %A)ﬂ Yy + [—%Aﬂ Ny . (2.9)

The mode expansions are
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(2.10)
(2.11)
(2.12)

(2.13)

The integration measure is dk = d?k, dk*. The light-cone four-spinors y, are defined in the

Appendix. The canonical commutation relations derived from the Lagrangian are

)} = (Ap)apd®(z — o),
v )} = —(A)apd® (2 - ).

the others being zero. These are realized by the Fock space relations

{bess B0} = {dui 01,y } = 000 (k — &),

lag.0l] = 6@ (g — ).

All others are zero, including

{b7 bT} = {d7 dT} = {675”’ = {57 6T} = [a,aT] = [Oz,OzT] =0.

We can now (following [[[(]) give P~. We write
P = Po + 9k

where

/d l‘h + (v +52/2)] (ala, + ala,)

kf + (m? + D?/2)

+ Z / dl{? l L+ ‘| (bléﬁs,k + ﬁ;&bs,k + di,ﬁé&k + (ﬂ@d&ﬁ)

+/dql ]; aly)

2 / dk l o | (Bhabss + BLuBon + dl gl + 01 40)

2

(2.19)

(2.20)

(2.21)

(2.22)

and D? = m3 — m?. The first-order interaction Hamiltonian separates naturally into two

pieces, describing boson emission with and without a spin flip:
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P(I) = V%lip + Vnoﬂip . (223)
We have found it convenient to express the spin-flip part of P(I) in terms of transverse

“polarization” vectors

1), (2.24)

1 ,
€1 4+1= E( €11 = ﬁ(lu —1)7

satisfying
eel =6, > elel” = 61 A A (2.25)
1
Of course, the boson has no such degree of freedom; this is merely a way of writing the
Hamiltonian more compactly. Other useful relations satisfied by the €, ; include:
€11 = €L, (2.26)
vixIBaixy = \/56128 “v) sy, (2.27)

where v is any transverse vector. We have

1 (€r0s% 1)
Vﬁip = /—871'3 ; / dEdeg I+ /q+
x{bl ybcaag 0O (k — 1 — ) + bl 4! yag 6P (g — k — 1) (2.28)
+blbsaah 0 (k+q— 1) — dl yd_s ka8 (k+ g 1)
+d—s7kb—s7£a; 6 (k+1—q) — d;ld—s,@a; 6 (k—1— Q)} + h.c.,
(m+A/2)

Voo == > [ dkdidg - \/_
X {bs,ﬁbs,;aq 0Ok —1—q)+d bl ya, 0P (k+1—q)
+0] bsgal 6O (k +q— 1)+ dl dypag 0¥ (k+ g — 1)
o gb_sgaf 5<3>(k: +l—q)+dldgal 6Pk —1—g)} +he  (229)
S L
X{ s,ﬁﬂsiaq MNe—1- q) +6Tslbs £ 5(3)(E+l—ﬂ)
+b] Bsaah 8P (k + g — ) + 0] ydy ag 6P (k + ¢ — 1)
tdogBsgal 6P (k+ L q) + 61 do gl 0P (k — 1 — q) } + hec.

The structure of these interactions reflects the conservation of J, in each interaction; the
light-cone spin-flip AS, = 41 of the fermions is compensated by a unit change AL, = F1
in orbital angular momentum [LT].

Notice that no four-point interactions arise in the light-cone Hamiltonian from the elim-
ination of the dependent fermionic fields. The absence of such instantaneous interactions
follows from the lack of mass dependence in such interactions and from the opposite signa-
ture of the PV fermion; the interactions associated with an instantaneous “physical” fermion
then cancel against those of the instantaneous PV fermion.
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III. CONSTRUCTION OF THE EXACT SOLUTIONS

