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Abstract

Canonical methods are not sufficient to properly quantize space-like axial gauges.

In this paper, we obtain guiding principles which allow the construction of an extended

Hamiltonian formalism for pure space-like axial gauge fields. To do so, we clarify the

general role residual gauge fields play in the space-like axial gauge Schwinger model.

In all the calculations we fix the gauge using a rule, n·A = 0, where n is a space-like

constant vector and we refer to its direction as x−. Then, to begin with, we construct

a formulation in which the quantization surface is space-like but not parallel to the

direction of n. The quantization surface has a parameter which allows us to rotate it,

but when we do so we keep the direction of the gauge field fixed. In that formulation

we can use canonical methods. We bosonize the model to simplify the investigation.

We find that the antiderivative, (∂−)−1, is ill-defined whatever quantization coordinates

we use as long as the direction of n is space-like. We find that the physical part of

the dipole ghost field includes infrared divergences. However, we also find that if we

introduce residual gauge fields in such a way that the dipole ghost field satisfies the

canonical commutation relations, then the residual gauge fields are determined so as

to regularize the infrared divergences contained in the physical part. The propagators

then take the form prescribed by Mandelstam and Leibbrandt. We make use of these

properties to develop guiding principles which allow us to construct consistent operator

solutions in the pure space-like case where the quantization surface is parallel to the

direction of n and canonical methods do not suffice.
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§1. Introduction

In a previous paper, which is hereafter referred to as I,1) we constructed an extended

Hamiltonian formalism with which we found a family of solutions to the Schwinger model.

The solutions were of the axial or temporal gauge type. To consider the problem generally,

we specified the gauge fixing direction by the constant vector nµ = (n0, n3) = (cos θ, sin θ).

At the same time we introduced +−-coordinates xµ = (x+, x−), where

x+ = x0sinθ + x3cosθ, x− = x0cosθ − x3sinθ (1.1)

With those definitions, the gauge fixing condition

A− = n·A = A0 cos θ − A3 sin θ = 0 (1.2)

is that of an axial or temporal gauge. In our formulation, the temporal and axial gauges

in ordinary coordinates correspond, respectively, to θ = 0 and θ = π
2
, while the light-front

formulation corresponds to θ = π
4
. We found that in the region 05θ < π

4
, x− should be taken

as the evolution parameter and we constructed the canonical temporal gauge solutions. In

that case, we found that there exist residual gauge fields which depend only on x+. These

residual gauge fields are therefore static canonical variables. By continuation, we obtained an

operator solution in the axial region, π
4
< θ < π

2
, where x+ should be taken as the evolution

parameter. In that case, we find that there are infrared divergences associated with the

physical degrees of freedom. These infrared divergences are regularized by the residual

gauge fields. Among other results, we found that the Hamiltonian for the residual gauge

fields must be calculated by integrating the divergence equation of the energy-momentum

tensor over a suitable closed surface. Because the residual gauge fields do not depend on the

initial value surface, x−, the (x− → ±∞) contributions from these fields have to be kept.2)

In that way, we obtained the Hamiltonian, which includes a part from integrating a density

involving the residual gauge fields over x− = constant.

In I, we found the solutions in the axial gauge region only by continuation from the

temporal gauge region. In this paper we consider the problem of finding the axial gauge

solutions directly; by quantizing on the surface x+ = 0. This axial gauge formulation

involves constrained fields and traditionally these constrained fields are eliminated in terms

of physical degrees of freedom. That elimination requires that we introduce antiderivatives

which can introduce infrared divergences.3) In spite of extensive studies,4) overcoming the

infrared difficulties has remained as an open issue. In the present work we find that the

residual gauge fields are essential to controlling the infrared divergences. These fields may

be viewed as integration constants associated with solving the constraint equations and they
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are necessary to give the correct prescription for the required antiderivatives. Quantizing

the residual gauge fields is itself an interesting subject. This is because they depend on the

evolution parameter in such a way that they cannot be canonical variables. A first step in

this direction was made by McCartor and Robertson5) in the light-front formulation of free

abelian gauge fields.

To begin with, we consider a generalization of the models considered in I. We shall keep

the constant vector at the fixed space-like direction and take the quantization surface to

be space like, but will not have the constant vector lie parallel to the quantization surface.

In that framework we can implement the canonical procedure. We then use the operator

solutions found in such cases to clarify the dependence of the operator solutions on the

quantization coordinates. We find that there are the residual gauge fields allowed by the

fixed gauge choice and we can also use the operator solutions to clarify the general roles

the residual gauge fields play in these axial gauge solutions. To implement these ideas we

introduce another set of coordinates, xµ = (xτ , xσ), defined by

xτ = x0sinφ+ x3cosφ, xσ = x0cosφ− x3sinφ. (1.3)

In these coordinates the gauge fixing condition and the constant vector are expressed, re-

spectively, as

A− = sin(φ− θ)Aτ + cos(φ− θ)Aσ = 0, (1.4)

nµ = (nτ , nσ) = (sin(φ− θ), cos(φ− θ)). (1.5)

