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Abstract: We present a calculation of single pion electroproduction cross sections on

heavy targets in the kinematic region of the ∆(1232) resonance. Final state interactions of

the pions are taken into account using the pion multiple scattering model of Adler, Nussinov

and Paschos (ANP model). For electroproduction and neutral current reactions we obtain

results for carbon, oxygen, argon and iron targets and find a significant reduction of the

W -spectra for π0 as compared to the free nucleon case. On the other hand, the charged

pion spectra are only little affected by final state interactions. Measurements of such cross

sections with the CLAS detector at JLAB could help to improve our understanding of pion

rescattering effects and serve as important/valuable input for calculations of single pion

neutrinoproduction on heavy targets relevant for current and future long baseline neutrino

experiments. Two ratios, in Eq. (3.8) and (3.10), will test important properties of the

model.
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1. Introduction

Neutrino interactions at low and medium energies are attracting attention because they

will be measured accurately in the new generation of experiments [1, 2]. One aim of the

experiments is to measure the precise form of the cross sections and their dependence

on the input parameters. This way we check their couplings and compare the functional

dependence of the form factors, where deviations from the dipole dependence have already

been established (see e.g. figure 1 in [3] and references therein). Deviation from the standard

model predictions can arise either from properties of the neutrinos or from new couplings

of the gauge bosons to the particles in the target. Another aim of the experiments is to

establish the properties of neutrinos including their masses, mixings and their fermionic

nature (Dirac or Majorana particles). This program requires a good understanding of the

cross sections, which motivated a new generation of calculations. Since the experiments use

nuclear targets, like C12, O16, Ar40, Fe56, ... it is necessary to understand the modifications

brought about by the targets.

The very old calculations for quasi-elastic scattering and resonance excitation on free

nucleons [4, 5] have been replaced by new results where couplings and form factors are

now better determined. For the vector couplings comparisons with electroproduction data

have been very useful [3, 6]. Axial couplings are frequently determined by PCAC. There

are already improvements and checks of the earlier quark models [7]. Comparisons with
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experimental data are also available even though the experimental results are not always

consistent with each other [8, 9, 10] but there are plans for improvements that will resolve

the differences [1, 2].

For reactions on nuclear targets there are modifications brought about by the propaga-

tion of the produced particles in the nuclear medium. They involve absorption of particles,

restrictions from Pauli blocking, Fermi motion and charge-exchange rescatterings. One

group of papers uses nuclear potentials for the propagation of the particles [11]. Others use

a transport theory of the final particles including channels coupled to each other [12]. These

groups gained experience by analyzing reactions with electron beams (electroproduction)

and adopted their methods to neutrino reactions [12].

Our group investigated 1-π pion production on medium and heavy targets employing

the pion multiple scattering model by Adler, Nussinov and Paschos [13] that was developed

in order to understand neutral current neutrino interactions with nuclei. This model was

useful in the discovery of neutral currents and has been applied to predict neutrino-induced

single pion production on Oxygen, Argon and Iron targets [14, 15, 16] which are used in

long baseline(LBL) experiments. Among its characteristics is the importance of charge-

exchange reactions that modify the π+ : π0 : π− ratios of the original neutrino-nucleon

interaction through their scatterings within the nuclei. The presence of this effect has been

confirmed by experiments [17]. We note here that our results are valid for isoscalar targets.

For non-isoscalar targets like lead, used in the OPERA experiment, it is possible to extend

the ANP model [18], which can be done in the future.

In this article we take an inverse route and use our calculation in neutrino reactions to

go back to the electroproduction of pions on free nucleons and heavy nuclei. The plan of

the paper is as follows. In section 2 we summarize the neutrino production cross sections

on free nucleons and in the ∆ resonance region. This topic has been described by several

groups in the past few years. We present cross sections differential in several variables

Eπ, Q2 and W . We pay special attention to the spectrum dσ/dEπ, where we correct an

error we found in our earlier calculation [14]. Then we obtain the electroproduction cross

section by setting the axial coupling equal to zero and rescaling, appropriately, the vector

current contribution.

