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In this paper I shall discuss the problem of specifying the boundary conditions that must be used in the
solution of light-cone constraint equations. The problem may be expressed as the specification of integration
constant fields to be added to the commonly used solutions to these constraint equations. These integration
constant fields are unphysical and nondynamical; but they affect the dynamics of physical fields and change the
results of the calculations of measurable quantities. I shall illustrate these remarks with examples from QED and
QCD.

1. INTRODUCTION

In this paper I shall report research that I have
done with Yuji Nakawaki [1] and with Simon Dal-
ley [2]. The work attempts to specify the correct
boundary conditions that should be used in the
solution of light-cone constraint equations. We
still do not have a complete specification of these
boundary conditions for all cases of interest, but
we do have some results for QED and also some
for QCD.

Light cone quantization usually involves the so-
lution of differential constraint equations. If the
theory includes fermi fields we have the constraint
equation for ψ−:

i∂−ψ− = iγ⊥ ·D⊥γ0ψ+. (1)

That equation is of first order so we have one in-
tegration constant, which, below, is referred to as
ψ0
−(x+, x⊥). If the theory is a gauge theory and

both light-cone quantiation and light-cone gauge
are used, we have the constraint equation for the
field A−:

∂2
−A− + ∂−∂iA

i = −eΨ†+Ψ+. (2)

That equation is of second order and we have two
integration constants, which, below, are referred
to as B(x+, x⊥) and C(x+, x⊥)
∗Research supported in part by the Department of Energy
under contract numbers DE-FG03-95ER40908.

In section 2 I shall consider the constraint equa-
tion for A−. I shall provide a specification for B
and C and shall include them in a calculation of
the free gauge propagator . I shall then perform
a calculation of the one-loop electron self energy
in QED. It is the first successful calculation of
that process in a formulation that uses light-cone
quantization and light-cone gauge, where the con-
straint equation (2) must be solved. In section 3
I shall consider the case of QCD and shall specify
the integration constant, ψ0

−, that is associated
with the constraint equation for the quark field.
We shall see that ψ0

− provides states that can,
and do, mix with the light-cone vacuum; that
mixing induces new operators into the dynam-
ics that break chiral symmetry. In general, the
integration constants are unphysical, nondynam-
ical fields; but they affect the dynamics of physi-
cal fields and change the results of calculations of
physical quantities.

2. QED

The fact that light-cone gauge requires the use
of unphysical fields that are functions only of x+

and x⊥ has been know for some time. Bassetto
[3] and his coworkers quantized QCD using equal-
time quantization but light-cone gauge. They
found that to get perturbative agreement with
covariant gauges two auxiliary functions were



2

needed. Since they did not use light-cone quanti-
zation they did not have a constraint equation
to solve but found the two auxiliary functions
as a part of normal (careful) canonical quanti-
zation. The two auxiliary functions modified the
time ordered gauge field propagator and the mod-
ified propagator did give agreement with covari-
ant guage calculations for the many loop pro-
cesses that they calculated. Their auxiliary func-
tions are the same as the B and C that we shall
find below as integration constants for the light-
cone constraint equation when we use light-cone
quantization.

Some time later, Dave Robertson and I [4]
quantized QED on the light-cone and found B
and C as integration constants for equation (2).
We then showed that the final result for free QED
was the same operator solution found by Bassetto
et. al. and therefore it had the same time-ordered
propagator. We did not calculate the x+-ordered
propagator nor did we calculate any loop pro-
cesses.

Later, Morara and Soldati [5] quantized QED
in light-cone gauge on the surface x− = 0 (that
is equivalent to quantizing on x+ = 0 using the
gauge A− = 0). They did not have a constraint
equation to solve but they found B and C as a
part of the application of the Dirac procedure.
They calculated the x−-ordered propagator and
also the one loop electron self energy. The elec-
tron self energy calculation agreed with the usual
Feynman answer. Morara and Soldati believed
that the operator solution given in [4] did not
have a well defined x+-ordered propagator.