If 9 and A are equal to zero, the system is exactly solvable. To see this, we define an index
for each state as the number of a' type quanta plus the number of 37 and ¢' type quanta
minus the number of a' type quanta minus the number of b" and d' type quanta. States with
a definite index are then eigenstates of the operator Z = [afa + 376+ d67d] — [aTa + bT 3+ d16]
with the value of the index being the eigenvalue; note, however, that matrix elements of
7T between such states may not be equal to the index, due to the indefinite metric. States
with a definite value of the index span the space. The kinetic energy part of P~ (for zero
9 and A) is diagonal in Z, whereas the interacting part of P~, when acting on a state of
given index, produces only states with lower index. Thus the light-cone Hamiltonian is
triangular, allowing its eigensolutions to be constructed as a combination of Fock states in
a finite number of sectors. In particular, each eigenvector of the system will contain a state
of highest index, and its eigenvalue will be equal to the free eigenvalue of the highest state.

We define the functions

1 1 11

VD= o v = (l_+ * k_+> ’ (3:1)
1 1 by —ily kg + ik

VikD = s V=T ( T ) ’ (32)
11 (kb ik =) L — il

Tk 1) = N < L+ — [+ T I+ ’ (3.3)

1 1 —1 1

and
(oo b oy o) = 30 [ + 32 [ ] (3.5)
i=1 i i=n+1 i
With this notation, we can write the eigenvector whose highest state is 61& |0) as
Kt U(k,l)
i dl - bl jaj_,|0
05 4l0) +mg o Eig(k) - Bl k-1 +105-1/0)
k* Vi(k,l
+g [ dl (&) bl jaj_,|0). (3.6)

o Eiglk)—E1(Lk—1)

The eigenvalue of the state is Fy o(k). Not all states are this simple. Another example: The
eigenstate whose highest state is ﬁila;_l |0) is

Uk, 1)

fal )0y +m : bl ,]0) — bt |0

PO M g @ Y I B E - D — B 4
" U(Lt)




a V(1)

), TEL(LE—1) - Bl -tk —1) ~1-10%-1/0)
k= ” T(k—1,t
- 2= bT dT i 0
—I—g/ _E1 1 l k— D - ES,O(LE —1—t, D +it +7E—£—§ﬁ+7£| >
S T*(k —1,t)
- by gy P00 3.7
g/ _Ell l k‘—l) Ego(t k’—l—t l) it E—l—iﬂ-hl‘ > ( )
k- S(k—1,t)
bT dT bT dT +
+mg/ ‘E1 1(LE—1) — Eso(t,E—1—1t, l)( Lad gy + 04 d )5 4[0)
e T(k -1,
+9° dt dq (k—1L1)
0 “(Eii(LE—1)—Esot,k—1—t0))(Era(lLE—1)—FEs:(t,k—1—1t,q,l—q))
bi td+ E—l— t(ﬂ’LU(L g)blﬁal_g + V (I, g)bi,gaz_g)m)
kt— I+ T _
0 0 (Ell(l k— D_E3,0<§7E_£_§7£))(E11@,&—l)—E31(LE_£_LQ7£_Q))
bl yd" ooy (mU L q)bfhgal_g%— V(L )b 4af_,)|0)
e S(k—L1)
dt d E—1L1
‘l‘mg 0 q(Ell(l kf—l) E30( k—l_iaé))(El,l(LE_l)_E371(LE—£—LQ’L_Q))
(bT—vtdw—L—z+b+,sz—,E—;—g)(mU(l bl gal_,+ V(L bl yal_)|0)
kT -1t I+ B
vt [ e dg T(k—1,1)
0 (Eii(LE-1)— El,z(iaﬁ_l—ﬁ,l))(ELl(LE—D—Egl(LE_l_Lg7l_g))
bk adl oy (mU(L @bl gaf_, + V(L )b 4a]_,)|0)
e Tk — 11

I+
5 it [ d k-l
g /0 0 q(Ell(l k—=1)—Etk—1-t0))(Ea(lE-) —Es (tL,E-1—tql—q)

t l
blLdl U(L q)b! V(L q)b! 4a}_ )0
—t @ g1 (m (L, q) +qal 1 (L q) g g)| )

kT -1t it _
0 o Lk t

1,1 1
(0L 4l gy + 0L db oy )(mU(L @)Y ga_y + V(L @b gai_)|0) .