The main content of the article appears in section 3 where we describe the salient

features and results of the ANP model. This model has the nice property that it can be

written in analytic form including charge exchange and absorption of pions. This way we

can trace the origin of the effects and formulate quantities which test specific terms and

parameters. As we mentioned above several features have been tested already, and we

wish to use electroproduction data in order to determine the accuracy of the predictions.

We present numerical results for different target materials, and study the quality of the

averaging approximation and uncertainties of the ANP model due to pion absorption ef-

fects. We discuss how the shape of the pion absorption cross section (per nucleon), an

important and almost unconstrained ingredient of the ANP model, can be delineated from

a measurement of the total fraction of absorbed pions. Finally, in Sec. 4 we summarize the

main results. Averaged rescattering matrices for carbon, oxygen, argon, and iron targets

and for different amounts of pion absorption have been collected in the appendices and are
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useful for simple estimates of the rescattering effects.

2. Free nucleon cross sections

In the following sections, leptonic pion production on nuclear targets is regraded as a two

step process. In the first step, the pions are produced from constituent nucleons in the

target with free lepton-nucleon cross sections [13]. In the second step the produced pions

undergo a nuclear interaction described by a transport matrix. Of course, the resonances

themselves propagate in the nuclear medium before they decay, an effect that we will

investigate in the future.

The leptonic production of pions in the ∆-resonance region is theoretically available

and rather well understood as described in articles for both electro- and neutrino produc-

tion, where comparisons with available data are in good agreement [3, 6, 7, 19, 12].

The available data is described accurately with the proposed parameterizations. The

vector form factors are modified dipoles [3] which reproduce the helicity amplitudes mea-

sured in electroproduction experiments at Jefferson Laboratory [7]. The coupling in the

axial form factors are determined by PCAC and data. Their functional dependence in Q2

is determined by fitting the dσ
dQ2 distributions. For the vector form factors the magnetic

dipole dominance for CV
3 (q2) and CV

4 (q2) gives an accurate description of the data. How-

ever, deviations with a non-zero CV
5 (q2) have also been established [7]. This way a small

(5%) isoscalar amplitude is reproduced.

For the propose of this article we shall use a scaling relation connecting neutrino- to

electroproduction. The weak vector current is in the same isospin multiplied with the

electromagnetic current and the two are related as follows:

< ∆++|V |p >=
√

3 < ∆+|JI=1
em |p >=

√
3 < ∆0|JI=1

em |n > .

Taking into account the isospin Clebsch-Gordan factors for the ∆ → Nπ branchings one

finds the following contributions of the ∆-resonance to the cross sections for ep → epπ0,

ep → enπ+, en → epπ− and en → enπ0

dσem,I=1

dQ2dW
=

8

3

π2

G2
F

α2

Q4

dV ν

dQ2dW
×





2
3 : pπ0

1
3 : nπ+

1
3 : pπ−

2
3 : nπ0

(2.1)

where dVν

dQ2dW
denotes the cross section for the vector contribution alone to the reaction

νp → µ−pπ+. The free nucleon cross sections in Eq. (2.1) will be used in our numerical

analysis. We shall call this the reduced electromagnetic formula. Its accuracy was tested

in figure (5) of ref. [3]. Further comparisons can be found in [20].

For studies of the pion angular distributions (or what is the same of the pion energy

spectrum in the laboratory frame) we begin with the triple differential cross section for
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neutrino production

dσ

dQ2dWd cos θ⋆
π

=
WG2

F

16πM2
N

3∑

i=1

(
KiW̃i −

1

2
KiDi(3 cos2 θ⋆

π − 1)
)

(2.2)

with Ki being kinematic factors of W and Q2 and the structure functions W̃i(Q
2,W ) and

Di(Q
2,W ) representing the dynamics for the process. All of them are found in ref. [5].