Recently, Yuji Nakawaki and I [1] have quan-
tized QED in a family of gauges and on a family
of surfaces. Each case is and axial gauge of ei-
ther the spatial or temporal type. Limiting cases
give the case of light-cone gauge quantized on
x− = 0 (Morara and Soldati’s case) or x+ = 0
(the case I studied with Dave Robertson). We
have shown that the propagator ordered in the
direction away from the quantization surface is
well defined in all cases if the constants B and C
are properly included. We also performed a cal-
culation of the electron’s self energy in the case
of light-cone gauge on the surface x+ = 0 where
the constraint equation (2) had to be solved. I

am now going to discuss those calculations.
The operator solution to the free theory is eas-

ily found to be

Aµ = aµ − ∂µ

∂−
a− − δµ+

∂2
⊥

B − ∂µ

∂2
⊥

C. (3)

Here, B and C are the integration constants and
the a’s, B and C are given by

a+(x) =
−1√
2(2π)3

∫
d3k+√

k+

k+

k⊥{
a1(k+)e−ik·x + a†1(k+)eik·x

}
, (4)

a−(x) =
1√

2(2π)3

∫
d3k+√

k+

k−
k⊥{

a1(k+)e−ik·x + a†1(k+)eik·x
}

, (5)

ai(x) =
1√

2(2π)3

∫
d3k+√

k+

ε
(2)
i (k)

{
a2(k+)e−ik·x + a†2(k+)eik·x

}
, (6)

B(x) =
1√

(2π)3

∫
d3k+√

k+

k2
⊥

{
B(k+)e−ik·x + B†(k+)eik·x} |x−=0, (7)

C(x) =
i√

(2π)3

∫
d3k+

√
k+

{
C(k+)e−ik·x − C†(k+)eik·x} |x−=0, (8)

where the ε’s are standard polarization tensors:

ε(2)µ (k) = (0, 0, − k2

k⊥
,

k1

k⊥
), (9)

and d3k+ is shorthand for dk+d2k⊥. The algebra
of the a operators can be determined by standard
canonical methods and is found to be

[aλ(k+), aλ′(q+)] = 0, (10)

[aλ(k+), a†λ′(q+)] = δλλ′δ
(3)(k+ − q+). (11)
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The algebra of the integration constant fields can-
not be determined by standard canonical meth-
ods. We have determined that algebra by two
methods: in ref. [4] it was determined by forcing
agreement between the Heisenberg equations and
the equations of motion; in [1] it was determined
by analytically continuing from quantization on
x− = 0, where canonical methods can be used, to
the quantization surface x+ = 0. In either case,
the algebra turns out to be

[B(k+), C†(q+)] = [C(k+), B†(q+)]
= −δ(3)(k+ − q+). (12)

Without the integration constants the x+-
ordered propagator is not a well defined object.
The presence of B and C softens the singularities
that arise from the part of the propagator derived
using only the a fields. The worst singularity oc-
curs in the ++ component of the propagator. I
now want to consider that component of the prop-
agator and show how the singularity in the terms
from the physical fields is partly cancelled by a
singularity in the terms from B and C. To do
that we need to do a change of variables in the
above integrals by defining

k+ ≡ k2
⊥

2k−
; d3k− ≡ dk−d2k⊥. (13)

We then find that

a+(x)− ∂+

∂−
a− =

1√
2(2π)3

∫
d3k−√

k−

k⊥
k−{

a1(k−)e−i(k−x−+k⊥x⊥+
k2
⊥

2k− x+

+ CC

}
. (14)

With this result we can easily calculate that the
contribution to the ++ component of the propa-
gator from the physical fields is given by

〈0|TA+(x)A+(y)|0〉|a =
1

16π3

∫
d3k−k2

⊥
k3−{

e
−i(k−(x−−y−)+k⊥(x⊥−y⊥)+

k2
⊥

2k− (x+−y+) + CC

}
.

