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The search for a magnetic monopole continues, spurred by the motivation to
explain charge quantization, impart symmetry to Maxwell's equation, introduce new
physics and to confirm or refute predictions founded in many gauge theories. To
promote the search for a Dirac monopole, specifically searches at colliders such as the
LHC or Tevatron, we present here the process of photon fusion as an additional process
to the Drell-Yan mechanism for monopole pair production.

When predicting monopole production at the Tevatron with a center of mass
energy of 1.96 T'eV, we find the cross section of the photon fusion process induced
through the inelastic scattering of quarks, comparable to that reported for the Drell-Yan
mechanism for a monopole mass in the range of 100 GeV < m,,, < 500 GeV . Next, by
adding the cross section for photon fusion to the Drell-Yan cross section, we conclude

that the lower mass limit of the magnetic monopole can be extended up to 40 GeV

v



beyond the 360 GeV reported by the CDF experiment.

With a center of mass energy seven times greater than that of the Tevatron, the
LHC at CERN offers an excellent opportunity to renew the search for a Dirac monopole.
However, unlike the Tevatron which is a pp collider, the LHC is a pp collider, rendering
the LHC less suitable to the Drell-Yan process as compared to the photon fusion process
for monopole pair production. We reported here the cross section for monopole pair
production via the photon fusion process for inelastic scattering at the LHC. With an
integrated luminosity of 100 fb~! and assuming a magnetic monopole mass of 600 GeV,
we anticipate the LHC could produce over 10 million monopole pairs of by the process of
photon fusion. By comparison, we estimate the Drell-Yan process may yield less than 1

million events.
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Chapter 1

INTRODUCTION

The concept of electric charge as a fundamental property of matter is well
established. But what about the idea of a fundamental magnetic charge? All empirical
evidence to date indicates that a magnetic field is created by the movement of electric
charges, and not the direct result of independent fundamental magnetic charges. Even the
modern theory of electroweak interactions is nicely packaged without the requirement of
a magnetic charge. So why consider the possible existence of a magnetic monopole?

First of all, in classical electrodynamics, there is no need to exclude magnetic
charges; of course this provides no constructive framework, but it does leave the
existence of monopoles open to debate. There is however a more elegant argument for
the possible existence of monopoles that is based on symmetry.

There is a comfort and an agreement in a symmetry, like the pattern of a
snowflake. Should the symmetry be disrupted, say a missing spike on a snowflake, the
broken symmetry is all too obvious and there is natural inclination to want to investigate

the nature of this broken symmetry. Equations (1.1a) — (1.1d) are the current Maxwell’s



equations of electromagnetism in cgs units.
V- E = 4mp, (1.1a) VxB=10pF 45  (11c)
V-B=0 (1.1b) ~VxE=12F (1.1d)
The full symmetry inherent to Maxwell's equations is apparent by comparing these
equations to (1.2a) — (1.2d), where a magnetic charge has been included to Maxwell's

equations as indicated by large bold text.
V- E = 47p. (1.2a) VxB=12F 45 (120
V-B=4mpym  (1.2b) —ﬁxE:%%éJﬁ%}m (1.2d)
It is important to observe that these alterations do not contradict the results of Maxwell's
equations or any other known phenomenon.

In (1.2), Maxwell's equations are now fully symmetric with respect to electric and
magnetic currents and fields, as (1.2a) resembles (1.2b) and (1.2c¢) is similar to (1.2d).
The modified Maxwell’s equations now state that electric and magnetic charges, fields
and currents share an electric/magnetic duality, and act like mirror images of each other.
Just as a moving electric charge creates a magnetic field, a moving magnetic charge
creates an electric field. Mathematically this symmetry is related by the rotational group

U(1) with %, and isomorphic to the rotational group SO(2).

cosf sinf E &'
( —sinf cosf )( M )_ ( M’ ) (1.3)



Here £ and M represent any of the three electric or magnetic quantities f, E or B. For
example using the charge currents,

31— jocosO + jp, sinb (1.4)

e

=

I —fe sin 6 + fm, cos (1.5)
Maxwell’s equations entice us with the existence of magnetic charge to restore the
electric/magnetic symmetry. Unfortunately this observation does not ensure the
existence of a magnetic charge or point us in a meaningful direction.

In 1931 P.A.M Dirac [1] provided a plausible motivation, within the framework
of quantum electrodynamics, for the existence of magnetic charge. This motivation is
based on the principle of electric charge quantization. It is an empirical fact that one
electron is identical to all other electrons, and possess precisely an equal but opposite
charge to a proton. In general, there is no reason that the charge should be quantized.
However Dirac explains the quantization of electric charge exclusively by the existence a
magnetic charge.

Dirac’s paper is a milestone in the search for a magnetic monopole. To reinforce
the incentive for this thesis and illustrate the significance of his work, the following will
outline Dirac's original publication titled, “Quantized Singularities in the Electromagnetic
Field”, with an effort to preserve the rationale of his argument. As stated by Dirac, "The

theory of this paper, while it looks at first as though it will give a theoretical value for e,
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is found when worked out to give a connection between the smallest electric charge and
the smallest magnetic pole."

To emphasize Dirac's line of reasoning the main principles will be listed. This
will prevent the details inherent in each step from diluting the argument.

1) The wave function carries an undetermined phase factor ¢:

The argument begins with the general wave function (1.7) and the undetermined
phase factor ¢, or rewritten in (1.8), where the global phase constant ¢ is pulled out of ¢.
In (1.8), v 1s now determined precisely to a known value at each coordinate.

U (7, t) = p(7,t)e ) (1.7)
U (7, t) = p(7,t)eV(HD+e) (1.8)

2) Non-vanishing phase difference around a closed curve:

Because a constant can be added to the phase without affecting the physics, what
must be important is the phase difference between two points and not the value of ¢. To
determine the phase difference, the general method is is to take the path integral between
two points as shown in (1.9).