The angle θ⋆
π is the polar angle of the pion in the CM frame with

cos θ⋆
π =

−γECMS
π + Eπ

βγ|~p CMS
π | (2.3)

where

|~p CMS
π | =

√
(ECMS

π )2 − m2
π with ECMS

π =
W 2 + m2

π − M2
N

2W
(2.4)

and the rest of the variables defined as

ν =
W 2 + Q2 − M2

N

2MN

, γ =
ν + MN

W
, βγ =

√
ν2 + Q2

W
. (2.5)

It is now straight-forward to convert the cross section differential in the solid angle to the

one differential in the laboratory energy of the pion, Eπ,

dσ

dEπ
=

1

γβ|~p CMS
π |

dσ

d cos θ⋆
π

. (2.6)

Having expressed all quantities in (2.2) and (2.5) in terms of W, Q2 and Eπ it is possible

to compute the pion energy spectrum

dσ

dEπ

=

∫ Wmax

Wmin

dW

∫ Q2
max

Q2
min

dQ2 dσ

dQ2dWdEπ

θ(phys). (2.7)

The limits of integration are given as

Q2
min = 0 , Q2

max =
(S − W 2)(S − M2

N )

S
,

Wmin = MN + mπ , Wmax ≃ 1.6 GeV (2.8)

where S = M2
N + 2MNE1 is the center-of-mass energy squared with E1 the energy of the

incoming lepton in the LAB system. The θ-function takes care of the constraints from

the phase space. We integrated the cross section for Eν = 1 GeV and show the spectrum

in figures 1–3. In our earlier publication [14] the spectrum for Eπ was incorrect because

we did not impose the phase space constraints correctly. The pion spectrum for charged

current reactions is correctly reported in figure (4) in ref. [21]. The discrepancy in ref. [14]

has been pointed out for neutral currents in ref [12].

The neutrino–nucleon and electron–nucleon cross sections will be used in the rest of

this article in order to compute and test effects of nuclear corrections. We deduce the

electroproduction cross sections from neutrino production as in Eq. (2.1). For the triple
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differential cross section we follow the same procedure by setting the axial form factors to

zero and using the relation

dσem,I=1

dQ2dWdEπ
=

8

3

π2

G2
F

α2

Q4

dV ν

dQ2dWdEπ
×





2
3 : ep → epπ0

1
3 : ep → enπ+

1
3 : en → epπ−

2
3 : en → enπ0

(2.9)

A small isoscalar part in the electromagnetic cross section is omitted since it does not

contribute to the ∆-resonance but only to the background, which for W < 1.3 GeV is

small and contributes for 1.3 GeV < W < 1.4 GeV.

3. Cross sections for heavy targets

In the following we will deal with single pion resonance production in the scattering of a

lepton l off a nuclear target T (6C
12, 8O

16, 18Ar40, 26Fe56), i.e., with the reactions

l + T → l′ + T ′ + π±,0 (3.1)

where l′ is the outgoing lepton and T ′ a final nuclear state. Furthermore, in our analysis of

nuclear rescattering effects we will restrict ourselves to the region of the ∆(1232) resonance,

1.1 GeV < W < 1.4 GeV, and to isoscalar targets with equal number of protons and

neutrons.

3.1 Pion rescattering in the ANP model

According to the ANP model [13, 22] the final cross sections for pions (π+, π0, π−)f can

be related to the initial cross sections (π+, π0, π−)i for a free nucleon target in the simple

form 


dσ(ZTA;π+)

dQ2dW
dσ(ZTA;π0)

dQ2dW
dσ(ZTA;π−)

dQ2dW




f

= M [T ;Q2,W ]




dσ(NT ;π+)

dQ2dW
dσ(NT ;π0)

dQ2dW
dσ(NT ;π−)

dQ2dW




i

(3.2)

with
dσ(NT ;±0)

dQ2dW
= Z

dσ(p;±0)

dQ2dW
+ (A − Z)

dσ(n;±0)

dQ2dW
(3.3)

where the free nucleon cross sections are averaged over the Fermi momentum of the nucle-

ons.1 For an isoscalar target the matrix M is described by three independent parameters

Ap, d, and c in the following form [13]

M = Ap




1 − c − d d c

d 1 − 2d d

c d 1 − c − d


 , (3.4)

1However, the Fermi motion has a very small effect on the W distribution and we neglect it in our

numerical analysis. On the other hand, effects of the Pauli exclusion principle have been absorbed into the

matrix M and are taken into account.
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where Ap(Q
2,W ) = g(Q2,W ) × f(1,W ). Here, g(Q2,W ) is the Pauli suppression factor

and f(1,W ) is a transport function for equal populations of π+, π0, π− which depends on

the absorption cross section of pions in the nucleus. The parameters c and d describe the

charge exchange contribution. The final yields of π’s depend on the target material and

the final state kinematic variables, i.e., M = M [T ;Q2,W ].

