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In this contribution I shall review some of the lessons that I think have been learned over the years from studies
of model problems using the light-cone representation. The selection of works which I shall discuss is made to
illustrate certain specific points and is not meant to be a review of all the valuable work done in this area. There
has been a very large amount of work in the area, much of it very valuable, and a complete review would exceed
the time and space allocations for the contribution and also the competence of the author.

1. Introduction

In trying to organize my thoughts regarding
the lessons that have been learned over the years
from studies of model problems I was somehow
reminded of the three promises the apparitions
made to Macbeth. I have in mind something like
this:
¢ SOME CORRECT RESULTS CAN BE OB-
TAINED FROM CALCULATIONS WHICH
ARE MUCH SIMPLER THAN EQUAL-TIME
CALCULATIONS

e LIGHT-CONE WAVE FUNCTIONS ARE OF-
TEN MUCH SIMPLER THAN EQUAL-TIME
WAVE FUNCTIONS

e MACBETH! MACBETH! BEWARE THE
PT =0 SINGULARITY

I am afraid that, as was true of the Thane of
Cawdor, we have sometimes been guilty of focus-
ing our attention too much on the first two items
and ignoring (or denying) the last one. Therefore,
in this contribution I am going to discuss the last
item. In making that choice I do not in any way
mean to deny or belittle the many successes of the
light-cone methods in model calculations. But
these successes have been well discussed at the
meetings and are generally well known to most
of the participants here. Furthermore, while it
may be more fun to call fourth and discuss our
successes, further progress requires that we iden-
tify problem areas for the light-cone methods and
solve those problems.

In any realistic calculation and most model cal-
culations done in the light-cone representation

one encounters a singularity at p™ = 0. To pro-
ceed it is necessary to regulate that singularity
in some way. No particular way of performing
the regulation has been shown to be both gen-
erally applicable and correct (whatever, exactly,
correct might be taken to mean). We may there-
fore wonder how significant a problem the p™ = 0
singularity represents. To put the blackest light
on it we might think:

THERE ARE AN INFINITE NUMBER OF
WAYS TO REGULATE THE P™ = 0 SIN-
GULARITY, SO A RANDOMLY CHOSEN
WAY WILL GIVE A CALCULATION WHICH
IS WRONG, NOT CERTAINLY, BUT WITH
PROBABILITY 1

On the other hand, the situation might not be
that bad. Perhaps it matters little just how we
regulate the singularity; perhaps all ways of regu-
lating it, or at least a large number of them, give
the same (correct) answer.

The purpose of this contribution is to explore
what model calculations have taught us about
this question. I shall concentrate on calculations
for three types of theories: the Schwinger model;
¢* theories; and Yukawa theories. I shall also
have something to say about how, in my view,
some of the contributions in this session show
progress in learning to regulate the p™ = 0 sin-
gularity. I shall also mention a few cases where I
believe further model calculations could provide
valuable additional insights into the nature of the



pT = 0 singularity and help devise ways to regu-
late it in realistic calculations.

2. The Schwinger Model

Probably the best studied case is the Schwinger
model. For the Schwinger model , as usual, we
must regulate the p™ = 0 singularity. Let us be-
gin with the comforting observation that there is
at least one way to regulate the singularity which
allows us to give a completely correct solution.
If we regulate ultraviolet singularities with gauge
invariant point splitting, regulate infrared singu-
larities with a Klaiber subtraction and include
in the calculations two nonphysical fields, one of
which is a ghost, we can give an operator solution
which is equivalent to standard solutions in other
gauges and quantization schemes [1]. In particu-
lar, we get the correct spectrum and eigenstates,
the correct f-structure for the vacua, the correct
anomaly and the correct chiral condensate. The
theory can be quantized either on the light-cone
or at equal-time and the same operator solution
will be found in either case. Furthermore, if that
regularization scheme is used and the solution is
used as a starting point for mass perturbation
theory, the standard first order correction the the
Schwinger particle is found [2], that is, we get

AM? ~ —47p(Q|TT|Q) (1)