Notice that any state containing only a'’s, b"’s and d'’s is an eigenstate of the full P~ with
the same free eigenvalue.

In these examples the eigenvectors have zero norm, but this is not always the case. If
we add the vector bl,k\0> to the state given in (B.G), the resulting vector is an eigenvector
with the same eigenvalue but nonzero norm. Two such states with momenta p and k satisfy
(plk) = 20(p—k). An eigenvector whose highest state (as per the index) is a state composed
purely of physical quanta corresponds to that physical state in the free theory; all other
states are unphysical.

Even when ¢ or A is nonzero, there is interesting structure. The interacting part of P~
is still a move-down operator in terms of the index. In fact the only operators which move
a state up to a higher index (and thereby fill in the upper triangle of P~) are the operators



2 2
[ a5 ooy + 5 [ k] 5] (s + dlid). (38)
These operators are still diagonal in momentum space and are independent of the transverse
momenta.

If we chose an unperturbed P~ containing all the terms in the full P~ except those in
(B-§), we obtain a triangular system but the operator is very deficient and probably not very
useful. On the other hand, if we forget for the moment that A and D are related and treat
them formally as independent parameters, we can set D = 0 while allowing A to become
nonzero. If we chose as the unperturbed P~, the P~ which results from setting  and D equal
to zero but allowing A to be nonzero, then the perturbing P~ (the terms proportional to d
and D) has no dependence on the coupling constant, g. (If A is a perturbation parameter,
the perturbing P~ does depend on g through the V; g, interaction.) The P~ which includes
A, but not § or D, is not deficient and may form a good starting point for calculations.
In that case the eigenvectors project onto an infinite number of sectors. For instance, the
eigenvector whose highest state is ﬁi7k|0) projects onto all sectors containing a /61 or a bf

particle plus an arbitrary number of a particles. We can write the eigenvector as

o kbt i,
ﬁik|o>+z/ dH/ dg.../ dir
= = Jo 0 0

[XZ(E, él? e ,Li)ﬁj_liaz_Llazl_lz o .. azlil_11|0>
+Yi(k, Ly, L)Y, paf el ooal]0)

li*l

+ Zi(k Ly, L)Y al g al oy ooal o |0)] (3.9)
The X, Y, and Z’s satisfy the following recursion relations:

) = _%AQU(lialiJrl)Xi(E,ll,~~~>£i)
i Eiok) — Eriv1(lip, k=L, LG — oy L — L)

-1 1) Y . 1 LOX ,
Yiak, by oo i) = 2A9U(L’L+1)YZ(E’ Ly L)+ (m+ 2A)9U@mlz+1)Xz(Ea L, 1;)

Eigk) = Bl k=100 =Ly oo L — L)

1 L . , 7 , .

Zi-i—l(ka Ll? . ’Li-i-l) — QAgU(lHlH-l)ZZ(Eu 117 e 71@) + QV(L,L_H)XZ(E, il? e ,L) ‘
El,O(E) - ElJ-H(L’—i—bE - llaél - LQ, . ,éi — Li—i—l)

These are subject to the initial conditions

XZ+1(E7£17 LRI 71

Xk 1) =~ 59AU (R 1y), (313)
Vilk L) = (m -+ SA)gU(k, L), 3.14)
Zi(k 1) = gV(k, L) (3.15)



IV. THE OPERATOR SOLUTION, THE VACUUM AND THE EQUAL-TIME
REPRESENTATION

We now give the operator solution for the case § = A = D = 0. The simplest field to
obtain is the Bose field. If we define the operator, Ag, to be

Ag =
o0 1
dk Vikk—q)b' by —V(kk—qb . b_
+g/q+ _E071( )+E10(E Q) _El,O(k)( (—’— Q) —k—q"+k (—’— g) +.k—q E)
+9 /q+ dk ! (T"(q, k)dy g-xby x — T(g, k)d— gD 1)
0 EOvl( ) — Ei 0(2 k) —El,o(k‘) - = = L=