In order to simplify the problem it is helpful to integrate the doubly differential cross

sections of Eq. (3.2) over W in the (3, 3) resonance region, say, mp + mπ ≤ W ≤ 1.4 GeV.

In this case Eq. (3.2) can be replaced by an equation of identical form




dσ(ZTA;π+)

dQ2

dσ(ZTA;π0)

dQ2

dσ(ZTA;π−)

dQ2




f

= M [T ;Q2]




dσ(NT ;π+)

dQ2

dσ(NT ;π0)

dQ2

dσ(NT ;π−)

dQ2




i

(3.5)

where the matrix M [T ;Q2] can be obtained by averaging the matrix M [T ;Q2,W ] over W

with the leading W -dependence coming from the ∆ resonance contribution. Moreover, we

expect the matrix M to be a slowly varying function of Q2 (for Q2 & 0.3 GeV2). For this

reason we introduce a second averaging over Q2 and define the double averaged matrix

M [T ] which is particularly useful for giving a simple description of charge exchange effects

in different nuclear targets. In the double-averaging approximation (AV2) the final cross

sections including nuclear corrections are expressed as follows:




dσ(ZTA;π+)

dQ2dW
dσ(ZTA;π0)

dQ2dW
dσ(ZTA;π−)

dQ2dW




f

= M [T ]




dσ(NT ;π+)

dQ2dW
dσ(NT ;π0)

dQ2dW
dσ(NT ;π−)

dQ2dW




i

. (3.6)

We note that the cross sections are differential in two variables while the matrix M [T ] is

the average over these variables.

The above discussion will be used for a phenomenological description of nuclear rescat-

tering effects. On the other hand, in Ref. [13] a dynamical model has been developed to

calculate the charge exchange matrix M . As an example, for oxygen the resulting matrix

in the double-averaging approximation is given by

M(8O
16) = Ap




0.788 0.158 0.0537

0.158 0.684 0.158

0.0537 0.158 0.788


 . (3.7)

with Ap = 0.766, which contains the averaged Pauli suppression factor and absorption of

pions in the nucleus. There are various absorption models described in the original article.

Two of them are distinguished by the energy dependence of the absorption cross section

beyond the ∆ region. In model [A] the absorption increases as W increases while in [B]
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it decreases for large W ’s (beyond the ∆ region). A comparison of the two absorption

models (A) and (B) can be found in [22]. Since the fraction of absorbed pions is still

rather uncertain we provide in the appendices ANP matrices for different amounts of

absorption. These matrices are useful to obtain an uncertainty band for the expected

nuclear corrections.

3.2 Results for various targets

In this section we present numerical results for 1-pion leptoproduction differential cross

sections including nuclear corrections using the ANP model outlined in the preceding sec-

tion.

3.2.1 Neutrinoproduction

We begin with a discussion of the nuclear corrections to the pion energy spectra in neutrino

scattering shown in Figs. 1–3, where the curves are neutral current reactions. The dotted

lines are the spectra for the free nucleon cross sections. The dashed lines include the effect

of the Pauli suppression (in step one of the two step process), whereas the solid line in

addition takes into account the pion multiple scattering. These curves correct Figs. 8–16

in Ref. [14]. Similar curves have been obtained recently by Leitner et al. [12] who also

noticed the error in [14]. Even though the models differ in the transport matrix, they

both include charge exchange effects. For example, they both find that for reactions where

the charge of the pions is the same with the charge of the current the pion yield shows a

substantial decrease.

3.2.2 Electroproduction

We now turn to the electroproduction. To be specific, our analysis will be done under the

conditions of the Cebaf Large Acceptance Spectrometer (CLAS) at Jefferson Lab (JLAB).