A= [PA(7) - di (1.9)
In a conserved system involving the function A (7'), the value of the path integral is
independent of the chosen path. If two paths PP} and P, form a closed loop between

points a and b, as shown in Figure (1.1), the value of the path integral should be zero.
4



Figure 1.1 Path Integral

For now we are looking at the general case where the integral may be path dependent

(1.10). Therefore the phase change around a closed curve may not vanish.
A¢ = [ [, A - dl]p, + [ f; A@) - dl]p, #0 (1.10)

4) Phase around a closed curve must be the same for all wave functions:

When computing the integral (1.11) with wave functions ¥; and W5, we known

the resultant should be a unique real number in quantum theory.
[ U Uy dedydzdt (1.11)

This implies that the integrand W] W5 must have a definite phase difference between any
two points to prohibit obtaining multiple values when performing the integration. With
the phase difference independent of the path, the phase difference must vanish around a
closed curve. For this to occur, the phase change of W] must be equal and opposite to
the phase change of W5. Then by taking the conjugate of W7, the phase change for W,

will now be equal to Ws.



5) Write path integral for phase change in terms of Stokes Theorem:

Even though the phase is a function of [ z y 2 ¢ ], the phase does not carry a
definite value at each point. Classically a similar ambiguity holds for potential energy,
where potential energy is a function of coordinates but does not have a precise value at
each point. So instead of a exact value for the phase, it was shown the phase difference
between two points can be computed. For this to be true the derivatives of the phase
must be definite and continuous at all points. This is equivalent to being unaware of an
object's exact position relative to a coordinate system. If however, the object's velocity is
well defined at each coordinate, one can compute the change in its position. To
demonstrate this for the wave function, equation (1.7) can be explicitly written as,

U = Py ei® (1.12)
where W is now a wave function with a definite phase and all the phase ambiguity is
represented by ¢. The derivatives of ¢ will be defined at each point as,

Ko =352, ky =952, k. =52, ko= 52 (1.13)

In general the derivatives do not have to satisfy the condition for an exact differential, for

2 2
example a2 # 0”9

Doy 7 Doz making the change in phase dependent on the path. The path

integral determining the phase change A¢ around a closed curve can now be expressed

through Stokes' theorem and &, as shown in (1.14)



—

§R-dl=[VxE-dS (1.14)

6) The wave function's phase uncertainty is due to the electromagnetic field:

Taking the partial derivative of relationship (1.12) we obtained
—ih 20 = e (—ihZ + hrg) Ty (1.15)
where, with some manipulation, it can be shown that if ¥ satisfies any wave equation for
the momentum and energy operator, P and E, then W ;will satisfy the wave equation for
the operators shown,
P+ hk, , E-hrg (1.16)
Next, with the Lagrangian for a charged particle in an electromagnetic field

having a scalar potential ®(r, ¢) and vector potential A(r, ),

1o

L=1mi2 _—ed+cA. 7 (1.17)

2 c
then applying the Euler-Lagrangian equation, the energy and canonically conjugate

momentum P, = g—(f will appear as (1.18). Note, this is shown without quantization of
the fields.

P=5C 424, E=imi®—ed (1.18)
Comparing (1.16) to (1.18), where T'is the kinetic term and i = {z,y, z,t}, [ky £y K2 Kt

are then related to the magnetic and electric potentials through,

A=leg o= teg, (1.19)

C\:|3'f
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Equation (1.19) indicates the uncertainty of the wave function, which is stored in
[ ke Ky K2 K¢ ], 1s directly related to the electromagnetic potential. This indicates that the
phase change of a particle's wave function will now be dependent on the electromagnetic
potential through which it travels.

7) Electromagnetic flux through the closed curve produces the non-zero phase change:

Since [ k4 Ky K K¢ | corresponds to the electromagnetic potentials, then the curl
of K must be associated with the components of the magnetic field Band —Aro = E.
Relating to Stokes' theorem applied in (1.14), it is apparent the phase shift depends of the
amount of electromagnetic flux though the closed curve, which determines the
uncertainly in the wave function.

A consequence of this result is exemplified by the Aharonov-Bohm effect [2, 3].
As shown in Figure 1.2, a source emits electrons from point (a). These electrons travel
through the double slit apparatus which are then observed on a screen behind the double
slit. This is the well known double slit experiment resulting in the familiar pattern of
varying intensities as a function of distance from the center between the slits.

In the Aharonov-Bohm experiment, one adds a long solenoid of small radius R
directly behind the double slit, with a magnetic field B perpendicular to the electron path
as shown in Figure 1.2. At a distance sufficiently away from the solenoid, the magnetic

field due to the solenoid is essentially zero.



Figure 1.2 Aharonov — Bohm Effect

Classically, only the fields E and B contribute to any observable change. With
the absence of any magnetic field the pattern on the screen should not be altered.
However, what is observed is a shift in the pattern that can be attributed only to the
electromagnetic vector potential of the solenoid. Outside the solenoid, the magnetic field
can be written as,

V x A(F,t) =0 (1.20)
which by a choice of gauge can be written trivially as A (r,t) = 0 or more importantly

A(7,t) = Vx(7,1). (1.21)
For a path integral between two points the change in x(r,t) can be calculated.

[AF ) - dl = [Vx(7t)- dl (1.22)

JAF 1) - di = x(b) — x(a) - dl (1.23)



or for a complete circuit by the path shown in the figure.
$ A1) - dl = x(a) — x(a) (124)

As previously demonstrated, this integral does not necessarily vanish but depends
on the flux through the closed curve. In this example, a closed curve can be obtained by
following the path ¥, from a to b and then returning to a along the path ¥5. The
Aharonov-Bohm effect can be interpreted as two wave functions W;and W5 representing
an electron passing through each slit and arriving at point (b) out of phase, thereby
shifting the interference pattern.

8) Phase of the wave function may differ by 27 _on a closed curve:

Previously it was stated, the phase change around a closed curve is the same for
all wave functions. Mathematically this phase change could differ by multiples of 27
without affecting the quantum theory, but this degree of freedom has not been attributed
to any physical effect. As a thought experiment, take the loop to be so small that it would
be impossible to have a phase difference of 27 between waves. All wave functions must
have a phase change of a small but equal value due to the infinitesimal electromagnetic
flux through the loop. Separately, examine a wave function that terminates in some area
by demanding both the real and complex portion of the wave be zero. This condition
along with continuity, forces the wave function to terminate along a line in three-

dimensional space called nodal line or Dirac string. With the addition of the time
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component, the line would scribe a sheet in space-time.