Iw —
rQ
N—
|
&
K=)
—
o
N—
|
|
s}
|
s}

+ /Oodg
g ot Eoa(q) + Ero(k —

g / dk

S
=N

FEo1(q) + B,

n o

+m/ dk
Yo “Eor(q) — Erg

+m / k
g Eo1(q) + Evo(k —

we can use the relation
[P, (] =—i0"(, (4.2)

along with the initial condition (R.13), to show that

C(zF,2)

—i(3Eo1(9)z T +qz) _ 1 1 e"g@l

a d
\/167?3 / q V16 ) g

e i+ (E10(k— Q) El oK)zt Vb bT ) - bT )
g/ —E01 )+ Evo(k —Q) — El,o(E)( (—’—_Q) —k—qY+k (_,_—g) +k—gq k)

e i5(—FE1,0(q—k)—FE1,0(k))zT

Eo1(q) — Ervolg — k) — Erp(k) L )0 ,g-kV+ q,K

+g/ dk
0

oo et3(B10(k=9)—E1,0(k)) : ;
+/ dk Vikk—qd  do—V*(kk—q)d . d
g o EOI( )+E10(7€ >_E10(k>( ( Q) k—q +.k ( Q) +.k—q &)

¢35 Proli=a)=BLo®)" [ (f; | — g)
EO 1( )+E1 0(]{3 ) Ey O(k) 7 7 e

e 2( FE1 O(q k)—E1,0(k))x S(q k)
+m / k i
g EOl — E o(q — k‘) Elo(k’) d—ET R 4~k -h&)

+mg/ dk

e 2(Eu)(k q9)—FE1,0(k) :ﬁU(k k— )

(d\ o gdiw+d ., d_p)| +he (4.3)

+m/ dk
I o FEor(@) + Brolk—q) — Brglk) et rE T Tk
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By evaluating this expression at ¢ = 0 (or any other equal-time surface) we can work out the
relation between the light-cone operators and the equal-time operators. We shall indicate
three-vectors in the three spatial dimensions with a hat: k = (kq, ko, k3), and will indicate
the equal-time operators with a breve: a. We write as usual

1 ~ 1 P P
0,7) = [ di Gre®® 4 alemihe) | 4.4
where
i L ! /d:z ik C(0,2) + —-8u0(0,2) (4.5)
= e w; , — , . .
bVREA2 Ve wp
In these and later formulas we use w;, = \/p? + k2. Tt is also useful to define the quantities
P (¢.k) =—Eiok—q) + Eiok), (g, k) = Ero(qg — k) + E1o(k), (4.6)
with which we can define
1 1
po(g, k) = 507 (g, k) +¢7) pa(a: k) = 5" (g k) —q7), (4.7)
1, _ 1, _
(k) = 50 (@ k) +47),  ra(g k) =507 (¢ k) —q7). (4.8)
These allow us to define the spatial three-vectors
(¢, k) = (qL,ps3), 7(¢, k) = (q1,73) (4.9)
We now find
9 wp — 13 1
a; = tWi Awg—tg,tl — /dgﬁl

" (V@i + 2E2)8(E — plg, k)
/q " Eoa(q) + Erp(k—q) — Eo(k) e

(V&7 — 22)5(E + p(g, k) - T
Box(@) T Brolk—g) = Bro@ | L

+g/ dk

d T (q,k)ds g—1br — T(q, k)d_ ,_1.b_
+g 0 _E01(Q) _EI,O(Q_E) _EIO(E>( (ga ) +.q9 EV+k (g? ) q k E)
70(q,k) oA
o (VWi — =)ot + (g, k)
vy [ dk Ve (T(q, k)L 4y (o = T*(q, KDDL 4d' )

= 7E R ’
o (VE+ DS - (e k)

+ k Vikk—q)d ,_di,—V*(kk—q)d , d_
T B @+ Brolh— )~ Brg() " BE T Dt m VBRSO
(‘LE) 7 ~
o (@ )6 ( 4 (g, k)
tg [ dk Y (V*(kok — @)l ydo gy — Vb ke — @)l sy