The CLAS detector [23] covers a large fraction of the full solid angle with efficient neutral

and charged particle detection. Therefore it is very well suited to perform a high statistics

measurement on various light and heavy nuclear targets and to test the ideas of pion

multiple scattering models. In the future these measurements can be compared with results

in neutrinoproduction from the Minerva experiment [1] using the high intensity Numi

neutrino beam. If not stated otherwise we use an electron energy Ee = 2.7 GeV in order

to come as close as possible to the relevant low energy range of the LBL experiments.

For the momentum transfer we take the values Q2 = 0.4, 0.8 GeV2 in order to avoid the

experimentally and theoretically more problematic region at very low Q2. Results for larger

Q2 and larger energies, say Ee = 10 GeV, are qualitatively very similar.

Figure 4 shows the double differential cross section dσ/dQ2dW for π+ and π0 produc-

tion versus W for an oxygen target. The solid lines have been obtained with help of Eq.

(3.2) including the nuclear corrections. The dashed lines show the result of the double-

averaging approximation according to Eq. (3.6) using the ANP matrix in Eq. (3.7). The

dotted line is the free cross section in Eq. (3.3). One sees, the double-averaging approxima-

tion and the exact calculation give very similar results such that the former is well-suited

for simple estimates to an accuracy of 10% of pion rescattering effects. We observe that
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the cross sections for π0 production are largely reduced by about 40% due to the nuclear

corrections. This can be understood since the larger π0 cross sections are reduced by ab-

sorption effects and charge exchange effects. On the other hand, the π+ cross sections are

even slightly enlarged, because the reduction due to pion absorption is compensated by an

increase due to charge exchange. The compensation is substantial since the π0 yields are

dominant.

In Fig. 5 double differential cross sections per nucleon for different target materials

are presented. The electron energy and the momentum transfer have been chosen as

Ee = 2.7 GeV and Q2 = 0.4 GeV2, respectively. The results for the pion rescattering

corrections have been obtained within the double-averaging approximation (3.6) which

allows for a simple comparison of the dependence on the target material in terms of the

matrices M [T ] which can be found in Eq. (3.7) and App. A. For comparison the free nucleon

cross section (3.3) (isoscalar p+n
2 ) is also shown. As expected, the nuclear corrections

become larger with increasing atomic number from carbon to iron.

One of the input quantities for calculating the transport function f(λ) in the ANP

model is the pion absorption cross section σabs(W ) describing the probability that the pion

is absorbed in a single rescattering process. For σabs(W ) the ANP article reported results

for two parameterizations, models A and B, taken from Refs. [24, 25] which have very

different W -dependence and normalization. However, the predictions of the ANP model

in the double-averaging approximation are primarily sensitive to the normalization of the

pion absorption cross section at W ≃ m∆ [22]. Using data by Merenyi et al. [26] for a

neon target it was found that about 25% ± 5% of pions are absorbed making possible the

determination of the normalization of σabs(W ) with a 20% accuracy.

In order to investigate the theoretical uncertainty due to pion absorption effects we

show in Fig. 6 double differential cross sections dσ/dQ2dW for π+ and π0 production vs

W for different amounts of pion absorption in oxygen: 25% (solid line), 20% (dashed line),

30% (dotted line). The π0 and π+ spectra have been calculated in the double-averaging

approximation (3.6) utilizing the matrices in App. B. The three curves represent the

theoretical uncertainty due to pion absorption effects. For comparison, the free nucleon

cross section (3.3) is shown as well.