If the theory is quantized on the light-cone there
are subtleties which require special methods [3]
but I will not discuss the point further here. The
relation (1) comes about from the fact that the
two auxiliary fields induce an operator into P~
which will be missed if those fields are omitted
(the operator is proportional to the chiral con-
densate). The same operator was found by en-
tirely different methods by the St. Petersburg
group and was discussed by Prokhvatilov in his
talk here [4]. In full QCD there will be operators
similar to the one in the Schwinger model [3].
So, the problem can be solved exactly, but the
regularization scheme discussed above is rather
complicated. What happens if we choose to regu-
larize the theory in a simpler way? Surely one of
the simplest ways to regulate the theory is to im-
pose periodicity conditions on the light-cone and

include no zero modes or auxiliary fields. That
case is studied in Refs. [5,6]. Many correct prop-
erties are obtained in that regularization scheme:
the spectrum is correct and the qualitative prop-
erties of the eigenstates are correct. But there is
no #-structure, no chiral condensate and it is not
possible to define the pseudocurrent and so there
is no way to give meaning to the anomaly. As one
would expect from the fact that there is no chiral
condensate, if one uses the solution as a starting
point for mass perturbation theory, the physical
mass grows as the second power of the bare mass
for small values of the bare mass (as opposed to
the standard result given in eq. (1)). For larger
values of the bare mass the results agree pretty
well with lattice calculations.

If one wants to do mass perturbation theory
and just wants to find the shift in the mass
and wave function one can regulate that calcu-
lation by imposing a zero on the wave function
at pt = 0. The calculations are done in the con-
tinuum (no periodicity conditions) and no use is
made of auxiliary fields or of any additional in-
frared regulator. It may even seem that one has
not imposed a regularization but that is not cor-
rect. Such calculations have a long history [7,8,6].
The results have lead to what is sometimes called
the two percent problem. The source of that term
is that if the results of the calculation are com-
pared with the results from standard mass per-
turbation theory, the results of the light-cone cal-
culation differ from the standard result evaluated
at 8 = 0 by about two percent. The vacuum in
the light-cone calculation is not the § = 0 vac-
uum or a f-state for any value of § but rather the
ground state in the Q5 = 0 sector of the theory
so it is not clear that such a comparison is very
meaningful but that is the origin of the two per-
cent problem. Burkardt and Harada [9] improved
the situation somewhat recently by attempting
to give the calculation a #-structure by adding a
term to P~ intended to simulate the effect of a
background field (the term is not the same term
as that found in [2] or [10]). In that calculation
there is at least a parameter, 6, which can be set
equal to zero or any other value; it is not clear
that the full € structure of the theory is present.
What they find is that the mass shift has the



correct dependence on (their) 6 but the two per-
cent problem persists. Much work (and computer
time) has been expended trying to show that the
two percent problem is a numerical problem with
the light-cone calculation due to the truncation of
higher Fock sectors or some other inaccuracy. So
far as I know, these efforts have not succeeded. In
fact, one of the experts told me that he did not
believe that the problem could be resolved this
way [11].

I do not know what the resolution of the two
percent problem will be (if it is ever resolved) but
from the point of view of this contribution it is
possible that the light-cone calculation does not
give the same answer as standard mass perturba-
tion theory. Imposing a zero on the wave func-
tion is regulating the theory in the infrared and
from the results of that single calculation it is not
possible to say what the effect of that regulation
has been on the covariance or gauge invariance
of the full theory. In the absence of arguments
that that regulator maintains all those symme-
tries (including invariance under the large gauge
transformations) it must be considered possible
that the regulator has changed the answer.

That that can happen is shown by the study of
another possible regulator. One can impose pe-
riodicity conditions on the light-cone and include
all the zero modes and auxiliary fields necessary
to provide gauge invariance and the restricted
Lorentz invariance [12]. That scheme is some-
what like the first scheme I discussed except that
there is no ghost field (it’s use is incompatible
with the periodicity conditions) and the Klaiber
subtraction is replaced by the periodicity condi-
tions. In that case one gets the correct spectrum,
the correct #-structure, the correct anomaly and
a nonzero value of the chiral condensate. But the
value of the chiral condensate does not go the the
correct limit at the periodicty length goes to infin-
ity (the value of the chiral condensate goes to zero
in that limit). The source of the problem can be
traced to the fact that the use of the periodicity
conditions is simply too severe a regulation of the
ptT = 0 singularity. The damage is not repaired
by taking the limit where full Lorentz invariance
is formally restored.

There has been a lot of good work on light-cone
aspects of the Schwinger model which I have not
discussed because the results did not serve to il-
lustrate the specific points I wished to make (as
far as I could understand). In some cases authors
quantized on space-like surfaces then rotated to
the light-cone, quantized on a space-like surface
in light-cone gauge or did other studies; some ref-
erences are given in [13].