To simplify our investigation, we bosonize the Schwinger model and avoid quantizing the

coupled system of fermi fields and gauge fields. The solutions contain a dipole ghost field, X,

which contains both physical fields and residual gauge fields. In the space-like formulations

where the constant vector is not parallel to the quantization surface we can employ Aσ

and the dipole ghost field X as canonical variables and construct a canonical formulation

without encountering any of the difficulties inherent in the pure space-like (PSL) axial gauge

formulations where the constant vector is proportional to the quantization surface. We show

that the physical part of X is uniquely determined by the gauge choice, while the residual

gauge part, which reveals manifest quantization coordinate dependence, is determined by

requiring that X satisfy the canonical commutation conditions. It turns out that (n·∂)−1 =

(∂−)−1 is ill-defined irrespective of the quantization coordinates as long as the gauge fixing

direction is space-like (n2 < 0). It follow from this that the physical part of X gives rise to

infrared divergences irrespective of the quantization coordinates as long as the gauge fixing

direction is space-like. However, if we introduce the residual gauge fields in such a way thatX
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satisfies the canonical commutation conditions, then the residual gauge part automatically

regularizes the infrared divergences resulting from the physical part. As a consequence,

the xτ -time ordered propagator for X takes the form prescribed by Mandelstam6) and by

Leibbrandt7) (ML prescription). In this way we see that the residual gauge degrees of freedom

are indispensable to formulate the space-like axial gauge Schwinger model in a way that is

free from infrared divergences.

We remark here that canonical formulations in ordinary coordinates were constructed

for the case n2 = 0 by Bassetto et al8) and for the case n0 6=0, n2 < 0 by Lazzizzera.9)

These authors showed that to implement the ML prescription and to regularize the infrared

divergences, residual gauge fields are indispensable.

Having found the solutions to the axial gauge formulations in the cases where the constant

vector is not parallel to the the quantization surface, we turn to the the pure space-like case.

The PSL case cannot be reached by taking the limit φ→θ. This reflects the fact that we

cannot construct the canonical formulation in the PSL case because residual gauge fields

cannot be canonical fields; only X and its conjugate remain as unconstrained canonical

fields. We circumvent this difficulty by using the properties of the dipole ghost fields found

in § 2 as guiding principles. We show that operator solutions can be constructed by following

these guiding principles. When these operator solutions are constructed they agree with ones

given in I.

The paper is organized as follows: In § 2, we bosonize the space-like axial gauge Schwinger

model and construct the canonical formulation in τσ-coordinates. In § 3 we show that our

canonical formulation is free from infrared difficulties. In § 4, we carry out the quantization

of the PSL case and construct the solution. Section 5 is devoted to concluding remarks.

In this paper we keep φ in the axial region π
4
< φ5π

2
and use the following conventions

in τσ-coordinates:

gττ = − cos 2φ, gστ = gτσ = sin 2φ, gσσ = cos 2φ,

gττ = − cos 2φ, gστ = gτσ = sin 2φ, gσσ = cos 2φ,

γ0 = σ1, γ
3 = iσ2, γ

5 = −σ3,

γτ = γ0 sinφ+ γ3 cosφ, γσ = γ0 cosφ− γ3 sinφ.
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§2. Equivalent bosonization of space-like axial gauge Schwinger model

2.1. Field equation of the dipole ghost field

The space-like axial gauge Schwinger model is defined by the Lagrangian

L = −1

4
FµνF

µν −B(n·A) + iψ̄γµ(∂µ + ieAµ)ψ (2.1)

where B is the Nakanishi-Lautrup field in noncovariant formulations.10) From the Lagrangian

we derive the field equations

∂µF
µν = nνB + Jν , Jν = eψ̄γνψ (2.2)

iγµ(∂µ + ieAµ)ψ = 0, (2.3)

and the gauge fixing condition (1.4). The field equation of B,

(n·∂)B = ∂−B = (sin(φ− θ)∂τ + cos(φ− θ)∂σ)B = 0, (2.4)

follows from operating on (2.2) with ∂ν .

Let’s first obtain the field equation of the dipole ghost field X. We now know that

consistent operator solutions of Schwinger model11) can be constructed by regularizing the

vector current by means of the gauge invariant point-splitting procedure.12) We will therefore

regularize Jµ in the same manner in the present paper. With that regularization, the vector

current is given by

Jµ = jµ −m2Aµ (2.5)

where m2 = e2

π
and jµ is the part given as the bilinear product of the ψ. We now observe

that Eq.(2.3) is massless; that is, jµ satisfies εµν∂µjν = 0. Therefore we can define jµ as the

gradient of the dipole ghost field X:

jµ = m∂µX. (2.6)

Substituting (2.6) into (2.5) and then using current conservation, ∂µJ
µ = 0, we obtain

m�X = m2∂µAµ. (2.7)

Substituting (2.5), (2.6) and (2.7) into (2.2) we get

(� +m2)(Aν − 1

m
∂νX) = nνB. (2.8)

Finally, operating with nν on (2.8) and using n·A = 0 we derive the field equation of the

dipole ghost field X

(� +m2)(∂−X) = −mn2B. (2.9)
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2.2. Bosonization of the generalized axial gauge Schwinger model