Along the nodal line the wave function is free to carry any phase value. By
passing the nodal line through the small closed curve, continuity will dictate that the
change in phase around the small curve must now be 27 plus the small amount due to
any electromagnetic flux. Here n is either positive or negative depending on the
direction of integration around the curve and the direction of the nodal line. Therefore,
with a nodal line running through the infinitesimal closed curve the change in phase is
given by (1.25).

Ap =2mn+ £ [(V x A)-dS (1.25)

By treating a large closed curve as a grid of infinitesimally small closed curves
with multiple nodal lines passing through the closed curve, the phase change is then
(1.26).

Ap =21 n+ & [(VxA)-dS (1.26)

In both cases, the phase change is associated with the magnetic flux 5= fs (6 X /T) -dS,

which must be the same for all wave functions, and the nodal lines passing through the
large closed curve, allowing the wave function to differ by 273n.

9) A nodal line terminating inside a closed surface represents a magnetic charge:

Consider a closed surface formed by merging two surfaces, an upper surface and

a lower surface, each bounded by a closed curve as shown in Figure 1.3.
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Figure 1.3 Closed Surface Bounded by a Closed Curve

In Figure 1.3, P, and P; are separate paths traversing the entire closed curve from
opposite directions. If separate path integrals are performed along each of these paths it
is obvious they will cancel each other. Now holding Stokes' theorem to be absolute, this
is essentially stating the sum of the integrated flux along surface S; and S> must be zero.
By setting A¢ = 0, equation (1.26) can thus be written as,

—,

275y — 275ne = & [ (V S — £ [, (V x A)-dS (1.27)

where nq is the number of nodal lines cross surface S| and n» is the number of nodal
lines crossing S>. Therefore, the left side of the equation mat not be zero if one or more
nodal lines terminate inside the bounded surface.

The left side of (1.27) must be in multiples of 27 and the right side is integrated
over 4m, so equation (1.27) becomes,

2mn = 4 g (1.28)

12



or

ge = nlic (1.29)
where g is the source of the magnetic flux and n is the number of terminating nodal
lines.

Equation (1.29) is Dirac's quantization condition, which states the product of
magnetic charge g and electrical charge e must be integer multiples of %ﬁc in cgs units.
The terminating point of the nodal line is called a Dirac Monopole. Equation (1.29)
indicates the discovery of just one magnetic monopole would justify the quantization of
electrical charge. Dirac's quantization condition thus provides a direct motivation for the
existence of a magnetic monopole. It explains all empirical evidence that electric charges
are quantized without altering any current physics.

Finally, solving (1.28) for g provides the relative allowed strengths of a magnetic
charge. For the base charge, where n = 1, this would be approximately

—8ergecm .
3.29 x 107" == in cgs units.

o [T

(1.30)

Q

I

3

N |—
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Chapter 2

BACKGROUND

The are many other suitable models to explain electric charge quantization or the
basis for magnetic monopoles. To not digress into an extensive argument for the
existence of magnetic monopoles, the following will summarize other significant theories
in the field of magnetic monopoles.

Prior to Dirac's publication in 1904, JJ Thomson [4] presented a simple example
of charge quantization which occurs in a static system composed of an electrically
charged particle ( e ) and magnetically charged particle ( g ) separated by a distance r.

The angular momentum of the fields can be calculated by [5],

J = [7x 2B gy 2.1)
and due to the symmetry between the fields, the integration will yield a vector along ¥,
representing the e — g axis. This is similar to the resultant electric field vector for a
uniform sheet of charges, where only the perpendicular component of the field vector
survives. Next, by applying the standard quantization to the angular moment, the charge

quantization is reached, (2.2 — 2.4). This again indicates that e or g are limited to definite

14



quantities of gc.

J = 9 (2.2)
Ji=nl (2.3)
9 =nl (2.4)

Calculating the scattering of an electron off a magnetic monopole will also reveal the
same charge quantization condition using the conservation of angular moment [6].

A new approach for the existence of monopoles was developed by 't Hooft and
Polyakov in 1974 [7, 8] by incorporating the Higgs field into the Yang-Mills equation,
where monopoles occur as stable solutions. Their theories predict monopoles arising as
topological defects from spontaneous symmetry braking (SSB). In the case of 't Hooft
this is the SO(3) Geogi-Glashow electroweak unification model, and for Polyakov it is
SU(2). In the theories derived by 't Hooft and Polyakov a monopole is a finite energy
solution to the field equation with a boundary condition on the Higgs field at infinity.
This is opposed to the Dirac monopole which has infinite energy and additionally
requires a Dirac string. Although 't Hoot's theory did not apply to the standard model of
SU(2) X U(1) for electroweak, it more importantly predicted stable monopoles as the
result of a group not containing U(1), breaking into a U(1).

The next logical step to predict monopoles is in Grand Unification Theories

(GUT), by using a SU(5) gauge theory for example [9], or notably the SU(5) breaking to
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SU(3) x SU2) x U(1) [10,11]. In GUT theories, the mass of the monopole my/, is
related to the symmetry breaking scale A and coupling constant o, of the unified
interaction X by [12,13]

my ~ Le (2.5)

For GUT theories A, ~ 10'* — 10'5GeV and a = 0.025, producing Superheavy MM
mar ~ 1016 — 1017 GeV'. The enormous mass of a GUT monopole is several orders of
magnitude beyond the 14 T'eV" center of mass energy of the LHC as well as any
conceivable collider. However, during the early universe monopoles would have been
produced during phase transitions. The present flux of these relic monopoles is unclear
due to production uncertainties in the early universe and the diluting effect of an
inflationary universe. There is also the possibility of higher dimensional topological
defects such as strings and walls destroying the monopoles [14].

The mass of the Dirac monopole can be derived by assuming the monopole radius
is comparable to the classical electron's radius ~ 1073 cm. The monopole's mass is then
proportional to the electron's mass according to the square of the charge ratios [12].