3. ¢t

The problem of ¢* in two dimensions with a
wrong sign mass has been considered by a num-
ber of authors. The theory is known to have a
condensate for sufficiently large values of the cou-
pling so it is natural to wonder how this physics
is expressed in the light-cone representation. As
usual, to do any calculations one must regulate
the p™ = 0 singularity. Most of the calculations
have been done in the context of regulating the
singularity with periodicity conditions on z+ =
If no zero modes are kept, and the field is simply
expanded in modes, there is no way to get a con-
densate. Somewhat of an improvement was made
by shifting the field to the classical minimum then
expanding the shifted field in modes [14]. That
gives a nonzero value for the condensate but the
full dynamics of the problem is clearly missing. A
further improvement was to keep a (constrained)
zero mode, which can be shown to exist from the
equations of motion [15,16]. The zero mode is
an operator which has a c-number part; keeping
just the c-number part is equivalent to shifting
the field. Maintaining the full dynamics of the
zero mode is a more complex problem and a con-
siderable amount of numerical work was done to
study the system [17].

While the calculations did give a condensate
and a proper renormalization was shown to ex-
ist [16], the results of the light-cone calculations
never agreed with known results for the theory.
In particular, all the calculations discussed above
gave mean field critical exponents and I think
it is clear that with that regularization for the
pt = 0 singularity one cannot get anything but
mean field critical exponents. It has been sug-
gested a number of times in the past that the



source of the problem is the regularization of the
pT = 0 singularity and that the solution must
involve dynamical zero modes. Prior to today
there were few calculations to back up these state-
ments; I know only of the rather preliminary re-
sults presented in [18]. Thus the results presented
here [19] surely represent an advance. I have not
yet been able to study the new results in sufficient
detail to see whether I believe that they represent
a completely satisfactory solution to the problem
but they surely are interesting: the problem is
certainly important.

Another possible avenue by which the ¢* prob-
lem might be addressed has been proposed by
Rozowski and Thorn [20]. They propose giving
up translational invariance. In that case the field
can have a condensate without any zero modes.
They attempt to recover translational invariance
in a limit while still retaining the condensate.

Before leaving the scalar field questions I

should point out that even in free theory there is a
problem. Long ago Nakanishi and Yamawaki [21]
showed that the two point function for the free
scalar field in four dimensions is not properly cal-
culated for space-like separations of the points if
the theory is quantized on the light-cone and any
natural regularization of the p™ = 0 singularity
(such as principal value or the use of periodicity
conditions) is used. To get the correct answer one
must employ the regularizaton:
b
where m is the mass of the field. While the
need for this regularization is clear upon a lit-
tle thought, it might not be the first thing that
would occur to someone solving the free scalar
field for the first time and thus unaware of the
details of the solution.

4. Yukawa Theory

A number of very useful studies have been
made on Yukawa theory. As usual, the issue is
regulating the p™ = 0 singularity. An interesting
study was done by Burkardt and Langnau [22]
based on perturbation theory performed in the
light-cone representation. They made perturba-

tive calculations for Yukawa theory using a va-
riety of momentum cutoffs, checked the results
for covariance and compared them to standard,
Feynman calculations. The results show that any
momentum cutoff induces counter terms. Sim-
ilar studies were made by Schoonderwoerd and
Baaker [23]. The momentum cutoffs break co-
variance and so do not allow a direct comparison
with Feynman methods except in the final results.
A method which does allow a direct comparison
at each stage of the calculation is Pauli-Villars.
The idea of using Pauli-Villars to regulate per-
turbative light-cone calculations goes back at
least to the work of Chang and Yan [24]. They
regulated the one loop self energy in Yukawa with
Pauli-Villars fields and found that they needed
three Pauli-Villars bose fields and that the third
Pauli-Villars condition must be chosen to be dif-
ferent from the standard one. They then state
that that procedure will properly regulate all or-
ders. Their results raise a number of questions.
It is well known that in Feynman methods one
Pauli-Villars field regulates the Feynman graph.
Why can we not take that convergent integral,
perform the p~ integral and get a finite light-cone
integral regulated with that same Pauli-Villars
field. Well, if we perform the p~ integral in the
Feynman diagram we do get a finite result for
all values of p~ and p™ but the remaining inte-
gral is not finite, it is linearly divergent. What
has happened? The answer is that the original
Feynman integral is not really convergent; it is
conditionally convergent and thus, any value as-
signed to it is a prescription [25,26]. Since the in-
tegral is conditionally convergent, including the
points in the domain of integration in a differ-
ent order might lead to a different answer and
that is what has happened. The two additional
Pauli-Villars fields are needed to correct a lin-
ear divergence and a finite error; these differences
as compared to the Feynman answer result from
the different order of performing the integrations.
The final correction is finite, which explains why
the final Pauli-Villars condition must be differ-
ent from the standard one. In their paper Chang
and Yan state that one should add enough Pauli-
Villars fields to render the Feynman integral abso-
lutely convergent but there is no number of Pauli-



Villars fields which will do that. Furthermore, we
have shown that, at best, with the three Pauli-
Villars bose fields, the final, nonstandard Pauli-
Villars condition must be modified in higher or-
der perturbative or in nonperturbative calcula-
tions [27]. For these reasons, it has not been clear
whether Pauli-Villars regulation would really al-
low a proper renormalization to all orders of a
light-cone Yukawa calculation (or of a nonpertur-
bative calculation).