Now we can employ Eqs.(2.7) and (2.8) as a guiding principles to obtain the Lagrangian

for the equivalent bosonized model. These equations are derived from

L = −1

4
FµνF

µν −B(n·A) +
1

2
∂µX∂

µX −m∂µXA
µ +

m2

2
AµA

µ, (2.10)

which justifies the use of (2.10) as the Lagrangian in the present variables. From this

Lagrangian, we see that in the axial region, π/4 < φ5π/2, where xτ is chosen as the

evolution parameter, the fundamental fields are Aσ and X. Aτ is a dependent field as long

as φ6=θ.
Canonical conjugate momenta are found from the Lagrangian to be

πτ = 0, πσ = Fτσ, πB = 0, πX = ∂τX −mAτ . (2.11)

Therefore we can choose Aσ, X, π
σ and πX as independent canonical variables and express

the dependent degrees of freedom as

Aτ = cot(θ − φ)Aσ, B = (∂σπ
σ −mπX)/nτ . (2.12)

Consequently, equal xτ -time canonical quantization conditions can be imposed on the inde-

pendent canonical variables; the nonvanishing commutators are

[Aσ(x), πσ(y)] = iδ(xσ − yσ), [X(x), πX(y)] = iδ(xσ − yσ). (2.13)

For later convenience we give here the equal xτ -time commutation relations of B:

[πσ(x), B(y)] = [πX(x), B(y)] = [B(x), B(y)] = 0,

[X(x), B(y)] = −i m
nτ
δ(xσ − yσ), [Aσ(x), B(y)] = − i

nτ
∂σδ(x

σ − yσ). (2.14)

2.3. Expression of the dipole ghost field

Now that the canonical formulation is given, we proceed to solving Eq.(2.8). To obtain

a particular solution, we make use of the fact that, due to (2.4), B satisfies

(� +m2)B =

(
m2 − n2∂ 2

σ

sin2(φ− θ)

)
B = (m2 − n2∂ 2

+)B. (2.15)

Here and in what follows, we denotes, for brevity, − ∂σ

sin(φ−θ)
as ∂+ when it is applied to

operators dependent on only x+. It follows immediately that a particular solution to equation

(2.8), for the quantity Aν − 1
m
∂νX, is nµ

m2−n2∂ 2
+
B.
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To specify the remaining homogeneous part, which satisfies the free D’Alembert’s equa-

tion of mass m, we take account of the fact that Fτσ is gauge invariant and satisfies

Fτσ = F+−. We see from this that Fτσ is independent of the quantization coordinates

and therefore agrees with one given by the solution in I

Fτσ = mΣ̃ +
n2

m2 − n2∂ 2
+

∂+B (2.16)

where Σ̃ is the Schwinger field of mass m. We can easily see that (2.16) can be derived from

the following expression for Aν − 1
m
∂νX:

Aµ − 1

m
∂µX =

nµ

m2 − n2∂ 2
+

B − εµν ∂νΣ̃

m
. (2.17)

where ετσ = −εστ = 1, εττ = εσσ = 0.

It is useful to point out here that the right hand side of (2.17) can be written in the

following, divergence free, form

nµ

m2 − n2∂ 2
+

B − εµν ∂νΣ̃

m
= − 1

m
εµν∂νλ (2.18)

where

λ = Σ̃ − mnτ

m2 − n2∂ 2
+

∂−1
σ B (2.19)

and the operator ∂−1
σ is defined by

(∂σ)−1f(x) =
1

2

∫ ∞

−∞
dyσε(xσ − yσ)f(xτ , yσ) (2.20)

which imposes, in effect, the principal value regularization. It follows from (2.5), (2.6), (2.17)

and (2.18) that Aµ and Jµ can be written as

Aµ =
1

m
(∂µX − εµν∂νλ), Jµ = mεµν∂νλ. (2.21)

We can now verify that Σ̃ and ∂τ Σ̃ satisfy canonical equal xτ -time commutation relations

[Σ̃(x), Σ̃(y)] = [∂τ Σ̃(x), ∂τ Σ̃(y)] = 0, [Σ̃(x), ∂τ Σ̃(y)] = iδ(xσ − yσ), (2.22)

[B(x), Σ̃(y)] = [B(x), ∂τ Σ̃(y)] = 0 (2.23)

by using their expressions in terms of the canonical variables:

Σ̃ =
1

m
(πσ − n2

m2 − n2∂ 2
+

∂+B), ∂τ Σ̃ = ∂σX −mAσ +
mnσ

m2 − n2∂ 2
+

B. (2.24)
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Let’s next obtain an expression for X. To this aim we multiply (2.17) by nµ and use

n·A = A− = 0 and n·∂ = ∂−. We then get

∂−X = − mn2

m2 − n2∂ 2
+

B + εµνnµ∂νΣ̃ = − mn2

m2 − n2∂ 2
+

B + ∂+Σ̃ (2.25)

and see that X is obtained by integrating (2.25) with respect to x−. The first term has to be

carefully integrated. At first sight it seems that a linear function of x− is included because

the first term depends on only x+. However it turns out that if X has such term, then the

equal xτ -time canonical commutation relations of X are not satisfied. We use the possibility

of adding arbitrary functions of x+ to write the integral of the first term as −xτ

nτ
mn2

m2−n2∂ 2
+
B.