V& + P 5 — (g, k) U,k — g)
Eoa(g )+E1 olk—q) — E1o(k) (birk gb+vﬁ+bT gb k)

(V& — 22)5(i + (g, k))U (k. — g)

+mg/ dﬁ(

dk A R
g B~ B rabraa i)
ro(g.k A
°§i—3>6<t—r<g, £))S(g. k) o
o [ a E01 “Eiolg B B ettt i)

dk i t
B E01() Fiolq — k) — Erg(k) = ek Pklog

+ 2By s(f — p(g, k)UK,

N
+m
g/ E01 )‘l‘ElO(E Q) EL(

( : po(g,k) ) (t—l— A( E))U(E,E— )
\/7E01(¢)_+ Elo(gp gq) " Ero(k) ! (dl,@d+,@—g+d1£d_£_g) . (4.10)

-
g [ ““ff><f+f<g,@>>s<g,@ T

+mg/q+ dk

The relationship between the light-cone representation and the equal-time representation
is quite complicated even for this relatively simple case. We also see that the equal-time
perturbative vacuum is not the physical vacuum. The physical vacuum — the ground state
of the system, which we shall call |2) — is equal to the light-cone perturbative vacuum.
That is, the state we have called |0), which is destroyed by all the light-cone destruction
operators, is the physical vacuum: [Q2) = |0). We shall call the equal-time perturbative
vacuum — the state destroyed by all the equal-time destruction operators — |0). From the
presence in (f-I0) of the terms proportional to b;de_&q_k and b;kdgq_k we see that |0) # [Q).
Of course, this conclusion 1mmed1ately follows from the fact that the Hamiltonian contains
terms proportional to bT alT _; — the usual way of seeing that 0) # |Q).

The same procedures Wthh we have used to find the eigenstates in the light-cone rep-
resentation can be used in the equal-time representation. However, the eigensolutions are
much more complicated when expressed in the equal-time representation than when ex-
pressed in the light-cone representation. For instance, although |Q2) is just given by |0), |©2)
projects onto any state containing N equal-time fermion-anti fermion pairs along with N
equal-time boson quanta as long as the total momentum is zero. Similarly, the state given
in (B-§) projects onto an infinite number of sectors of equal-time basis states.

We return to working out the operator solution. We define

Bsk = Bs ke
1 o 1 €125 ki1 €lo L1 ) t
t—g [ dl , L€ bl
Ve Jr B o(k) = Bro(l) + Bor(L— k) ( 1y

EHNIF =kt I =kt

4 /k+dl 1 €19 k1 n € 9511 b a
Vard o CE®) — Broll) - Boalk — 1) \kvE =17 | Ik =17 )

1 €1, 25 k1 €9 L1 +
t = / dl ’ +—= df 411
Ve ] CEo() 1 Ero(D) — Eoi(L+ k) <k+m T p i) ettt (4.11)
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1 o) 1 1 1
+ dl + bs 'I‘_
Vir e CEL(®) — Bro) + Eoa(l— k) <k+\/l+ — Rt I = k+> 19k
- " = L1 ;
m .
Vior o CErok) — Brol) — Bonlk— ) \kVET =17 | Ik 07 )

1 1 1 1
dl — df ,
" V 167T3mg/ “E1o(k) + Ero(l) — Eoa(L+ k) (/’{:Jf\//%ﬂr +i+ IHVETF l+> —s 0tk

and

Pt
Dy =05y

X 1 /oodl 1 —€1 25 kJ_ I €1, 25 lJ_ dT a
Ve i CEro(k) = Brol) + Boa(L— &) \kFVIF — ket 10y —fer ) o4tk

I /k+dl ! —eias k| —€lac b g
rl o VB — Brol) — Boalk D) \krvkr = | ke =) Lt

—|——g/dl 1 < —€12s k1 n —€l 2" lJ.) b al (4.12)
V8m ) TE (k) + Eio(l) — Boa(L+ k) \ktVET + 1T IHVETFIT) R EE
1 0 1 1 1 t
+\/ﬂ§§n%]k+CﬂELﬂE)—lﬁp@)+l%4@f-E)<k+v7:t75r+l+quiTEI>dMakE
1 kT 1 1 1 .y
6 o M E®) — oD — For (kD <k+m * ww) Do