I therefore think that the work of the
St. Petersburg group, reported here by
Prokhvatilov [28,29,4] represents a substantial ad-
vance. They have given a measure which can be
calculated for an arbitrary theory with an arbi-
trary set of Pauli-Villars fields proposed to reg-
ulate the theory. If the measure is positive they
show that, at least perturbatively, the results of
a light-cone calculation will be identical with the
results of a similarly regulated Feynman calcu-
lation. In the case of Yukawa theory the use of
three Pauli-Villars bose fields does not pass the
test, so while they do not exactly predict that the
problems we described above must occur they do
predict that they might occur; more importantly,
they show that these problems will not occur if
the theory is regulated with one Pauli-Villars bose
field and two Pauli-Villars fermi fields. Notice the
consequences of their result: if a theory is prop-
erly regulated with Pauli-villars fields, then, at
least at the level of perturbation theory, all the
symmetries which are kinematically imposed in
Feynman theory will be preserved in the light-
cone methods. These symmetries might include
ones hard to impose in the light-cone representa-
tion such as chiral symmetry and rotational sym-
metry. In addition to the Yukawa work, the St.
Petersburg group has proposed a regulation pro-
cedure for QCD which involves Pauli-Villars fields
and other elements.

5. Free Fields, Auxiliary Fields and Other
Matters

We saw in the case of the Schwinger model that
a completely covariant, gauge invariant regula-
tion of the Schwinger model requires that auxil-
iary fields be included in the solution. Such fields

will be needed for any gauge theory. The need
for such fields was first shown by Bassetto and
coworkers [30]. They found the fields by quantiz-
ing in light-cone gauge at equal-time. Such fields
will be needed whether quantized at equal-time or
on the light-cone and are almost surely needed in
all gauges even gauges usually considered “phys-
ical” gauges including the Coulomb gauge [31].

The thing that is particular to light-cone quan-
tization is that, in light-cone gauge, these fields
cannot be initialized on the principal quantiza-
tion surface, x+ = 0; so special techniques are
needed to include them in the formulation [32-
34]. The auxiliary fields will produce important
physical effects any time condensates are an im-
portant part of the theory under consideration so
it is important that we learn more about them
than is currently understood. They are the sub-
ject of Yuji Nakawaki’s contribution to these pro-
ceedings [35]. If the anti-light-cone gauge is used,
the auxiliary fields can be initialized on z+ = 0;
in that case they are static fields. That frame-
work has been discussed at past light-cone meet-
ings [36] but was not discussed here.

I wish to remark briefly on another model
which has been studied recently but was not dis-
cussed here. There has been a puzzle about an in-
consistency in the 't Hooft model: the spectrum ’t
Hooft obtained implies a condensate which is not
contained in his solution. 't Hooft found his solu-
tion using the light-cone representation and the
source of the trouble is almost surely his rough
treatment of the p™ = 0 singularity. Shifman dis-
cussed the problem at the Lutsen meeting but the
work has not been written up. The Italian group,
Bassetto, Nardeli, Guiguolo and Vian, who com-
prise our hosts here, have published a number
of studies on that model and particularly on the
related model without fermions. The work can
be traced from Vian’s talk at the last Heidelberg
meeting [37]. In spite of all the work done, the
fundamental inconsistency in the ’t Hooft solu-
tion has never been resolved. No one has ever
given a solution whose spectrum implies the con-
densate contained in the solution. It would be
valuable to resolve this problem.



6. Remarks

We have learned many things from studies of
model problems in low dimensions. We have
learned that the p™ = 0 singularity is usually
a very complicated object and that if it is not
treated correctly our calculations will not be suc-
cessful. While I do not believe that a completely
general method for treating the p™ = 0 singu-
larity is currently available, I believe that much
progress has been made, that we have learned to
do it in some specific cases and that we have de-
termined many properties that a general solution
must have. Also, I need to repeat what I said
at the beginning: studies of model problems in
low dimensions have provided us with many suc-
cesses and have shown that the light-cone repre-
sentation can have significant advantages over the
equal-time representation.

I would like to take this opportunity to thank
the organizers for hosting such a successful con-
ference in such a beautiful place.
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