To integrate the second term, we make use of the antiderivative (∂−)−1 defined by

1

∂−
Σ̃ = − nτ∂τ + nσ∂σ

m2 sin2(φ− θ)− n2∂ 2
σ

Σ̃. (2.26)

We can show that (2.26) is correct by operating on both sides with ∂− = nτ∂τ + nσ∂σ =
nτ ∂τ−nσ∂σ

− cos 2φ
and using mass shell condition {(∂τ )2 − ∂ 2

σ − cos 2φm2}Σ̃ = 0. We thus obtain

the general solution which we write in the form

X = −x
τ

nτ

mn2

m2 − n2∂ 2
+

B +
∂+

∂−
Σ̃ + integration constant.

The integration constant is determined in the following way: To obtain the first commu-

tation relation in the second line of (2.14), we need an operator which does not commute

with B; that is because B commutes with both Σ̃ and ∂τ Σ̃ as seen in (2.23) and so with
∂+

∂−
Σ̃, which is described as

∂+

∂−
Σ̃ = − m2nτnσ + n2∂τ∂σ

m2 sin2(φ− θ)− n2∂ 2
σ

Σ̃. (2.27)

Therefore we must introduce another field, C, which depends on only x+. To obtain the

relation [X(x), X(y)] = 0 when xτ = yτ , we need an extra term. That is because it is natural

to assume that C commutes with Σ̃ and ∂τ Σ̃, and because the commutator [∂+

∂−
Σ̃(x), ∂+

∂−
Σ̃(y)]

does not vanish when xτ = yτ . We find that if we parameterize the integration constant in

the form

X =
∂+

∂−
Σ̃ +

m

m2 − n2∂ 2
+

(
C − n2xτ

nτ
B +

n2nσ

m2 sin2(φ− θ)− n2∂ 2
σ

∂σB,

)
(2.28)

then the canonical commutation conditions yield the following equal xτ -time commutation

relations for C:

[C(x), C(y)] = 0, [B(x),
1

m2 − n2∂ 2
+

C(y)] = i
1

nτ
δ(xσ − yσ),

[C(x), Σ̃(y)] = [C(x), ∂τ Σ̃(y)] = 0. (2.29)
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Substituting (2.28) into (2.17) then yields an explicit expression for Aµ:

Aµ = εµνn
ν m

∂−
Σ̃ +

nµ

m2 − n2∂ 2
+

B

+
∂µ

m2 − n2∂ 2
+

(
C − n2xτ

nτ
B +

n2nσ

m2 sin2(φ− θ)− n2∂ 2
σ

∂σB

)
. (2.30)

In this way we see that the residual gauge fields are indispensable to preserve the canon-

ical commutation relations and that the residual gauge part of X must include an explicit

dependence on the quantization coordinates. We close this subsection by pointing out how

infrared divergences appear in our formulation. As is seen from (2.30), the inverse of the

operator m2 sin2(φ − θ) − n2∂ 2
σ is applied to both Σ̃ and to the residual gauge fields. This

inverse operator gives rise to infrared divergences because n2 = cos 2θ < 0 in the range
π
4
< θ < π

2
. So that operator becomes singular in our range. We show in next section that

the infrared divergences resulting from the physical field are cancelled by infrared divergences

from the residual gauge part.

2.4. Fermion field operator

Now that we have the explicit expression for Aµ, we can construct the fermion field

operators in the same way as in I. From the expression for Aµ in (2.21), we see that the

fermion operators are formally given by

ψα(x) =
Zα√

(γ0γτ )αα

exp[−i
√
πΛα(x)], (α = 1, 2)

where Zα is normalization constant and

Λα(x) = X(x) + (−1)αλ(x). (2.31)

We need to rewrite the formal solution into a normal ordered product. However, if we simply

normal order the exponential and then calculate the canonical anticommutation relations,

we find another infrared divergence inherent in two-dimensional massless scalar fields. In

our formulation it results from the singular operator, ∂−1
σ B, in λ in (2.19). We overcome

this difficulty by not rewriting the infrared parts of the singular operator and its conjugate

operator into normal ordered form.13) In what follows, we keep φ > θ and, to incorporate

the ML prescription, we employ the following representations of B and C:

B(x) =
m

nτ
√

2π

∫ ∞

−∞
dkσθ(−kσ)

√
|kσ|{B(kσ)e−ik·x +B∗(kσ)eik·x},

m

m2 − n2∂ 2
+

C(x)=
i√
2π

∫ ∞

−∞

dkσ√
|kσ|

θ(−kσ){C(kσ)e−ik·x − C∗(kσ)eik·x}, (2.32)
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where kτ = cot(θ − φ)kσ, creation and annihilation operators satisfy

[B(kσ), C∗(qσ)] = [C(kσ), B∗(qσ)] = −δ(kσ − qσ), (2.33)

and all other commutators are zero. These relations allow us to define the physical subspace,

V , by

V = { |phys〉 | B(kσ)|phys〉 = 0 }. (2.34)

and to define the infrared part, Λ
(0)
α , of Λα by

Λ(0)
α =

i√
2π

∫ 0

−κ

dkσ√
|kσ|

{C(kσ)− C∗(kσ) + (−1)α(B(kσ)−B∗(kσ))} (2.35)

where κ is a small positive constant.