(15)

Here, the T symbol indicates ordering with re-
spect to the x+ direction. We notice the very
bad singularity at k− = 0. In a similar way we
find that the contribution from B and C is given
by

〈0|TA+(x)A+(y)|0〉|BC =
−1

16π3

∫
d3k−k2

⊥
k3−{

e
−i(k⊥(x⊥−y⊥)+

k2
⊥

2k− (x+−y+) + CC

}
. (16)

Again we have a bad singularity at k− = 0.
Putting these two results together we find that
the full ++ component of the propagator is given
by

D++(x, y) = 〈0|TA+(x)A+(y)|0〉 =

1
16π3

∫
d3k−k2

⊥
k3−

{
e
−i(k⊥(x⊥−y⊥)+

k2
⊥

2k− (x+−y+)

[
e−i(k−(x−−y−) − 1

]
+ CC

}
. (17)

As k− → 0 the quantity in brackets goes to zero,
which softens the singularity and the propagator
becomes well defined. The full calculation of the
propagator gives the following results:

Dij(q) =
iδij

q2 + iε
, (18)

D+i(q) = Di+(q) =
i

q2 + iε
· qi

q− + iεsgn(q+)
,

(19)

D++(q) =
i

q2 + iε
· 2q+

q− + iεε(q+)

− i

2

{
1

(q− + iε)2
+

1
(q− − iε)2

}
. (20)

The auxiliary fields B and C also make contribu-
tions to the dynamical operator P−. For the free
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part of the operator we find

P−0 =
∫

d3x−
{

1
2
(f−+)2 +

1
2
(f12)2 + iψ̄γ−∂−ψ

}

+
∫

d3x+B
∂+

∇ 2
⊥

C, (21)

where d3x− stands for dx−d2x⊥. The interacting
part of the operator is given by:

P−I =
∫

d3x−

{
JµAµ + e2ψ̄γµAµ

γ+

2i∂−
γνAνψ − 1

2
J+ 1

∂ 2−
J+

}
.

(22)

While B and C do not appear explicitly in this
expression, they are present since they are a part
of Aµ. In the calculation we are about to do they
will affect the outcome in that they change the
propagator, as we have seen.

2.1. THE ELECTRON’S SELF ENERGY
With all the work that has been done on the

light-cone quantization of gauge theories it comes
as a surprise to many people that the one-loop
electron self energy had never, prior to ref. [1],
been successfully calculated in the formulation us-
ing light-cone quantization and light-cone gauge
such that we have to solve the constraint equa-
tion (2). That is the most common formulation
discussed in the literature. The successful calcu-
lations of the one-loop electron self energy that
are based on light-cone quantization and that I
know of are as follows: Morara and Soldati [5]
did a calculation using the anti-light-cone gauge
(A− = 0). Brodsky, Franke, Hiller, McCartor,
Paston and Prokhvatilov [6] did two calculations:
one in Feynman gauge; the other in light-cone
gauge, but with a higher derivative included as a
regulator so that A− was a degree of freedom and
equation (2) did not have to be solved. Langnau
and Burkardt [7]also did a calculation in Feynman
gauge; they did not start from the light-cone but
took the amplitude over from equal-time quanti-
zation and did the p+ integral to get a light-cone
integral. All of these calculations have in com-
mon that A− is a degree of freedom and equation
(2) was not solved.

All of these calculations required regulation.
Morara and Soldati used two Pauli-Villars pho-
tons. Brodsky, Franke, Hiller, McCartor, Paston
and Prokhvatilov used one Pauli-Villars photon
and one Pauli-Villars electron for the Feynman
gauge calculation, but for the light-cone gauge
calculation had to use three Pauli-Villars elec-
trons three auxiliary photons and two momentum
cutoffs.

If the standard light-cone gauge formulation,
where the constraint equation (2) is solved to
write A− in terms of ψ and A⊥, is used, and if the
integration constants B andC are set to zero, one
obtains the following expression for the amplitude
[6]

α

4π

∫
dxdz

1
(1− x)

( 2
x2 − 2

x + 1)z + m2x2

m2x(1− x)−m2x− µ2(1− x)− z
. (23)

The very strong singularity at x = 0 renders this
expression meaningless. Whatever regulators are
used to control the divergence, the answer has a
very strong dependence on the regulators and the
expression (23) has no known use. A very useful
point of comparison can be found in the paper
by Brodsky, Roskies and Suaya [8]. They wrote
down the amplitude in equal-time quantization
then boosted the resulting expression to the infi-
nite momentum frame. They obtained