1 1 1 1
——myg [ dl _ bl
V1673 mg/ “Ero(k) + Evo(l) — Eoa(l+ k) <k+\/k+ + I VET + l+> %k

With these definitions we can write the full space-time dependence of the 7, field as

1 —ik-x —il zt+

_l_

~ . o %( E1,0()+Eo,1(1-k))z €. 95k €9 L1 b ]
[ — 7 _I_ 7 h B
¢§ﬁ “Erolk) - Emw+Emu—@<va??¥ “ﬂrfﬁ) o

k+ € 2( Erol)—Foa(k-D)a €1, 2 ki € 95 11 b
b} _I_ 3 e 3
g/ _Elo — E1o(l) — Eoa(k —1) (lfrm g+m> 10k-1

e 2 El O(l) FEo, 1(I+k)) €1 s kJ_ EJ_ ” lJ_ dT
) —l— 5 a
9/ "Eo(k) + Ero(l) — Eoa(l+ k) (wm l*JW) s 10tk

OO

1 i3 (= Ero()+Eo1 (1-k))at 1 1 ;
- + s
\/167T3mg _EIO( ) — E1o(l) + Eoa(l— k) <k+\/l+ — Kkt TVt —k:+> 19

.I>
=k

1 k+ i3 (—E10()—Eo,1 (k—1)zt 1 1 ,
Y, + 10—
167 g/ _El o(k) — Ero(l) — Eo1(k —1) <k+\/k+fkr l+m> L0k—1

6 3 L(E1,0()—Eo,1(1+k)) 1 1 dT
\/ 167?3 / “Eo(k) + Ero(l) — Eoa(l+ k) <k‘+m a l+m> _S’£a£+4
tetika [DT 1€ iz Bo(k)zt (4.13)
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I il e by € L)
Va3 i CEro(k) — Brol) + Box(L— k) \k+v/IF — kv I+y/IF — &+ ) Cotik
kt i3 (B1,0(0+Eo,1(k=1))z* < —€19s- k. —€ o h)
L)

1
- dl +
V3 Jo CEo(k) — Ero(l) — Boa(k— 1) \k*v&kT —IF | IVET —IF

(
- 1 /dl 62%(_E1’0(£)+E0v1@+@)w+ —€] 25 k., + _61—28 ’ lJ— b aT
Va3 ] CELo(k) + Eroll) — Eor(L+ &) \k™ vkt 117 | 1k F 17 ) Lk

e 2(E1 o(l)—FEo,1(1—k))z* 1 1 J
+ _
Y 167T3 /k* "Eyo(k) — Ero(l) + Eoa(l - k) </€+\/W l+m> 5101k

Kt 2(E1 o()+Eo,1(k—1))z™* 1 1
ToT
dl ) ( P + ) sy

1
Vo o CErok) = Broll) = Boa(k— D)\ =7 | IR =T

of
1 i3 (= Ero()+Eo1 (L+k))at 1 1 ; i
Bl e e (wm B ZWW) ‘s’l"“ﬁl } |
The fields ¥, and ¢ are free fields:

1 (L Ttk i(L t+kz
Yila®i) = = Z/ O L e R I I CBE)

| 1
¢($ >Z)—W/dﬂ\/—+[aq

Thus we have obtained solutions for all the independent degrees of freedom. By use of
equations (P.9) and (P-§) we can reconstruct the Fermi fields. One can then evaluate the
Fermi fields on the surface t = 0 and work out the relation between the equal-time Fermi
modes and the light-cone Fermi modes just as we did above for the Bose field.

e 3Poa@ a8 | gf 3P0 @ 490 (4.15)