M ¢ (£)%me (2.6)

> 2.5 GeV, which is well below the GUT

~Y

This puts the mass of the monopole at m,,
monopole and more importantly into the realm accelerators production.

The cross-section calculation performed in this thesis is intended to predict the

16



production of Dirac monopoles at the LHC, and additionally compare the results of
previous accelerator searches to set mass limits on the monopole. Therefore, the
following summary of previous monopole searches will focus on attempts to find a Dirac
monopole with masses accessible in current accelerators, such as the LHC.

In 2003 an extensive search was conducted at Fermilab's CDF 1II detector using
pp beams with center of mass energy at 1.96 7'eV and 35.7 pb—! integrated luminosity
[15]. The CDF detector is comprised of a magnetic spectrometer with silicon strips and
drift-chamber tracking detectors and a scintillator time-of-flight system, surrounded by
electromagnetic and hadronic calorimeters and muon chambers. The monopole search
relied heavily on two components of the CDF detector; the central outer tracker (COT)
and the and time of flight (TOF) scintillators to trigger a monopole hit.

The COT extends from 40 cm to 137 cm, and spans a pseudo-rapidity range of
—1 < n < 1. The COT is constructed from 8 superlayers, each containing 12 layers of
sense wires. In addition to determining the energy loss due to ionization, the COT made
timing measurements for track reconstruction.

Surrounding the COT are the time of flight scintillator bars with photomultiplier
tubes (PMT) connected to each end. There are 216 scintillator bars running parallel to
the beam and extending the outer tracker to a radius of 140 cm. For analysis, both the

time and PMT pulse height are measured. To detect a monopole, both the COT and
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scintillator bars took took advantage of the high ionization property of monopoles that
exceeds velocities § > 0.2, as would be expected in a monopole event. At these
velocities, a monopole behaves like a particle with charge [12],

(Ze)eqg = 9B (2.7)
which should produce 500 times more light than a minimum-ionizing particle (MIP) and
provide an excellent trigger mechanism. Due to the efficiency of the trigger, the
threshold was set to only 30 MIPs [15] to substantially improve the effectiveness of the
trigger.

When using a TOF trigger, the approximate arrival time of the particle reaching
the trigger sensors is needed to set a trigger time window. This window allows the
trigger to capture only expected events and to filter out noise. In the case of the
monopole, the trajectory is completely unique, and without any experimental data the
TOF was estimated using a Monte Carlo simulation. To gauge the time of flight, a Drell-
Yan pair production mechanism was selected because a monopole scattering off matter
only requires swapping the electric charge with the monopole's effective charge g3 [15].
Pythia then used the Drell-Yan production of monopoles by treating them like leptons.
To complete the simulation GEANT provided trajectory information to determine the
trigger window of 20 ns used during the search.

Contrary to all electrically charged particles, a monopole will experiences an

18



increase in energy W = ¢ Bl, approximately 250% in the 1.4 7" magnetic field of the
CDF detector. This will cause the monopole in the mass range of 100 — 1000 GeV'to
accelerate, along the beam line mimicking a parabolic path, ignoring relativistic effects.
It is interesting to note, the authors found both light and heavy monopoles on the range
My < 100 GeV and m,,, 2 900 GeV were swept out of the detector before reaching the
scintillators. Light monopoles experience greater accelerations along the beam line,
where the heavy monopoles have lower transverse velocity.

Where electrically charged particles curve in the r¢ plane, monopoles will curve

in the rz plane as shown in the figure below. This is the key signature used by the CDF

e charge
Monopole
B=14T

- =

Figure 3.1 Particle Trajectory

detector algorithm to check possible candidates from the triggered data. The algorithm

loosely connects high energy losses occurring in each of the eight superlayers in a

19



straight line, then attempts to piece the superlayers together to fit a trajectory which has a
low variance in ¢, +/- 0.2 radians.

Out of 2 x 10'2 pp collisions at CDF, the trigger only selected 130,000 events.
From these selected events none passed the reconstruction requirements. Based on their
findings the authors reported a 95% confidence limit on cross section versus mass
derived from,

c=4% (2.8)

where L is integrated luminosity, € = detector efficiency with acceptance and N is the
number of expected events. To obtain as upper cross section limit, N would be set to 1.
Assuming a Drell-Yan production mechanism, a lower mass limit of 360 GeV was set on

the monopole mass.

20



Chapter 3

PHOTON FUSION

The favored model for Dirac monopole pair production has been the Drell-Yan
production mechanism. This model was used at the Tevatron in 2003 to set the time-of-
flight trigger window, and it was also used as their benchmark to set a lower mass limit
on the magnetic monopole [15]. There are several reasons the Drell-Yan process is so
heavily relied on to model monopole production. First there is high expected cross

section for the first order term of the Drell-Yan process, shown in Figure 3.1.

Figure 3.1 Drell-Yan - Monopole Pair Production

More importantly, with the coupling constant of the monopole at nearly 4700 times that

21



of the electron, perturbation theory breaks down for other processes including higher

order terms. The Drell-Yan process additionally avoids issues with perturbation theory,

since modeling a monopole interacting with matter only requires the replacement of the

electric charge with its effective charge g3 [ 12, 15 ].

We use a similar assumption to calculate the photon fusion process as a second

source of monopole pair production, keeping only the first order terms. Photon fusion

induced through the inelastic scattering of two quarks is represented by the Feynman

diagrams shown in Figure 3.2a and 3.2b.

M
w M
Py y
(a) (b)

Figure 3.2 Inelastic Scattering With
Photon Fusion - Monopole Pair Production

Due to the startup of the LHC at CERN in 2008 this process is worth pursuing.

The Tevatron which is a pp collider is well suited for the Drell-Yan mechanism.
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However the LHC is a pp collider, the effectiveness of the Drell-Yan process will be
severely reduced as it will now rely on sea quark to furnish the anti-quark for the
annihilation. We also believe photon fusion will be comparable to Drell-Yan in a pp
collider; significant enough to combine with the calculated Drell-Yan cross-section and
extend the lower mass limit of the monopole.