Now we can define the fermion field operators to be

ψα(x) =
Zα√

(γ0γτ )αα

exp[−i
√
πΛ(−)

αr (x)]σαexp[−i
√
πΛ(+)

αr (x)] (2.36)

where Λ
(−)
αr and Λ

(+)
αr are creation and annihilation operator parts of Λαr≡Λα − Λ

(0)
α and

σα = exp

[
−i
√
π

(
Λ(0)

α − (−1)α Q

2m

)]
. (2.37)

Here, Q = −nτ
∫∞
−∞ dxσB(x); note that Q in σα constitutes a Klein transformation. We

refer to σα as the spurion operator.13)

We enumerate the properties of the ψα which show that the bosonized model is actually

equivalent to the original model defined by the Lagrangian (2.1). We note that the symmetric

energy-momentum tensor (2.41)∼(2.43) given below follows directly from the Lagrangian

(2.10).

(1) The Dirac equation is satisfied:

iγµ(∂µ + ieAµ)ψ = 0 (2.38)

(2) The canonical commutation relations with Aσ and πσ and anticommutation relations

are satisfied.

(3) By applying the gauge invariant point-splitting procedure to eψ̄γµψ, we obtain the

vector current Jµ = m∂µX − m2Aµ = mεµν∂νλ. This result verifies that jµ is given by

jµ = m∂µX so that it satisfies εµν∂µjν = 0. The charge operator, Q, is given by

Q =

∫ ∞

−∞
dxσJτ (x) = −nτ

∫ ∞

−∞
dxσB(x), (2.39)
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where the derivative terms integrate to zero.

(4) Applying the gauge invariant point-splitting procedure to the fermi products in the

symmetric energy-momentum tensor and subtracting a divergent c-number ( we denote this

procedure14) by R), we get

Θ σ
τ = iR(ψ̄γσ∂τψ)− AτJ

σ − nσAτB = ∂τλ∂
σλ− nσAτB, (2.40)

Θ τ
τ = −iR(ψ̄γσ∂σψ) + AσJ

σ +
1

2
(Fτσ)2 − nτBAτ

= −cos 2φ

2

{
(∂τλ)2 + (∂σλ)2

}
+

1

2
(Fτσ)2 − nτBAτ , (2.41)

Θ σ
σ = iR(ψ̄γσ∂σψ)− AσJ

σ +
1

2
(Fτσ)2 − nσBAσ

=
cos 2φ

2
{(∂τλ)2 + (∂σλ)2}+

1

2
(Fτσ)2 − nσBAσ, (2.42)

Θ τ
σ = iR(ψ̄γτ∂σψ)− AσJ

τ − nτBAσ = ∂σλ∂
τλ− nτBAσ. (2.43)

(5) Translational generators consist of those of the constituent fields:

Pτ =

∫ ∞

−∞
dxσ : Θ τ

τ :=

∫ ∞

−∞
dxσ :

[
−cos 2φ

2

{
(∂τ Σ̃)2 + (∂σΣ̃)2

}
+
m2

2
(Σ̃)2

+
1

2
B

n2

m2 − n2∂ 2
+

B +B
nσ

m2 − n2∂ 2
+

∂σC

]
:,

Pσ =

∫ ∞

−∞
dxσ : Θ τ

σ :=

∫ ∞

−∞
dxσ :

{
∂σΣ̃∂

τ Σ̃ −B
nτ

m2 − n2∂ 2
+

∂σC

}
: . (2.44)

§3. Cancellation of Infrared divergences resulting from ∂−1
−

We begin this section by pointing out that X incorporates Higgs phenomena and that

the possible infrared singularities in Aµ are in X. Therefore we confine ourselves to showing

that X is free from infrared divergences. More precisely, we show that commutator function

and the propagator for X are free from infrared divergences. To this aim we represent Σ̃ as

Σ̃(x) =
1√
4π

∫ ∞

−∞

dpσ√
pτ
{a(pσ)e−ip·x + a∗(pσ)eip·x}. (3.1)

Here, pτ =
√
p 2

σ +m 2
0 with m 2

0 = − cos 2φm2 and

[a(pσ), a(qσ)] = 0, [a(pσ), a∗(qσ)] = δ(pσ − qσ). (3.2)

We first show that the commutator function of X includes the commutator function,

E(x), characteristic of a dipole ghost field. From (2.28), (2.32) and (3.1) we obtain

[X(x), X(y)] = i{∆(x− y;m2) + n2m2E(x− y)} (3.3)

12



where ∆(x;m2) is the commutator function of the free boson field of mass m and

E(x) =
1

∂ 2
−
∆(x;m2)− xτ

m2(nτ )2 − n2∂ 2
σ

δ(xσ − cot(θ − φ)xτ )

+
2nτnσ

(m2(nτ )2 − n2∂ 2
σ )2

∂σδ(x
σ − cot(θ − φ)xτ ). (3.4)

When xτ = yτ , the commutator [X(x), X(y)] vanishes. We see that as follows: The first

term of (3.3) vanishes trivially. The second term of E(x−y), which is proportional to xτ−yτ ,

also vanishes trivially. If we evaluate the first term of (3.4) using ∂−1
− as defined in (2.26),

then we get a nonvanishing term; however, that term is cancelled by the third term of (3.4).