V. SEVERAL PAULI-VILLARS FIELDS OF THE SAME TYPE

In general the UV regularization of a renormalizable theory requires the introduction of
more than one PV field of each type. For example, the full Yukawa theory requires two PV
fermions, and QCD requires several PV fermions for each color and flavor [f. Our method
is easily extendable to such cases. We will illustrate this for the theory studied in Ref. [J],
Yukawa theory without fermion loops regulated with three PV Bose fields. The theory
includes one (physical) Fermi field and four Bose fields: the physical field, which we will call
¢1; two negative metric PV fields, which we will call ¢ and ¢4; and a positive metric PV
field, which we will call ¢3. From these we define the following four zero-norm fields:

¢ = N(&1¢1 + &g + 303 + Eada) (5.1)
1= N(&¢1 + &2 — §1¢3 — §ada) (5.2)
2 = N(§2¢1 §102 + Eadb3 — §304) (5.3)
3 = N(€a1 — &3 — Eob3 + §104) - (5.4)

The &; are relative coupling strengths for the different fields and are chosen to satisfy con-
straints that accomplish designated cancellations. In particular, we have & = 1 to retain
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g as the ordinary bare coupling and 3;(—1)"¢? = 0 to give the ¢ fields zero norm. The
factor N is chosen such that the ( fields have the following commutation relations:

@™, 2), 07", 2)| = id®(z - 2), (5.5)
(Gi(a™,2), 07 G2, 2)| = i6P (2 — o). (5.6)
All other commutators are zero. The value of IV is then given by

N =1/1/2(&&2 + &84) - (5.7)

We make the mode expansions

1 —ik-x ik-x
Vil@) = s 3 [k [pge b 4 dL et (5.8)

Ch m/ £ e 4] 59)
Glz) = W / dg \/q_+ ai,ge—iﬂ'uajge“ﬂﬂ, i=1,2,3. (5.10)

If we take the masses of the fields, ¢;, to be u;, we find the operator P~ to be of the form
P~ =Py, + 9Py, +9°Py, (5.11)

where

Py, = Z / dk M} (b b + df 4 )

+/ dg| == |(afas, + abyay + af jas, + ala1y)
e /d 52 12— 2,2 qt €22 — 53“40@% L G = Gy qt 313 — £fuia§ga2g
| &ut - 3 qt &3 — &l gz, + &ni — i q++ &ps — i 04
fl&(lﬁ + Mz);§3§4(“3 + 1) (af 03q T a3qaq)
+5254(M% — u%)q;&fs(,u% — 1) (aTazg + aggag)
L&t — ) q++ a1 = 15) (1 abas, + alya,)
5154( “4);52£3<M2 + 45) (agqagq + azqasq)
+5153(M% — “g)qu&&(ﬂg — 1) (agqag + ajlg“?»g)
5354(M1 + ”2);€1€Q(M3 + 1) (agqa4q + a4qa2q)} ’ (512
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and

_ (€127 11)
Py = _Z [ dkdrdg *2 U

X {bs,ﬁb—&la’q 6 (k - l - q) + bs kds laq 6 (q - k - D
+bivkb_s7la;5 (E + g - i) - dS,ld_sykagé (k + q - l)
' gbosaal 08 (k1= ) —dl yd_opal 69 (k — 1 - g)} +hec.

1
dkdld
VT 7T:az/ N
x{bl ybsaag 09 (k — 1 — q) +d bl ag 6P (k + 1 g)
+b ybsial 60 (k + g — 1) + d 1 d gag 6P (k + ¢ — 1)

s ibssaf 0P (k+ L — g) +df dgal 6P (k — L — ¢)} + hee. (5.13)

In this case we do have four point interactions. They are given by

_ 1 1
o (k-l-p—q+ bi de—s 1pQq

X {b;&bsiaz% 0 k+1-p—q)

k+ —pt ST A ¢ - I
b ybsafty e 0O+ p = 1= )+ 8y oy e 6O+ 1+ p =)
—I—bikb al vl T3 ier 5(3)@—!—]_9 l— )—I—kadTSla e ier @ (k l+p—9q)
+b] 4bs10}0] s Jlrp+ 0 (k+p+q—1) +dlydsapa, # 0k —1-p—q)
—dsxb_sa)a, = —1F . G k+1+ q—p)+ di,ﬁdsia;ag T Jlr = 5@ (k +p—1—q)
b0 ip+ 00 (k+1+q—p)+dl,dala, T 5Ok +p—1—q)
—dsibsi0fa] ip+ 0O (k+1—p—q)+d.dajal I _1 0 (k+pt+g—1D}. (5.14)