α

4π

∫
dxdz

1
(1− x)

z + m2(−2 + 2x + x2)
m2x(1− x)−m2x− µ2(1− x)− z

. (24)

If this expression is regulated with one Pauli-
Villars photon one obtains the usual log depen-
dence on the Pauli-Villars photon mass and the
answer agrees with the usual Feynman answer.
There is no doubt that (24) is the expression one
should obtain in a correct light-cone procedure.
In ref. [1] Nakawaki and I performed the calcu-
lation in light-cone gauge but included B and C
in our calculation. I now want to discuss that
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calculation. For the lagrangian we take

1∑

i=0

(−1)i+1 1
4
F iµν

F i
µν −NA−

+
∑

i

1
νi

ψ̄i(iγµ∂µ −mi)ψi − eψ̄γµψAµ, (25)

where we have included two Pauli-Villars elec-
trons and one Pauli-Villars photon and defined

ψ =
2∑

i=0

ψi ; Aµ =
1∑

i=0

Ai
µ, (26)

so that the interaction contains flavor chang-
ing currents; the flavor changing currents are
necessary in the present formulation. The fla-
vor changing currents break gauge invariance but
that breaking will be removed when we take the
masses of the Pauli-Villars electrons to infinity.
In the Lagrangian, N is the Nakanishi-Lautrup
field, which is usually referred to as B, but which
I have here labelled N to avoid confusion with
the integration constant B. For conditions on the
Pauli-Villars fields we take

2∑

i=0

νi = 0, δm|m0=0 = 0. (27)

The first of these conditions is standard; the
meaning of the second one is that we shall use the
flexibility of having the second Pauli-Villars elec-
tron to set the shift in the electron’s mass to zero
if the bare mass of the electron is zero. That is,
we shall use the second Pauli-Villars electron to
impose the requirement of chiral symmetry. It is
common experience that chiral symmetry, which
is a dynamical symmetry in light-cone quantiza-
tion, must be imposed by hand. These regula-
tors are not quite enough: we must still regulate
the spurious gauge singularity. In QCD it is cru-
cial to define that singularity by the Mandelstam-
Leibbrandt prescription. Here, the singularity is
essentially cancelled and many ways of regulating
it will work; we shall use the simple replacement

1
x
→ 1

x + ε
. (28)

It is straightforward to write down the amplitude
as

Σ(p) =
ie2

(2π)4

∫
d4q

∑

i,j

νi(−1)j

γµ{γ · (p− q) + mi}γν

(p− q)2 −m2
i + iε

·
−gµν + nµqν+nνqµ

q−+iεsgn(q+)

q2 − µ2
j + iε

.

(29)

If we use the gauge propagator derived above
and the electron propagator that was derived long
ago:

SF =
i

(2π)4

∫
d4p e−ip·x

[
(6p + m)

p2 −m2 + iε
− 1

2
γ+

p+

]
,

(30)

and after the integration is done we take the (fi-
nite) limit of the Pauli-Villars electron masses go-
ing to infinity so that the final answer is regulated
by only one Pauli-Villars photon, a long calcula-
tion gives

δm =
e2

(2π)3m0

∫
d2q⊥

∫ 1

0

dx
∑

j

(−1)j

m2
0(1 + x)

m2
0x

2 + µ2
j (1− x) + q2

⊥
. (31)

While this integral does not have the same in-
tegrand as (24), an identity discovered by John
Hiller [9] can be used to show that the integrals
are the same. I want to mention a few noteworthy
features of the calculation: the contribution from
the second line of (20) (these come from the first
term in (22)) cancel the contribution from the last
term in (22). The contributions from the second
term in (22) are independent of masses and sum
to zero in the sum over Pauli-Villars fields. Sim-
ilarly, the contributions from the second term in
(30) are independent of masses and cancel in the
sum over Pauli-Villars fields.

The important point is that the inclusion of
the auxiliary fields, B and C, transforms the
useless expression (23) into an expression that,
using standard regulation techniques, gives the
standard answer. It is worthwhile to note that
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the method of regulation used in the calcula-
tion presented here is more complicated than that
needed in Feynman gauge, but considerably sim-
pler than that needed in the higher-derivative-
regulated light-cone gauge calculation. Since no
one has yet managed to formulate the Light-cone
quantization of QCD in Feynman gauge, if the
methods presented here for QED can be extended
to QCD, that might result in the simplification of
practical calculations in QCD.