Photon fusion benefits from the large magnetic coupling constant ¢y, providing

process amplification at each vertex, inverse of an electric interaction, see Figure 3.3.

1@ J (@
1w _ ® _
)
o = 34.25

Figure 3.3 Photon Fusion - Vertexes

In the squared matrix elements expression (3.1), where ¢ and urefer to the exchanged
momenta squared for the two photon process, the full benefit inherent in the interaction is

evident, as each vertex now allows the matrix to be multiplied by o, times a factor.

2

— _ 2 _
SIM, 2 = 26222 4+ e 42 (ke 4 )

— 2 — 2 _
t—m2, u—ms, t—m2z, .
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f4m;1n(t7}n% + u;n% )?] (3.1
This means the matrix elements for the photon fusion process is amplified by an
additional oy over the Drell-Yan process, which has only one vertex connected to the
monopoles.

The task now becomes to derive and compute the cross section for the inelastic
scattering. The goal will be to compare the photon fusion process to the Drell-Yan
process for energies of 1.96 T'eV and 14.0 T'eV', which are the center of mass energies
for the Tevatron and LHC respectively. Since a Dirac monopole shares identical
properties to a heavy lepton, except for the charge, we followed the work of Bhattacharya
and Drees [16, 17], who calculated the cross section for heavy lepton production through
the identical process of photon fusion induced through the inelastic scattering of quarks.
See Feynman diagram Figure 3.4. For an additional reference on lepton production
through the Drell-Yan process see [18].

As will be shown, the magnitudes of couplings of the monopole/photon or

lepton/photon vertices can be brought out of the cross section integral. This allows for a

quick estimation for the monopole cross-section at 14 7'eV. One can then multiply the
. . . 4
heavy lepton cross-section obtained by Bhattacharya or Drees, by a ratio of Z;. Due to

of improved patron distribution functions (PDF) since the date of their publications, we

will preform the integration for the monopole pair production cross section and use the
24



lepton curve as a reference. Additionally, we will to compute the total cross section at a

CME of 1.96 T'eV, corresponding to the Tevatron.

”1%

Figure 3.4 Heavy Lepton Production

l
l

To compute the cross section for the entire process, we followed the convolution
and matrix integration method use by Drees, resulting with the following integral.

O'(mmpg) = f‘}m_2 dxq f41m_2 dxo f14m2 dz, fl am2 A2 P($1,$2,Z1,22) (3.2a)
STy swqxg

£l sSr]xrz]

P =30 aTe(@1,4,Q) fu(r2,q,Q) f2(21,9) f2(22,4)) 64y (212221228)  (3.2b)

Here o is the total cross section for a specific monopole mass m,,,, and center of mass
energy squared s, for p; and p2. Below are the s values for the Tevatron and LHC.
Tevatron s = (1.96)? TeV (3.3)
LHC s = (14.0)2 TeV (3.4)
The variable z; represents the fractional energy of proton p; residing in the

interacting quark ¢;. The next variable z;, constitutes the fraction of the interacting
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quark's energy carried off by ~y;. Therefore, the total energy of 172, in the photons
center of mass frame, is shown in equation (3.5).

S = x11921298

(3.5)

The four integrals in equation (3.2a) essentially account for all the allowed combinations

of energies for the two quarks and two photons.

The lower limit on the outer integral starts the integration at the minimum amount
of energy fraction of p; in ¢; to create the monopoles on-shell. This is,

4m?

T1min = s

(3.6)

Moving to the integral over x2, the lower limit is determined from the value of z; by

solving (3.7) for x5 resulting in equation (3.8).

21wy = 400 3.7)
2
Tomin = T (3.8)

Hence for the first infinitesimal portion where z; is minimum, z2 must be at 1 or
100% of the energy of ps must be in g. This combination then adds nothing to the cross
section with the limits of the inner integral ranging from 1 to 1. The integration proceeds

with the value of z; increasing after each completion of the inner integral, driving the

lower limit of x5 down.

The integrals over the variables z; and z9 follow the same pattern. The lower
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limit for the z; integration is found by solving equation (3.9) for 27, and similarly the

lower limit for the last integral is established by solving equation (3.10) for 2s.

2

(3.9

4
T1T221 = —

2

T1T27150 = 42 (3.10)

The function (3.2b) resembles a statistical calculation where four conditions must
occur, hence the multiplication of functions f 1 (i,q,Q) and f 2 (zi,q). The former

function is the parton distribution function (PDF), where q is the quark and () is the
energy scaling of the interaction.
Q=1/5 (3.12)
The latter is the photon density inside the quark which we used the Weizsicker-

Williams photon spectrum given by

2
Fa () = g P2k iy e (3.13)

Z tinin
In the photon spectrum calculation, %,,,4, and t,,;, are characteristic maximum and
minimum photon momentum transfers. To ensure deep inelastic scattering where the
PDF is valid, t,,,;,, is set to 1 GeV2. In agreement with Bhattacharya and Drees [16,17],
the choice of ¢,,4, 1S somewhat arbitrary as the result is not heavily dependent on %,,,4-
We selected to use their approach for the value of %, .

m

tmaz = 5 — m? (3.14)
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Finally, the product of the PDFs with the photon spectrum functions are summed over all

quarks, indicated by > _ .

The final portion of expression (3.2b) is the total subprocess cross-section for

vy — MM~

2 2

o(vy — MTM~) = L4 (M —gm2, — 8)In(30) — B(s + 4m2)]  (3.15)

47s

where

2

B=(1— %)} (3.16)
The last three details are to determine 6(21 in the Weizsicker-Williams
approximation, g? in the cross-section and the conversion factor from the ﬁ to barns.

Since Lorentz-Heaviside units are used here, where #, ¢ = 1, e? becomes

e? = 4ma, (3.17)
Therefore the expression for eg , used in Weizsicker-Williams, is given in (3.18) where 7
is the fractional charge of the quark [ 1/3, 2/3,-1/3,-2/3].

eg = n’4ra, (3.18)
Where we used for the coupling constant,

Qe = 1o (3.19)

Since the Dirac quantization expression (1.29) is given in cgs units, it is necessary

to derive g2 for Lorentz-Heaviside units. Starting with (1.29), then dividing both sides
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by e? one obtains (3.19)

ge = n%ﬁc (1.29)
2 =nih (3.20)

In cgs units, % = ai, so the right side is unitless. Setting n = 1 and squaring both sides,

&=L (3.21)
Now letting e? = 4o, for Loretz-Heaviside units, and solving for g2,

g = = (3.22)
Due to the high energy scale of the photon interaction in the cross section calculation
(3.15), we used (3.23) for determining the value for g2.