Again, if we define an index given by minus the number of a' type quanta in the state, we
find that, for 3 = pus = psz = g, all the terms in P~ either leave the index unchanged
or lower it. The system is again triangular and easy to solve. In the present case, unlike
the situation we found above with PV Fermi fields, the eigenstates project onto an infinite
number of sectors. Nevertheless, the coefficients can be obtained recursively.

We shall illustrate this with one example. If we define a new vertex amplitude by

1 1 1
X0 = g5 o (k* —p+> | 1)

we find that the projection of the eigenstate whose highest state is 6-T%£|0>’ onto the sectors
with not more than two Bose quanta, is given by
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k* U(k, 1) k* V(k,1)
— - bl ,|0) + dl =K r
o Eiok) - Eii(LE-1) Lk £| )T o  Eiglk)—Ei (LE—-1) *

VI. CONCLUSIONS

If quantum field theories are regulated with PV fields, and the masses of the PV fields are
set equal to the masses of the physical fields, the resulting theories can be solved explicitly.
The eigenstates are nontrivial but can be constructed either in closed form or in terms of
recursion relations. The spectrum of these theories is identical to that of the corresponding
noninteracting theory. However, many eigenstates have zero norm, and the S matrix is
trivial; these properties make the fully degenerate case difficult to interpret physically, as
should be expected in a theory that violates unitarity so severely.

We have also shown that, in some cases, exact operator solutions can be obtained. These
solutions can be used to study those general properties of quantum field theories which
depend on covariance, but not on unitarity. These properties allow us to also investigate
the relation between the light-cone representation and the equal-time representation. Since
these theories have a highly structured equal-time vacuum, they may provide insight into
the nontrivial equal-time vacuum structure of theories such as QCD.

The existence of the solution for arbitrary coupling constant, but for zero values of the
mass differences 0 and A (or their equivalents in more complicated theories), opens the
possibility of doing perturbation expansions, not in the coupling constant, but in the mass
differences between the Pauli—Villars and physical hadrons, much like the case of broken
supersymmetry. We have shown that the wave functions of theories can be obtained in
exact form for degenerate physical and PV masses. Thus, if evolution equations in the mass
differences can be derived, we know how to initialize the solutions. We plan to consider this
approach in future work.
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APPENDIX: LIGHT-CONE CONVENTIONS

We define light-cone coordinates by

xizatoj:xg,

(A1)

with the transverse coordinates ; = (z!, 2%) unchanged. Covariant four-vectors are written

as e.g. x* = (xt, 27, @), with the spacetime metric

02 0 0
w 20 0 0
9 = 1o 0o -1 o0

00 0 -1

Explicitly, we have
Ty = gurty’ = §(x+y‘ +aTy")—x -y,

We also make use of an underscore notation: for position-space variables we write

= (r7,21),
while for momentum-space variables
k= (k" k).
Then the dot product becomes
E-gzélﬁx_—lﬂ x|

The gamma matrices 7= = 7° 4+ 43 = (yT)T satisfy the familiar relation
{77} = 29",
with g" the light-cone metric. It is simple to verify that the (hermitian) matrices

1
Ay = 570”Yi

satisfy
A2 =AL, AAL =0, Ab+A_=1,

(A2)

(A9)

(A10)

so that they serve as projectors on spinor space. In the Dirac representation of the -

matrices, A is given by
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1 0 1 0
=gl ) o (410
0 -1 0 1
which has two eigenvectors, both with eigenvalue 4+1. They are
1 0
=] =5 (A12)
0 —1

These serve as a convenient spinor basis for the expansion of the field ¥, = A % on the
light cone.
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