The following are properties of E(x):

(� +m2)E(x) = − xτ

(nτ )2
δ(xσ − cot(θ − φ)xτ ), ∂ 2

−E(x) = ∆(x;m2), (3.5)

E(x)|xτ=0 = 0, ∂−E(x)|xτ=0 = 0, ∂ 2
−E(x)|xτ=0 = 0, (3.6)

(� +m2)E(x)|xτ=0 = 0, (� +m2)∂−E(x)|xτ=0 = − 1

nτ
δ(xσ). (3.7)

Next we show that the vacuum expectation value, 〈0|X(x)X(y)|0〉, does not diverge when

xτ = yτ . We will need to use 〈0|X(x)X(y)|0〉 evaluated at xτ = yτ to calculate the equal

xτ -time anticommutatuion relations of the fermion field operators. It is straightforward to

obtain

〈0|X(x)X(y)|0〉 = ∆(+)(x− y;m2) +m2n2E(+)(x− y) (3.8)

where ∆(+)(x;m2) is the positive frequency part of i∆(x;m2) and

E(+)(x) =
1

∂ 2
−
∆(+)(x;m2)− ixτ

2π

∫ 0

−∞
dkσ

1

m2(nτ )2 + n2k 2
σ

e−ik·x

+
1

2π

∫ 0

−∞
dkσ

2nτnσkσ

(m2(nτ )2 + n2k 2
σ )2

e−ik·x. (3.9)

A logarithmic divergence appears in the second term but we regularize it with the principal

value prescription. In addition, linear divergences appear in the first and third terms when

xτ = 0. We set xτ = 0 and divide the integration region of the first term into a region where

the integration variable is positive and a region where the integration variable is negative.

We then combine the integration in the negative region with third term and obtain

−1

4π

∫ 0

−∞

dpσ

pτ

1

p 2
−

e−ipσxσ

+
1

2π

∫ 0

−∞
dkσ

2nτnσkσ

(m2(nτ )2 + n2k 2
σ )2

e−ikσxσ

=
−1

4π

∫ 0

−∞

dpσ

pτ

(nτpτ − nσpσ)2

(m2(nτ )2 + n2p 2
σ )2

e−ipσxσ

=
−1

4π

∫ 0

−∞

dpσ

pτ

(− cos 2φ)2

(nτpτ + nσpσ)2
e−ipσxσ

. (3.10)

13



It is useful to recall here that φ and θ lie in the regions (π
4
< θ < φ5π

2
) so that nτ =

sin(φ − θ) > 0 and nσ = cos(φ + θ) < 0. As a result, no infrared divergences appear

from (3.10). Furthermore, changing the integration variable from pσ to −pσ verifies that

(3.10) is equal to the positive integration part of the first term of E(+)(x). It follows that

E(+)(x − y) is well defined at xτ = yτ , which implies that we can incorporate the equal

xτ -time anticommutation relations of the fermion field operators in the same way as § 3 in

I.

Finally, we show that the factors (m2(nτ )2 +n2p 2
σ )−1 relevant to the infrared divergences

drop out completely from the propagator for X, which is given by

〈0|T (X(x)X(y))|0〉 = ∆F (x− y;m2) +m2n2EF (x− y) (3.11)

where ∆F (x − y;m2) is the propagator for the free boson field of mass m and EF (x − y) is

defined by

EF (x− y) = θ(xτ − yτ )E(+)(x− y) + θ(yτ − xτ )E(+)(y − x)

=
1

(2π)2

∫
d2qEF (q)e−iq·(x−y). (3.12)

Substituting the expression in (3.9) into (3.12) and then Fourier transforming it provides us

with

EF (q) = − i

q2 −m2 + iε

(nτ )2(q 2
σ − cos 2φm2) + n 2

σ q
2

σ + 2nτnσq
τqσ

(m2(nτ )2 + n2q 2
σ )2

+
i

(q− + iεsgn(q+))2

(nτ )2

m2(nτ )2 + n2q 2
σ

+
i

q− + iεsgn(q+)

2(nτ )2nσqσ
(m2(nτ )2 + n2q 2

σ )2
(3.13)

where q+≡ − qσ

nτ . The term on the first line comes from the physical degrees of free-

dom whereas the terms on the second line come from the residual gauge degrees of free-

dom. It is remarkable that if we combine them into one term, then we obtain EF (q) =

− i
q2−m2+iε

× 1
(q−+iεsgn(q+))2

and hence

〈0|T (X(x)X(y))|0〉= 1

(2π)2

∫
d2q

i

q2 −m2 + iε

(
1− n2m2

(q− + iεsgn(q+))2

)
e−iq·(x−y). (3.14)

In this way, the infrared divergences are eliminated and the singularity associated with the

gauge fixing is prescribed in such a way that causality is preserved in complex qτ coordinates.

It can be shown that the same is true of the propagator for Aµ and we get∫
d2x〈0|T (Aµ(x)Aν(0))|0〉eiq·x =

iPµν

q2 −m2 + iε
(3.15)

where

Pµν = −gµν +
nµqν + nνqµ
q− + iεsgn(q+)

− n2 qµqν
(q− + iεsgn(q+))2

. (3.16)
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§4. Pure space-like case

We begin by noting that the limit φ→θ of the residual gauge part of the operator solution

given in § 2, which has factors dependent on quantization coordinates, is not well-defined.

