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Abstract—The results of two irradiation tests 

single-frequency 1310-nm grating-outcouple
emitting (GSE) semiconductor lasers that have b
to ionizing radiation using 200 MeV/c proton
reported.  Twelve powered lasers survived a to
dose of 22.3 Mrad. One of the two not-pow
survived 
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Surface emission allows for complete wafer level 
and testing leading to a reduction in cost and to increas

ge etrical 

at
se lasers are well suited 

interconnects, for the data links used in particle and nuclear 
physics experiments and for space and medical applications.  
Typical radiation doses in medical applications range from a 
few rad to about 10 krad. Radiation doses in space 
applications are typically a few hundred krad where incident 
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ctrons and protons in one 
to a few hundred MeV energy range. Applications in particle 
and nuclear physics experiments require a much higher 
radiation resistance of the electronics components, ranging 
from a few hundred krad to about 10 Mrad, depending on the 
location inside the detector and the nature of the colliding 
particles.   
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I. INTRODUCTION 
Grating-Outcoupled Surface-Emitting (GSE) 

consisting of a 500 µm long active ridge, a 1
intracavity grating outcoupler and 200 µm lon
distributed Bragg reflector (DBR) gratings at bot
exposed to proton beams with doses up to 22
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es in gamma sources and charged pperformance and reliability. Furthermore, the 
arrangement of the lasers around a common grating al
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lows for 

ion into a 
for optical 

radiation damage is believed t
displacement [4,5]. In the case of edmultiple wavelengths with independent modul

single fiber [3]. The

he GSE laser geometry. 

tons, neutrons or ions) 
uctors, resulting in degraded 

optical and electrical properties. Ionizing radiation from 
articles produce trapped charges 

in dielectric layers.  For III-V semiconductor lasers, most 
o come from lattice 
ge emitting lasers (EEL), 

the threshold current increases proportionately with the total 
received fluence, but the slope of the light-current (L-I)  curve 
remains unchanged. In Vertical Cavity Surface Emitting 
Lasers (VCSELs), the threshold increase is much smaller 
compared to EEL, but the L-I slope and the thermal roll-over 
point both decrease with increasing radiation fluence. [4,5] 

II. EXPERIMENTAL RESULTS AND DISCUSSION 
 
A 200 MeV/c proton beam at the Indiana University 

Cyclotron Facility was used for tests of the GSE lasers. The 
facility delivers a beam of protons with a tunable momentum 
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in the range of 30 to 200 MeV/c. The highest m
200 MeV/c was chosen to irradiate the lasers. 
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is 50 mA. The measured rise time is 69 p
118 ps. All performance parameters are co

fall times and the bit error rate (BE
listed in Table II. The L-I-V curv
are shown in Fig. 4. The  L-I curvbeam flux was 3.1x10  protons/cm /second, i.e., a
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exposure, the lasers were stored at the radiation facility 
days before they were shipped back to the laborat
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T roton fluence for groups of GSE l

second t
Group Fluence (proton/cm2) Ionization 

A 3.15×1013 1.8 
B 1.05×1014 5.9 
C 2.05×1014 11.4 
D 4.00×1014 22.3 

 
 
After irradiation, the lasers were packaged and 

additional 6 months, allowing the activated eleme
 
The light-current-voltage (L-I-V) curves for th

which the lasers were not biased during irradiatio
in Fig. 2.  The L-I-V curve for the laser that 
Mrad dose (Fig. 2a) indicates ~ 10% increase in 
current and a similar drop of the output power 
current below 80 mA. The slope efficiency dL/
remains unchanged allowing for error free ope
laser as illustrated by the eye diagram shown in F
3 is shown an open eye diagram for the laser m
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observed before irradiation. The L-I-V curve, shown in Fig. 
2b, indicates that a not-powered laser subjected to a radiation 
dose of 22.3 Mrad has a factor of 5 increase in the threshold 
current. Together with the change of slope efficiency, this 
laser is not functioning after receiving 22.3 Mrad total dose. 

 
The lasers in the second test were biased at 42 mA during 

irradiation. After the irradiation they all exhibit a small 
increase in threshold current with no change in the slope of 
the L-I curve.  One laser in group D was mechanically 
damaged during shipment and was removed for further 
considerations. The threshold change, the 20%-80% rise and 

R) after the irradiation are 
es for each group of lasers 
es indicate a monotonic 

increase of the threshold current with increasing dose. 
However, the BER remain below 10-12 for doses up to 11.4 
Mrad. 
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        (a)             (b) 

Fig. 2. GSE L-I-V curves for the GSE lasers that were not 
powered during irradiation, a) after a 1.5 Mrad radiation dose,  b) 
after a 22.3 Mrad radiation dose.   
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F .5 Gbp eye diagram for a not-powered GSE laser 

irra it se
 
T .  Threshold increase, rise time, fall time and BER 

of t  after i adiation in he second test.   

Gr Laser 
N

Ith 
r e BER 

5-85 1.6 mA 48.5 ps/83.4 ps < 10-12 
6-73 2.0 mA   1.8 

Mrad 6-74 4.4 mA   
5-84 5.2 mA 68.9 ps/86.5 ps < 10-12 

16-79 8.0 mA   
B 

5.9 
Mrad 13-72 3.6 mA   

4-79 17.2 mA 66.7 ps/90.7 ps < 10-12 
5-81 8.43 mA   

C 
11.4 
Mrad 13-73 5.6 mA   

5-66 24.1 mA 67 ps/115 ps 1.9×10-11 
13-80 18.1 mA   

D 
22.3 
Mrad 16-80 Damaged   
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Fig. 4. The L-I-V curves for GSE lasers that w
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The laser ID (Table II, Fig. 4 and Fig. 5) in
position (row and column) of the laser on the w
lasers are from the same wafer. 

The eye diagrams of a laser from each irradiated
shown in Fig. 5. Degradation in the opening of th
increasing dose is observed.  However, lasers in group A, B 
and C still pass the 2. bps eye mask test. 
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Fig. 5. Eye diagrams of GSE lasers modulated at 2.5 Gbps 
after irradiation.  a) Laser 5-85 in group A, 1.8 Mrad dose. b) 
Laser 5-84 in group B, 5.9 Mrad dose. c) Laser 4-79 in group 
C, 11.4 Mrad dose.  d) Laser 5-66 in group D, 22.3 Mrad 
dose. 
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