Although the predictions of the ANP model are mainly sensitive to σabs(W ≃ m∆) it

would be interesting to obtain more information on the detailed W -shape. The fraction

of absorbed pions can be determined by measuring the inclusive pion production cross

sections for a nuclear target divided by the free nucleon cross sections,

Abs(Q2,W) = 1 −
∑

k=0,±
dσ(ZTA;πk)

dQ2dW∑
j=0,±

dσ(NT;πj)
dQ2dW

= 1 − Ap(Q2,W) , (3.8)

where Ap has been introduced in (3.4). This quantity is related to σabs(W ) as can be seen

by linearizing the transport function f(λ,W ) [16, 22]

Abs(Q2,W) ≃ 1

2
L̄ρ0 × σabs(W) . (3.9)
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Here L̄ is the effective length of the nucleus averaged over impact parameters and ρ0 the

charge density in the center. As an example, for oxygen one finds L̄ ≃ 1.9R with radius

R ≃ 1.833 fm and ρ0 = 0.141 fm−3. Therefore, the W -dependence of σabs(W ) can be

reconstructed from the fraction of absorbed pions, i.e. Abs(Q2,W). Summing over the

three charged pions eliminates charge exchange effects.

In order to verify the linearized approximation in Eq. (3.9), we show in Fig. 7 the ANP

model prediction for Abs(Q2,W) for oxygen and iron targets with Q2 = 0.3 GeV2. This

prediction strongly depends on the shape of the cross section σabs(W ) for which we use

model B from Refs. [25]. σabs(W ) multiplied by a free normalization factors for oxygen

and iron, respectively, is depicted by the dashed lines. Obviously, Eq. (3.9) is quite well

satisfied for oxygen and still reasonably good for iron. Finally, the dotted line shows the

result of the averaging approximation. We conclude that σabs(W ) can be extracted with

help of Eqs. (3.8) and (3.9).

For completeness, we mention that the pion absorption in nuclei is reported in various

articles [27]. For comparisons one should be careful because the absorption cross sections in

pi-nucleus and in neutrino-nucleus reactions are different, in the former case it is a surface

effect while in the latter it occurs everywhere in the nucleus.

A useful test of charge exchange effects is provided by the double ratio

DR(Q2,W ) =

(
π0

π+ + π−

)

A

/

(
π0

π+ + π−

)

p

(3.10)

where (πi)A represents the doubly differential cross section dσ/dQ2dW for the production

of a pion πi in eA scattering. This observable is expected to be rather robust with respect

to radiative corrections and acceptance differences between neutral and charged pions.2 In

Fig. 8 we show the double ratio for a carbon target in dependence of W for a fixed Q2 =

0.4 GeV2. The dependence on Q2 is weak and results for other values of Q2 are very similar.

The solid line shows the exact result, whereas the dotted lines have been obtained in the

double averaging approximation with minimal and maximal amounts of pion absorption.

As can be seen, the results are rather insensitive to the exact amount of pion absorption.

Without charge exchange effects (and assuming similar absorption of charged and neutral

pions) the double ratio would be close to unity. As can be seen, the ANP model predicts

a double ratio smaller than 0.6 in the region W ≃ 1.2 GeV. A confirmation of this

expectation would be a clear signal of pion charge exchange predominantly governed by

isospin symmetry. In this case it would be interesting to go a step further and to study

similar ratios for pion angular distributions.

4. Summary

Lepton induced reactions on medium and heavy nuclei include the rescattering of produced

pions inside the nuclei. This is especially noticeable in the ∆-resonance region, where the

produced resonance decays into a nucleon and a pion. In the introduction and section

2We are grateful to S. Manly for drawing our attention to the double ratio.

– 9 –



2 we reviewed the progress that has been made in the calculations of neutrino-induced

reactions on free protons and neutrons, because we needed them for following calculations.

For several resonances the vector form factors have been recently determined by using

electroproduction results in Jefferson Laboratory [7]. For the axial form factors modified

dipoles give an accurate description of the data. For the purposes of this article (studies of

nuclear corrections) it suffices to deduce the electroproduction cross sections through Eqs.

(2.1) and (2.9).

The main contribution of this article is contained in section 3, where we describe

important features of the ANP model and define single- and double averaged transport

matrices. Two important aspects of rescattering are emphasized: (i) the absorption of the

pions and (ii) charge exchange occurring in the multiple scattering, where we have shown

that special features of the data are attributed to each of them. Finally we propose specific

ratios of electroproduction reactions that are sensitive to the absorption cross section and

to charge exchange effects.