Qe = T35 (3.23)
By doing so, we assume the Dirac condition hold at all energy scales and the magnetic
coupling constant runs inversely to the electric coupling constant.

To convert the cross section calculation to barns the following conversion factor

was used.

3.894 x 10~*barn GeV? (3.24)
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Chapter 4

METERIAL AND METHODS

To compute the cross section for the process PP — vy — MM,
equation (3.2) was numerically integrated using a right point integration method. Right
point integration was chosen as it is simple, and the integrands are well behaved to allow
for quick convergence.

Numerical integration was performed using a FORTRAN based program written
by the author, see appendix A for the source code. The source code was compiled and
executed on a Compaq computer running a Pentium 4, 3.8 GHz processor with a Fedora
Core 4 operating system.

Incorporated in the program are variables allowing the users to alter the following
quantities; monopole mass, center of mass energy, number of division for the integrals,
and choice of PDF. Unless specified all calculation were performed using Cteq6 1L
PDF.

For efficiency, 10 Compaq computers were employed to simultaneously test

different parameter settings, such as mass, energy and number of integration steps. Each
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computer was verified using an adopted set of parameters to confirm all computers

compiled and executed the program identically. The benchmark was a double precision

output with all digits matching.
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Chapter 5

RESULTS AND ANALYSIS

Equation (3.2) contains two independent parameters , m,,, and s, to determine the
cross section from the process PP — ~~ — M™M ™. Since the motivation for this
calculation is to help predict the cross section for Dirac monopole production at the LHC
and to set mass limits on the monopole by comparing results of the CDF search, the
monopole mass range covered by the calculation was 100 GeV < m,,, < 1000 GeV
with CME of either 1.96 T'eV or 14 T'eV/, referring to the Tevatron and LHC
respectively.

Figure 5.1 displays cross section vs monopole mass for a CME of 1.96 TeV. In
this figure, the solid line represents the photon fusion process and describes the
interpolated data points calculated for mass increments of 25 GeV'. The other curve,
shown by the dashed line, is the predicted cross-section for the Dell-Yan process, and
finally the dot-dash line indicates the monopole cross-section upper limit with a 95% CL.

These last two curves were derived from the CDF publication [15].
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Figure 5.1 Monopole Cross Section, s = (1.96 T'eV)?;
—— Photon Fusion; —— Drell-Yan; - — - 95% Confidence Limit

For the CME energy of 14 T'eV’, the plot of cross section vs monopole mass is
shown in Figure 5.2. As expected the shape of this curve closely resembles the heavy
lepton production curve for the photon fusion process as reported by Drees [17]. In this
figure the solid line again describes the interpolated data for the photon fusion process

and the dashed lines indicates an estimated cross section for the Drell-Yan process.

33



Cross Section ( barn )

1.0E-06

1.0E-07

1.0E-08

1.0E-09

1.0E-10

1.0E-11

1.0E-12

N
N
N
N
~
~
~ T
I I I I I I I I
100 200 300 400 500 600 700 800 900 1000
Mass ( GeV)

Figure 5.2 Monopole Cross Section Via
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—— Photon Fusion; — — Drell-Yan (estimated)
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Chapter 6

DISCUSSION AND CONCLUSION

The curves corresponding to the photon fusion process in Figures 5.1 and 5.2,
represent a reasonable estimation for monopole pair production via the photon fusion
process induced through the inelastic scattering of quarks. Thus by adding the cross
section for the Drell-Yan process to the photon fusion process for s = (1.96 T'eV)?2, the
lower mass limit of the magnetic monopole can be increased from the current limit of
360 GeV, established by the CDF experiment. A direct reading of the cross section from
Figure 5.1 would be very inaccurate. Therefore, without the precise data for the cross
section corresponding to the Drell-Yan process and the 95% CL limit, it is difficult to
pinpoint to what value the monopole mass limit can be extended. An estimation based on
Figure 5.1, puts the lower limit on the monopole mass in the range of,

360 GeV < my, (lower limit) < 400 GeV . 6.1)

The cross section for the photon fusion process at 14 7'eV CME, Figure 5.2,
indicates a relatively high probability for monopole production for the LHC. With an

integrated luminosity of 100 b~ this would yield the production of approximately 11
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million monopole pairs for a monopole mass of 600 GeV'. By comparison, the Drell-Yan
process will produce less than 1 million events. Therefore it is imperative that the
process of photon fusion be considered when a search for Dirac monopoles is conducted
at the LHC.

These favorable results reinforce the necessity to conduct future searches for
Dirac monopoles at the LHC. If the Dirac monopole exists, the addition of the photon
fusion process brings the Dirac monopole closer to being discovered than anticipated by

the Drell-Yan process alone.
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Appendix

FORTRAN SOURCE CODE

Program Monopolert

(Cotestestestesteste st ste e e e e sfe e stestestestesfe st st st st st s s s s s s s s s s s sk seoskeoskeoskeoskoskoskoskostostototototokokokokokokok

C

Main program variables / functions description

(e st ste st sheshe s s s st sfesheshe s s s st sfesheshe s s s st sfesheshe s s s st sfesfeshe s s s sfesfesfeshe sk s sk ste st sfeskeskeoste sk st st sfeskeok ok

C

oNeoNe!