We see from this that an operator solution in the (PSL) case, φ = θ, is not constructed in

the same manner as that given in § 2.

The Lagrangian and the equations of motion for Aµ and X in the PSL case are given

respectively by transforming (2.1),(2.7) and (2.8) into those in +−-coordinates. We obtain

two new constraints

π− + ∂−A+ = 0, ∂−π
− −mπX = 0 (4.1)

in addition to the gauge fixing condition A− = 0. As a result only X and πX are left

as independent canonical variables. This reflects the fact that the residual gauge fields

depend on only x+ so they cannot be canonical variables. Therefore we cannot obtain their

quantization conditions from the Dirac procedure.15) Instead we employ the following items

as guiding principles to introduce them in the PSL case:

(1) X and πX satisfy the canonical commutations conditions.

(2) The residual gauge fields commute with the massive field.

(3) B satisfies [B(x), X(y)] = imδ(x+ − y+) and so, generates c-number residual gauge

transformations.

(4) The infrared divergences which come from the physical part of X are regularized by

infrared divergences from the residual gauge fields.

We start constructing an operator solution by solving Eq.(2.8) and obtain an expression

similar to (2.17). The massive field obtained will be identified below as Σ̃. So, since A− = 0,

we can write

∂−X = ∂+Σ̃ − mn2

m2 − n2∂ 2
+

B. (4.2)

We see from this that X is given by

X =
∂+

∂−
Σ̃ − mn2x−

m2 − n2∂ 2
+

B + integration constant.

The massive, physical part of X is now known and πX can be written as

πX = ∂+X −mA+ = ∂−λ = ∂−Σ̃, (4.3)

¿From this we see that if we impose the canonical commutation conditions on X and πX,

that will imply the following equal x+ -time commutation relations

[Σ̃(x), Σ̃(y)] = 0, [Σ̃(x), ∂+Σ̃(y)] = iδ(x− − y−), [∂+Σ̃(x), ∂+Σ̃(y)] = 0. (4.4)

15



The integration constant is determined in the following way: To implement the residual

gauge transformation, we add m
m2−n2∂ 2

+
C to X, where C is the conjugate to B and satisfies

the following commutation relations

[C(x), C(y)] = 0, [B(x),
1

m2 − n2∂ 2
+

C(y)] = iδ(x+ − y+). (4.5)

Furthermore we require that the infrared divergence resulting from ∂+

∂−
Σ̃ be cancelled through

the mechanism worked out in § 2. If we consider a surface of constant x−, then we can write

∂+

∂−
Σ̃ =

n+m
2 + n−∂+∂

−

m2 − n2∂ 2
+

Σ̃ (4.6)

and see that the equal x−-time commutator, [∂+

∂−
Σ̃(x), ∂+

∂−
Σ̃(y)], does not vanish. To correct

for this we must add mn+n−
(m2−n2∂ 2

+ )2
∂+B to X. Summing all the terms, we obtain

X =
∂+

∂−
Σ̃ +

m

m2 − n2∂ 2
+

(
C − n2x−B +

mn+n−
m2 − n2∂ 2

+

∂+B

)
, (4.7)

This is exactly the solution given in I. Therefore, we need not repeat the construction of the

fermion field operators or the description of their properties.

It remains to be shown that infrared divergences do not appear when we evaluate

〈0|X(x)X(y)|0〉 at x+ = y+ or when we calculate the x+-time ordered propagator for X. By

using the representations for the constituent operators given in I, we obtain the following

vacuum expectation value

〈0|X(x)X(y)|0〉 = ∆(+)(x− y;m2) + n2m2E
(+)
PSL(x− y) (4.8)

where

E
(+)
PSL(x) = − 1

4π

∫ ∞

−∞

dp−
p+

e−ip·x

p 2
−

− ix−

2π

∫ ∞

0

dk+
e−ik+x+

m2 + n2k 2
+

+
1

2π

∫ ∞

0

dk+
2n+k+e−ik+x+

(m2 + n2k 2
+)2

. (4.9)

Here, p+ and p+ are defined, respectively, as p+ =
√
p 2
− +m2

0, (m2
0 = −n2m2), p+ =

p+−n+p−
−n−

. The integral on the first line comes from the Σ̃, while the integrals on the second

line come from the residual gauge fields. The value of E
(+)
PSL(x) at x+ = 0 is formally given

by

E
(+)
PSL(x)|x+=0 = − 1

4π

∫ ∞

−∞

dp−
p+

e−ip−x− − 1

p 2
−

− 1

4π

∫ ∞

−∞

dp−
p+

1

p 2
−
− ix−

2π

∫ ∞

0

dk+
1

m2 + n2k 2
+

+
1

2π

∫ ∞

0

dk+
2n+k+

(m2 + n2k 2
+)2

(4.10)
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where we have divided the first term into a finite term and a diverging term. It should

be noted here that p− is conjugate to the spatial variable x−, while k+ is conjugate to the

temporal variable x+. To make the infrared divergence cancellation mechanism work as in