Using the model we calculate the transport matrix for various absorption cross sec-

tions and nuclei and present the results in appendix A. We also calculated the pion energy

spectra with and without nuclear corrections. The results appear in figures 1–3 and can be

compared with other calculations [12]. Comparison of the double averaged approximation

with the exact ANP calculation shows small differences (figure 4). As mentioned already,

electroproduction data are very useful in testing several aspects of the model and its pre-

dictions. For the absorption cross section we propose in Eq. (3.8) a ratio that depends only

on Ap(Q2,W ) = g(Q2,W )f(1,W ). Since we consider isoscalar targets and sum over the

charges of the pions, charge exchange terms are eliminated. This leaves over the depen-

dence on charge independent effects, like the Pauli factor and the average absorption; this is

indeed the average absorption of pions and even includes the absorption of the ∆-resonance

itself.

Another ratio (DR(Q2,W )) is sensitive to charge exchange effects. In the double ratio

the dependence on Ap(Q2,W ) drops out and the surviving terms are isospin dependent.

Our calculation shows that the ratio depends on W with the largest reduction occurring in

the region 1.1 < W < 1.25 GeV. Finally, the ∆(1232) is a sharply peaked resonance, where

the resonant interaction, takes place over small ranges of the kinematic variables, so that

averaging over them gives accurate approximations. This is analogous to a narrow width

approximation. Several comparisons in this article confirm the expectation that averaged

quantities give rather accurate approximations of more extensive calculations.
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Appendix

A. Charge exchange matrices in the double averaging approximation

Carbon:

M(6C
12) = Ap




0.826 0.136 0.038

0.136 0.728 0.136

0.038 0.136 0.826


 (A.1)

with Ap = 0.791 .

Argon:

M(18Ar40) = Ap




0.733 0.187 0.080

0.187 0.626 0.187

0.080 0.187 0.733


 (A.2)

with Ap = 0.657 .

Iron:

M (26Fe56) = Ap




0.720 0.194 0.086

0.194 0.613 0.194

0.086 0.194 0.720


 (A.3)

with Ap = 0.631 .

B. Charge exchange matrices for various amounts of pion absorption

Carbon:

15% absorption

M(6O
12) = Ap




0.817 0.141 0.041

0.141 0.718 0.141

0.041 0.141 0.817


 (B.1)

with Ap = 0.831 .

20% absorption

M(6C
12) = Ap




0.829 0.134 0.037

0.134 0.731 0.134

0.037 0.134 0.829


 (B.2)

with Ap = 0.782 .
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25% absorption

M(6C
12) = Ap




0.840 0.127 0.032

0.127 0.745 0.127

0.032 0.127 0.840


 (B.3)

with Ap = 0.734 .

Oxygen:

15% absorption

M(8O
16) = Ap




0.771 0.167 0.062

0.167 0.665 0.167

0.062 0.167 0.771


 (B.4)

with Ap = 0.833 .

20% absorption

M(8O
16) = Ap




0.783 0.161 0.056

0.161 0.679 0.161

0.056 0.161 0.783


 (B.5)

with Ap = 0.784 .

25% absorption

M(8O
16) = Ap




0.797 0.153 0.050

0.153 0.693 0.153

0.050 0.153 0.797


 (B.6)

with Ap = 0.735 .

30% absorption

M(8O
16) = Ap




0.810 0.146 0.044

0.146 0.709 0.146

0.044 0.146 0.810


 (B.7)

with Ap = 0.687 .

C. Forward- and backward charge exchange matrices

Carbon:

15% absorption

M+(6C
12) = Ap+




0.870 0.100 0.029

0.100 0.799 0.100

0.029 0.100 0.870


 ,M−(6C

12) = Ap−




0.675 0.251 0.074

0.251 0.498 0.251

0.074 0.251 0.675


 (C.1)
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with Ap+ = 0.606 and Ap− = 0.225.

20% absorption

M+(6C
12) = Ap+




0.880 0.094 0.026

0.094 0.811 0.094

0.026 0.094 0.880


 ,M−(6C

12) = Ap−




0.685 0.247 0.068

0.247 0.505 0.247

0.068 0.247 0.685


 (C.2)

with Ap+ = 0.578 and Ap− = 0.204.