Alphal ( **coupling const 1/(128) used in cross section
Alpha2 ( **coupling const 1/(137) used in WW calculation
CME ( **CONST Gev Total Energy of the two Beams;

Beta ( variable used to calculate dsig (cross section)

C countl,count2 ( Do loop counter for integration; P() = dP()*count()

C count3,count4

oNoNoNoNoNoNONONe

0 0

crossl,cross2 ( Value of each integral over variable P()

cross3,cross4

dsigl,dsig2,dsig3,dsig4 ( temp variables used while calculating cross section
dsig ( final cros section

dP1,dP2 ( Infinitesimal Integration for P1 & P2

dP3,dP4

e(-5:5) ( charge of parton "see prtnl or prtn2"

eSq (e™2 in the cross section dsig calculation = 4*Pi*Alphal

Flnm ( file name of output file

Flag1,Flag2 ( when PDF is same for quark anti-quark, doubles cross section
for quark and skips anti-quark;Flag1=1st proton,Flag2=2nd proton
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oNoNoNoNoNoNoNoNoNONONS!

@)

gSq (monopole coupling = eSq/2*Alphal)

IUnum ( Function, returns unused i/o unit number

IU1  ( output file i/o number

Numl (**CONST number of intervals for outer integration, set by user
Num?2,Num3,Num4 ( 2nd,3rd,4th integration, number of intervals, calculated
Mmass ( **CONST ASSUMED MONOPOLE MASS IN GEV - SHELL MASS
Prtn1,Prtn2 (-5:5,integer for quark,-5=anti-bottom, 1=up,3=strange

PdfTable (set pdf table to call : see list below

PDF1,PDF2( Pdf value for quark from proton 1 or proton 2

Pi ( **Const 3.14159... calculated from Acos(-1)

P1,P2 ( Fraction of proton's energy (1 or 2) in quark

P3,P4 ( Fraction of quark's energy in gamma

Plow1,Plow2 ( low energy fraction point of intergration

C Plow3,Plow4

O 0

oNoNoNoNONONe

oNoNeoNeNe!

Pupl,Pup2 (upper limit of integration; set slightly less than 1.0
Pup3,Pup4

Pmin ( **CONST MIN fraction of CME for monopole pair; 4*(Mmass/CME)"2

Shat ( ** Shat Gamma Gamma center of mass energy

QScale ( scaling factor for PDF - set to Mmass or sqrt(shat)

tmax ( S/4 - m*m

tmin ( **CONST 1 Gev

total ( sums cross section for all combinations of quarks for a given P1,P2,P3,P4
"see Xtotal"

WWP3 ( value of Weizsaker Williams for variable P3
WWP4  ( value of Weizsaker Williams for variable P4

Xtotal ( stores cross section value for one combination of quarks from P1 and P2
"see total"

C !!! Function calls to "Cteq6Pdf-2004.1", must be compiled with this program

C !!!! also need pdf table at the time of execution.

C SetCtq6(PDFtbl) function to set which parton distribution table to use
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C Ctq6pdf(Prtn2, P2, Qscale) main function call to output the PDF value

(Cotestestestestesteste st st e e sfe st stestesfestesfesfe st st s st s s s s s s s s s s s s s skeskeoskeoskeskeoskeoskoskosteostostetotostokokokokokok

(Cotestestestestestesfe e st e sfe st stestestestestesfe st st st st s s s s s s s s e e e e s s ke ke ke sk ke skeskeskestestesfestestosteototokokokok

Implicit None

Integer Num1,Num2,num3,num4,count3,count4
Integer Prtnl,prtn2,Pdftbl,countl,count2
Integer Flagl,Flag2,IU1,JUNum

Double Precision Alphal,CME,Beta,crossl,cross2

+ ,Cross3,Cross4,dP1,dP2,dP3,dP4,P1,P2,P3,P4

+ ,e5q,2SQ,Mmass,Pi,Pmin,Shat,QScale,tmax,tmin
+ ,Plow1,Plow2,Plow3,Plow4,Pup1,Pup2,Pup3,Pup4
Double precision dsig,dsigl,dsig2,dsig3,dsig4
Double Precision Alpha2,Ctq6pdf

Double Precision XTotal, PDF1,PDF2

+ ,e(-5:5),totaL WW,WWP3 WWP4

(@
Character flnm*9

C o

C set electromagnetic charge of parton

C o

Data e/ (1.0/3.0),(2.0/3.0),(1.0/3.0)
+ ,(1.0/3.0),(2.0/3.0),(0.0),(2.0/3.0)
+ ,(1.0/3.0),(1.0/3.0),(2.0/3.0)

+ ,(1.0/3.0)/

Crsetackak VARIABLES TO MANUALLY SET ottt

C #FRxxtkkynits are Gev **%*

P1 =dAcos(-1.0d0)
Alphal =1.0d0/128.0d0
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Alpha2 = 1.0d0/137.0d0

WW  =alpha2 / (2.0d0*(PI))
eSq =4.0d0*Pi*Alphal

gSq =Pi/Alphal

tmin = 1.0d0
PDFtbl =4

CME =14.0d3
Mmass = 100.0d0
Numl =50

flom ='1M100.tbl'

C o
C Iset PDF-set Description Alpha_s(Mz)**Lam4 Lam5 Table_File
C (PDFtbl)

C

C 1 CTEQ6M Standard MSbar scheme 0.118 326 226 cteqbm.tbl
C 2 CTEQ6D Standard DIS scheme 0.118 326 226 cteq6d.tbl
C 3 CTEQ6L Leading Order 0.118** 326%* 226 cteq6l.tbl

C 4 CTEQ6LI1 Leading Order 0.130** 215*%* 165 cteq6l1.tbl
C oo

(C stestestesesie s s s e s e e ke he e she b she ke she ke she e e e sfesfesfe e sfesfestestestestestestesteste st st sk sk sk s sk s s s s sk kol skoskoskoskoskoskoskoskoskoskokokokok

(C stestestestesie s s s e s e e e ke e he e she she she ke she st she st sfe st sfe e e sfesfesfesfestestesteste st st sk st st s sk s s s s sk st sk kol skoskoskoskoskoskokoskokokokokokok

C
C subroutine in CteqPdf-2004.1 to open pdf table
C
Call SetCtq6(PDFtbl)
C
C find unallocated i/o0 unit and open file to write data
C

IU1 = IUnum()
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o oNeNe!

open(Unit=IU1,File= flnm,status="unknown')