3. QCD

I now want to turn to QCD and turn from the
constraint equation for the gauge field to the con-
straint equation for ψ−. That constraint equation
is

i∂−ψ− = iγ⊥ ·D⊥γ0ψ+. (32)

The general solution to this equation can be writ-
ten as

ψ− = ψ0
−(x+, x⊥) +

∫
dx−γ⊥ ·D⊥γ0ψ+, (33)

where the antiderivative,
∫

, is to be taken to
mean the result of the replacement

eikx −→ 1
ik

eikx (34)

in the Fourier transform of the integrand. In
other words, we have written the general solution
as the solution most commonly used in the liter-
ature plus the integration constant ψ0

−(x+, x⊥).
In this section I want to discuss the fact that
ψ0
−(x+, x⊥) provides states that can mix with the

vacuum and that mixing will induce new opera-
tors into the dynamics. Those new operators will
break chiral symmetry [2].

To see how this works, we need to rewrite
the standard expansions of the fields in Fourier
modes. We begin with the standard expansion
for ψ+ except that we do the fourier expansion
only in x−

ψ
(a)
+,s(0, x−, x⊥) =

1√
Ωq

∫ ∞

0

dk+

(
b(a)
s (k+, x⊥)e−ik+x− + d

(a)∗
−s (k+, x⊥, )eik+x−

)
.

(35)

Here, a is a color index, s is a spin index and
the modes satisfy the standard anticommutation
relations

{b(a)
s1

(k+, x⊥), b(b)∗
s2

(p+, y⊥)} =

δ(k+ − p+)δ(x⊥ − y⊥)δs1s2δab , (36)

with similar relations for anti-fermions d. The
independent fermion ψ0

− is independent of x− and
may be expanded as

ψ
(0)(a)
−,s (x+, x⊥) =

1√
Ωq

∫ ∞

0

dk−

(
β(a)

s (k−, x⊥)e−ik−x+
+ δ

(a)∗
−s (k−, x⊥, )eik−x+

)
.

(37)

For gluons we write

A(c)
s (0, x−, x⊥) =

1√
Ωg

∫ ∞

0

dk+ 1√
2k+

(
a(c)

s (k+, x⊥) e−ik+x− + a
(c)
−s

∗
(k+, x⊥, ) eik+x−

)
,

(38)

where

[a(b)
s1

(k+, x⊥), a(c)∗
s2

(p+, y⊥)] =

δ(k+ − p+)δ(x⊥ − y⊥)δs1s2δab . (39)

In the discrete case the above integrals over k±

become discrete sums for integers n of πn/L
(bosons) or π(2n− 1)/2L (fermions).

At fixed x⊥ each of the fermi fields expanded
above is just a one dimensional fermi field and
can be bosonized in the standard way. For the
ψ+ field we write

ψ
(a)
+,s(0, x−, x⊥) =

Z+e−λ(a)(−)
s (x−,x⊥)σ

(a)
+,s(x⊥)e−λ(a)(+)

s (x−,x⊥),

(40)

where Z+ is a renormalization constant, σ
(a)
+,s(x⊥)

is a spurion and

λ(a)(+)
s (x−, x⊥) =

−
∫ ∞

0

dk+ 1
k+

C
(a)
+,s(k

+, x⊥)(e−ik+x−−θ(k−k+)),

(41)
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with

λ(a)(−)
s (x−, x⊥) = −λ(a)(+)

s

∗
, (42)

and

C
(a)
+,s(k

+, x⊥) =
∫ k+

0

dq+d
(a)
−s

(
q+, x⊥

)
b(a)
s

(
k+ − q+, x⊥

)
+

∫ ∞

0

dq+b(a)∗
s

(
q+, x⊥

)
b(a)
s

(
k+ + q+, x⊥

)−
∫ ∞

0

dq+d
(a)∗
−s

(
q+, k⊥

)
d
(a)
−s

(
k+ + q+, x⊥

)
. (43)