25% absorption

M+(6C
12) = Ap+




0.889 0.088 0.022

0.088 0.823 0.088

0.022 0.088 0.889


 ,M−(6C

12) = Ap−




0.695 0.243 0.062

0.243 0.513 0.243

0.062 0.243 0.695


 (C.3)

with Ap+ = 0.549 and Ap− = 0.184.

Oxygen:

15% absorption

M+(8O
16) = Ap+




0.829 0.125 0.046

0.125 0.750 0.125

0.046 0.125 0.829


 ,M−(8O

16) = Ap−




0.635 0.265 0.100

0.265 0.470 0.265

0.100 0.265 0.635


 (C.4)

with Ap+ = 0.581 and Ap− = 0.252.

20% absorption

M+(8O
16) = Ap+




0.840 0.119 0.041

0.119 0.762 0.119

0.041 0.119 0.840


 ,M−(8O

16) = Ap−




0.646 0.262 0.092

0.262 0.477 0.262

0.092 0.262 0.646


 (C.5)

with Ap+ = 0.554 and Ap− = 0.23.

25% absorption

M+(8O
16) = Ap+




0.852 0.112 0.036

0.112 0.776 0.112

0.036 0.112 0.852


 ,M−(8O

16) = Ap−




0.657 0.258 0.085

0.258 0.485 0.257

0.085 0.258 0.657


 (C.6)

with Ap+ = 0.527 and Ap− = 0.208.
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30% absorption

M+(8O
16) = Ap+




0.863 0.105 0.031

0.105 0.789 0.105

0.031 0.105 0.863


 ,M−(8O

16) = Ap−




0.669 0.253 0.078

0.253 0.493 0.253

0.078 0.253 0.669


 (C.7)

with Ap+ = 0.499 and Ap− = 0.187.
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Figure 1: Differential cross section per nucleon for single pion spectra of π+, π0, π− for oxygen with

Eν = 1 GeV in dependence of pion energy Eπ . The curves correspond to neutral current reactions.
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Figure 2: The same as in fig. 1 for argon.
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Figure 3: The same as in fig. 1 for iron.
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Figure 4: Double differential cross sections for single-pion electroproduction for an oxygen target in

dependence of W . Spectra for π0 and π+ production are shown for Q2 = 0.4 GeV2 and Q2 = 0.8 GeV2

using an electron energy Ee = 2.7 GeV. The solid and dotted lines have been obtained according to

(3.2) using the exact ANP matrix M(W, Q2) and (3.6) utilizing the double-averaged ANP matrix M in

(3.7), respectively. The dashed lines show the free nucleon cross section (3.3).
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Figure 5: Double differential cross sections per nucleon for single-pion electroproduction for different

target materials. W -spectra for π0 and π+ production are shown for Q2 = 0.4 GeV2 using an electron

energy Ee = 2.7 GeV. The pion rescattering corrections have been calculated in the double-averaging

approximation (3.6) using the ANP matrices in (3.7) and App. A. For comparison, the free nucleon

cross section (3.3) is shown.
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Figure 6: Double differential cross sections per nucleon for single-pion electroproduction for oxygen with

20% (dashed line), 25% (solid line) and 30% (dotted line) pion absorption. Furthermore, Q2 = 0.8 GeV2

and Ee = 2.7 GeV. The π0 and π+ spectra have been calculated in the double-averaging approximation

(3.6) utilizing the matrices in App. B. For comparison, the free nucleon cross section (3.3) is shown as

well.
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Figure 7: The fraction of absorbed pions, Abs(Q2, W), in dependence of W for oxygen and iron

targets for Q2 = 0.3 GeV2. Also shown is the cross section σabs(W ) (model B) multiplied by free

normalization factors (dashed lines). The dotted lines are the result for Abs(Q2, W) in the averaging

approximation.
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Figure 8: Double ratio of single pion electroproduction cross sections in dependence of W for fixed

Q2 = 0.4 GeV2 as defined in Eq. (3.10). The dotted lines show results in the double averaging

approximation with varying amounts of absorption.
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