Write(6,*)'Monopole Mass in Geyv........... "Mmass
Write(6,%)'Numl...............ooooe. "numl
Write(6,*)'CM Energy in Gev ............. "\CME
Write(6,*)'Iset PDFtbl.................... " PDFtbl
Write(6,%)'g2 e ,25q
Write(IU1,*)'Monopole Mass in Gev........... ' Mmass
Write(IUL,*)'Numl.........coeuvveeeannnnen. ',numl
Write(IU1,*)'CM Energy in Gev ............. 'CME
Write(IU1,*)'Iset PDFtbl.................... ',PDFtbl
Write(IU1,*)'g72 oo, ,eSq

cross1 =0.0d0
cross2 = 0.0d0
cross3 = 0.0d0
cross4 = 0.0d0

setting Pup and Plow slightly off from limit to
prevent PDF fault when feaction equals 1.0

Pmin =4.0d0*(Mmass/CME)**2
Plowl = Pmin
Pupl =1.0d0 - 0.00001d

dP1 = (Pupl - Plowl ) / dble( Num1 )
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C e e
Do 100, countl =1, ( Numl )
P1 =Plowl1 + dP1 * dble( countl
C o
C  set variables for 2nd integration
C o
cross2 = 0.0d0
Plow2 = Plow1/P1
Pup2 = Pupl
dP2 =dP1
C oo

Do 200, count2 =1, ( Num2 )

P2 =Plow2 + ( dP2 * dble( count2 ) )

C o
C  set variables for 3nd integration
C o

cross3 = 0.0d0

Plow3 = Plow2/P2

Pup3 = Pup2

dP3 =dP2

Num3 = int( ( Pup3 - Plow3 ) /dP3)
O e
C ##%%% 3RD Integration Plow?2 to Pup *###skkskkskox
O oo

Do 300, count3 =1, ( Num3 )
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oHONeONe!

P3 = Plow3 + dP3 * dble( count3 )

cross4 =0.0d0

Pup4 = Pup3

Plow4 = Plow3/p3

dP4 = dP3

Num4 = int( ( Pup4 - Plow4 ) / dP4)

Do 400, count4 = 1, ( Num4 )

P4 = Plow4 + dP4 * dble( count4 )

Shat = (CME**2)*P1*P2*P3*P4
tmax = (Shat / 4.0d0) - Mmass**2
IF (tmax .1t. 1.0) then
tmax = 1.0
write(6,*)'tmax limit'
endif

gscale = dsqrt(Shat/4.0d0)
Beta = ( 1.0d0 - (4.0d0 * Mmass**2/Shat) )**0.5

dsigl =( (8.0d0*Mmass**4.0d0)/Shat )-(4.0d0*Mmass**2)-Shat
dsig2 = dsigl*dlog( (1-Beta) / (1+Beta) )

dsig3 = dsig2 - ( Beta * (Shat + 4.0d0*Mmass**2) )

dsig = ((gSq*gSq ) / (4.0d0*Pi*Shat**2) ) * dsig3

dsig = dsig*3.894d-4
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oNoNoNoNoNoNoNoNoNONONS!

oNeoNe!

oNoNeoNeNe!

dsigl = 4*PI*Alphal **2*Beta/shat

dsig2 = ( 3.0 - Beta**4)/(2.0*Beta)

dsig3 = dlog( (1.0d0 + Beta)/(1.0d0 - Beta))
dsig4 = (2.0d0 - Beta**2 )

dsig = dsigl*( dsig2*dsig3 - dsig4)

WWP3 = dlog(tmax/tmin)*WW?*( 1.0d0+(1.0d0-P3)**2.0 )/P3
WWP4 = dlog(tmax/tmin)*WW?*( 1.0d0+(1.0d0-P4)**2.0 )/P4

flagl = 0.0
flag2 = 0.0
Total = 0.0

check parton from proton 1
to skip similar PDF values for
quark anti-quark. Also skip over gluon

Do 50, prtnl =-2, 5
If (prtnl .eq. 0) then
goto 50
endif

If ( prtnl .gt. 2) then

flagl =1
endif
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oNoNoNeONe

O 0aan

oNoNoNeNe

check parton from proton 2
to skip similar PDF values for
quark anti-quark. Also skip over gluon
Do 60, prtn2 =-2, 5
If(prtn2 .eq. 0) then
goto 60
endif

If ( prtn2 .gt. 2 )then
flag2 =1
endif

PDF1 = Ctq6pdf(Prtnl, P1, Qscale)
PDF2 = Ctq6pdf(Prtn2, P2, Qscale)

Xtotal=(e(prtn1)**2)*(e(prtn2)**2)*WWP3*WWP4*PDF1*PDF2*dsig

*#%% double Xtotal if similar PDF
for quark anti-quark from Proton 2
If ( Flag2 .eq. 1 ) then

Xtotal = Xtotal*2.0
endif

4% double Xtotal if similar PDF
for quark anti-quak from Proton 1
even if already doubled from Proton 2

If (Flagl .eq. 1) then
Xtotal = Xtotal*2.0
endif
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total = total + Xtotal

Flag2 =0

60 continue
Flagl =0

50 continue
Cross4 = Cross4 + total*dP4

400 continue
Cross3 = Cross3 + Cross4*dP3

300 continue
Cross2 = Cross2 + Cross3*dP2

200 continue
Cross1 = Cross1 + Cross2*dP1
Write(6,*)P1,cross1

100 continue

Write(IU1,*)P1,cross1
close(unit=IU1)

46



C ewtoiericiieikReturns an unallocated FORTRAN 1/0 unit, ###es
(C stestestesie st s s s e e e e ke ke ke b e b she e sheshe st sheste st stestesfesfe e sfesfesfestestestestestestestesteste st sk st sk sk s s st sk sk sk ok ok ok ok

Function IUnum()

Integer n
Data n/10/
Save n
Logical EX

C
C Checks for available i/o unit that is less then 100
C otherwise terminate program
C e
10 INQUIRE (UNIT=N, OPENED=EX)
If (EX) then
n=n+1

If (n.gt.100) then

Print *, '"There is no available I/O unit.'
Stop

Else

goto 10

Endif
Endif
IUnum =n

Return
End
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