In the discrete case the θ(k − k+) term is miss-
ing. We make a similar expansion for ψ− but in
that case the operators corresponding to the C

(a)
+,s

are all unphysical and we only need the spurion,
σ

(a)
−,s(x⊥).
The only operators allowed to dress the light-

cone bare vacuum are the spurions: the C
(a)
+,s all

carry nonzero + momentum and cannot dress the
vacuum for the usual reasons. The correspond-
ing operators from the ψ− field are unphysical
and cannot appear in physical states. If chiral
symmetry is to be spontaneously broken we must
dress the vacuum. We shall now assume that
there is a component of the vacuum that con-
tains only fermions, no gluons. There will be sec-
tors of the vacuum which do contain glue so we
are discussing only part of the vacuum state. For
the component that contains only fermions, color
symmetry and Lorentz invariance determine that
the state must be of the form

|Ωf 〉 =

F [σ(a)∗
−,s (x⊥)σ(a)

+,−s(x⊥), σ(a)∗
+,−s(x⊥)σ(a)

−,s(x⊥)]|0〉.
(44)

Notice that a state of this form will give a contri-
bution to the chiral condensate 〈ψ̄ψ(x⊥)〉 of the
form

〈ψ̄ψ(x⊥)〉 ⊃
〈Ωf |

∑
s,a

σ
(a)∗
−,s (x⊥)σ(a)

+,−s(x⊥) + c.c.|Ωf 〉. (45)

That expression may not be equal to the chiral
condensate because sectors of the vacuum that
contain glue may also contribute the the chiral
condensate.

The fact that ψ0
− is not zero induces new oper-

ators into P−. Basically every term in P− that
contains ψ− will obtain one of these induced op-
erators. If the quark bare mass is zero the only
term that contains ψ− is −ψ̄γ⊥iD⊥ψ. Here, I
shall discuss the operators that come from that
term. There is also an induced operator associ-
ated with the ψ̄ψ term; some discussion of that
term can be found in my talk at the Amsterdam
meeting in 2004 [10]. With the quark bare mass
taken to be zero there are two induced operators.
A straightforward calculation gives them as

I1 =
∫

dx− d2x⊥
∑

a

(i∂↑ψ
(a)∗
+,↓ )ψ0(a)

−,↓ + c.c.− [↓↔↑], (46)

and

I2 = g

∫
dx− d2x⊥

∑

abc

λc
abψ

(a)∗
+,↓ ψ

0(b)
−,↓A

(c)
↑ + c.c.− [↓↔↑], (47)

where we have defined

∂↑ = (∂1 − i∂2)/
√

2 , ∂↓ = ∂∗↑ . (48)

In terms of the spurions these are

I1 = Z−

∫
dx− d2x⊥

∑
a{

(i∂↑ψ
(a)∗
+,↓ )σ(a)

+,↑
[
σ

(a)∗
+,↑ σ

(a)
−,↓

]

+ σ
(a)∗
+,↓ (i∂↑ψ

(a)
+,↑)

[
σ

(a)∗
−,↑ σ

(a)
+,↓

]

− σ
(a)∗
+,↑ (i∂↓ψ

(a)
+,↓)

[
σ

(a)∗
−,↓ σ

(a)
+,↑

]

− (i∂↓ψ
(a)∗
+,↑ )σ(a)

+,↓
[
σ

(a)∗
+,↓ σ

(a)
−,↑

]}
; (49)
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I2 = gZ−

∫
dx− d2x⊥

∑

abc

λc
ab

{
A

(c)
↑ ψ

(a)∗
+,↓ σ

(b)
+,↑

[
σ

(b)∗
+,↑ σ

(b)
−,↓

]

+ A
(c)
↑ σ

(a)∗
+,↓ ψ

(b)
+,↑

[
σ

(a)∗
−,↑ σ

(a)
+,↓

]

−A
(c)
↓ σ

(a)∗
+,↑ ψ

(b)
+,↓

[
σ

(a)∗
−,↓ σ

(a)
+,↑

]

− A
(c)
↓ ψ

(a)∗
+,↑ σ

(b)
+,↓

[
σ

(b)∗
+,↓ σ

(b)
−,↑

]}
. (50)