§ 3, both integration variables have to be spatial or temporal. Therefore, we change the

integration variable from the spatial p− to the temporal p+ =

√
p 2
−+m 2

0 −n+p−

−n−
. At the same

time we denote k+ as p+. If we take account of the fact that p+ is two-valued function of

p−, then we can rewrite the diverging integral into the following form∫ ∞

−∞

dp−
p+

1

p 2
−

=

∫ ∞

m0

dp+√
p 2

+ −m 2
0

(
−n−

n+p+ −
√
p 2

+ −m 2
0

)2

+

∫ ∞

m0

dp+√
p 2

+ −m 2
0

(
−n−

n+p+ +
√
p 2

+ −m 2
0

)2

(4.11)

where the first term diverges, but second term is finite. Now we see that if we combine the

first integral in (4.11) with the third one on the second line of (4.10), we obtain the following

finite integrals:

−
∫ ∞

m0

dp+√
p 2

+ −m 2
0

(
−n−

n+p+ −
√
p 2

+ −m 2
0

)2

+

∫ ∞

0

dp+
4n+p+

(m2 + n2p 2
+)2

= −
∫ ∞

m0

dp+√
p 2

+ −m 2
0

(
n+p+ +

√
p 2

+ −m 2
0

m2 + n2p 2
+

)2

+

∫ ∞

0

dp+
4n+p+

(m2 + n2p 2
+)2

= −
∫ ∞

m0

dp+√
p 2

+ −m 2
0

(
n+p+ −

√
p 2

+ −m 2
0

m2 + n2p 2
+

)2

+

∫ m0

0

dp+
4n+p+

(m2 + n2p 2
+)2

=−
∫ ∞

m0

dp+√
p 2

+ −m 2
0

(
−n−

n+p+ +
√
p 2

+ −m 2
0

)2

+

∫ m0

0

dp+
4n+p+

(m2 + n2p 2
+)2

. (4.12)

After tedious but straightforward calculations, we finally obtain

E
(+)
PSL(x)|x+=0 =

1

4π

∫ ∞

−∞

dp−
p+

1− cos(p−x
−)

p 2
−

+
1

2πm2

−n−
1 + n+

. (4.13)

Finally, without demonstration, we give the x+-time ordered propagator for X. The

necessary demonstration can be carried out in parallel with that given in Appendix A in I.

It turns out that

〈0|T (X(x)X(y))|0〉= 1

(2π)2

∫
d2q

i

q2 −m2 + iε

(
1− n2m2

(q− + iεsgn(q+))2

)
e−iq·(x−y). (4.14)

It is remarkable to see that in spite of the fact that all factors depending on the quantization

coordinates drop out, we have the same propagator that we have obtained in (3.14).

17



§5. Concluding remarks

In this paper the framework used in I has been generalized by introducing the τσ-

coordinates and at the same time simplified by bosonizing the model. The new framework

has allowed us to investigate the way in which operator solutions develop a dependence on

the quantization coordinates. In the new framework we can take the dipole ghost field, X,

and the component of the gauge field, Aσ, as canonical variables. We have given special

attention to the determination of X, because we know that it cannot be a manifest Lorentz

scalar since it develops an explicit dependence on the quantization coordinates. We have

found that the physical part of X is determined uniquely by the gauge choice, while the

residual gauge part, which contains the manifest dependence on the quantization coordi-

nates, is determined by requiring that X satisfy the canonical commutation conditions. The

main findings of this paper are:

(1)the residual gauge fields are indispensable ingredients of the space-like axial gauge Schwinger

model.

(2) (n·∂)−1 = (∂−)−1 is ill-defined irrespective of the quantization coordinates, as long as the

gauge fixing direction is space-like (n2 < 0).

(3) As a consequence, the physical part of X includes infrared divergences irrespective of the

quantization coordinates, as long as the gauge fixing direction is space-like.

(4) If we introduce the residual gauge fields in such a way that X satisfies the canonical

commutation relations, then the residual gauge part is determined so as to regularize the

infrared divergences resulting from the physical part.

In the PSL case the residual gauge fields cannot be canonical variables due to the fact

that they depend on the evolution parameter x+. So the operator solution for this case

cannot be constructed purely by canonical methods. We have overcome this difficulty by

employing the items described in § 4 as guiding principles supplement canonical methods.

The operator solution we obtain by the extended methodology is satisfactory in every aspect.

In particular, all ill-defined factors drop out from the x+-time ordered propagators for X and

Aµ so that we have the same ML form for the propagators irrespective of the quantization

coordinates.

The light-cone gauge, θ = π
4
, is exceptional. In that case, n2 is zero, so the manifest

dependence on the quantization coordinates disappears whatever coordinates we may have.

Therefore, the light-cone axial gauge formulation is obtained by simply setting θ = φ = π
4

and we obtain

X = Σ̃ +m−1C, A+ = 2
∂+

m
Σ̃ +

∂+

m2
(C + ∂−1

+ B). (5.1)

On comparing these operators with the corresponding operators we gave in a previous pa-
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per,16) we find that B and C are related to η and φ by C = m(η + φ), B = m∂+(η − φ).

We end this paper by pointing out that in axial gauge quantizations in 4-dimensions, the

same infrared divergence cancellation mechanism works. We already have some work in this

direction.17) We hope to report more in subsequent studies.
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