I now want to try to explain why, in spite of the
presence of ψ0

− the eigenvalue equation for bound
states can be solved using only the usual light-
cone subspace. I shall denote any of the usual
light-cone operators — the ones that do not in-
volve ψ0

− — with a subscript P and call them
physical operators. These operators are function-
als of the independent physical fields ψ= and A⊥:
OP ≡ F (ψ+, A⊥). I define a subspace S0 to con-
sist of all states that result from the application
of a physical operator to the bare light-cone vac-
uum: S0 ≡ OP |0〉. I define a projection operator
P to project onto S0. The auxiliary operators are
unphysical and the eigenvectors will be formed by
physical operators on the physical vacuum:

(P+P− − P 2
⊥)|Ψ〉 = M2|Ψ〉, (51)

where

|Ψ〉 = OP |Ω〉. (52)

The full P− will consist of physical operators, the
induced operators we have found above and pos-
sibly other induced operators associated with the
sectors of the vacuum that contain glue. I shall
not discuss this last possibility in the present pa-
per. The induced operators we have found in
this paper have the form I = IP [σ∗±σ∓] where
IP is a physical operator. We now need two re-
sults that depend on the specific form of our vac-
uum. The first is that, since the quanta from ψ−
appear in the vacuum pared with quanta from
ψ+, the only component of the vacuum in S0

is the bare light-cone vacuum and we have that
P|Ω〉 = c|0〉. We can choose c to be zero. Also,
if an operator of the form [σ∗±σ∓] is such a way

as to remove all of the ψ− quanta, it must also
remove all of the ψ+ quanta; so we have that
Pσ

(a)∗
−,s (x⊥)σ(a)

+,−s(x⊥)|Ω〉 = κ|0〉, where κ is a real
constant independent of s, a, and x⊥. Therefore,
if we write the eigenvector equation in the form

(P−P + I)OP |Ω〉 = M2OP |Ω〉, (53)

then act with P, we get that
(
P−P + κ IP

)OP |0〉 = M2OP |0〉. (54)

This is an equation formulated entirely in the
usual light-cone subspace, S0. It has the same
eigenvalues as the full equation (51) and the
eigenvectors of (54) are the projections of the
eigenvectors of (54) onto S0.

The induced operator, I will break quark he-
licity symmetry and split the masses of the pion
and the rho. It is a soft breaking of the symmetry
in the sense that if the vacuum is symmetric then
κ is zero and there is no induced operator. In
the light-cone representation, the dynamic effects
of soft symmetry breaking occur as operators in
the dynamics whose coefficients are condensates.
I conclude this section with Fig. 1 showing the
action of the induced operator, I as vertices; to
do this it is convenient to define an effective cou-
pling h as h = gZ−κ where Z− is the wave func-
tion renormalization constant for the field ψ0

− and
will depend on the regulators used to define the
theory.

4. FURTHER STUDIES

There is still much to be done in the area of
finding and using the integration constants asso-
ciated with light-cone constraint equations. Here
I shall give only a few examples, on which I am
working or hope to work:

The calculation of the one-loop electron self en-
ergy given above was done in the interaction rep-
resentation. It is not straightforward to extend
the calculation to nonperturbative calculations.
The issue is the proper treatment of the term
coupling the auxiliary fields to the physical fields.
That term appears to be very singular, and while
we know how to treat it in the perturbative calcu-
lation presented here, the proper treatment in a
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.
Figure 1. The new QCD vertices created by the induced operators I1 and I2.

nonperturbative calculation has not been worked
out. That should be done. In a similar vein, the
specification of the fields corresponding to B and
C in the nonabelian case needs to be worked out.

In this paper I discussed one of the induced
operators in QCD. There are no doubt more. In
particular, there must be one associated with the
glue in the vacuum that gives rise to the gluon
condensate 〈Gµν (a)G

(a)
µν 〉. That operator needs to

be found. I believe that it is possible to derive
the form of the vacuum functional, including the
gluon contribution, from considerations of resid-
ual gauge transformations; but I do not now know
how to do it. It would be a very big step forward
to find such a derivation. It is also important
to include the induced operators in calculation of
the QCD spectrum in order to study their effects.
Such calculations are just now being planned.
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