

Data Quality Monitoring Framework for the
ATLAS Experiment at the LHC

A. Corso-Radu, S. Kolos, University of California, Irvine, USA

H. Hadavand, R. Kehoe, Southern Methodist University, Dallas, USA

M. Hauschild, CERN, Geneva, Switzerland

Abstract - Data Quality Monitoring (DQM) is an important and
integral part of the data taking process of HEP experiments.
DQM involves automated analysis of monitoring data through
user-defined algorithms and relaying the summary of the
analysis results while data is being processed. When DQM occurs
in the online environment, it provides the shifter with current
run information that can be used to overcome problems early on.
During the offline reconstruction, more complex analysis of
physics quantities is performed by DQM, and the results are used
to assess the quality of the reconstructed data. The ATLAS Data
Quality Monitoring Framework (DQMF) is a distributed
software system providing DQM functionality in the online
environment. The DQMF has a scalable architecture achieved by
distributing execution of the analysis algorithms over a
configurable number of DQMF agents running on different
nodes connected over the network. The core part of the DQMF is
designed to only have dependence on software that is common
between online and offline (such as ROOT [1]) and therefore is
used in the offline framework as well. This paper describes the
main requirements, the architectural design, and the
implementation of the DQMF.

I. INTRODUCTION
ATLAS is one of the four experiments at the Large Hadron

Collider (LHC) [2] at CERN. This experiment has been
designed to study a large range of physics including searches
for previously unobserved phenomenon such as the Higgs
Boson and super-symmetry [3].
 At about 140 million electronic channels and an event rate of
105 Hz it is essential to monitor the status of the ATLAS
hardware and determine the quality of the data being taken in
an efficient manner. In the online environment, this
information can flag the shifter to take action to prevent taking
faulty data. In the offline environment, one can perform more
complex checks of the data to determine the quality of the data
for various physics groups. Careful monitoring of data both
online and offline is especially important at the beginning of
an experiment where the environment is new and requires
some experience to fully comprehend. Therefore having a
common, user friendly tool can help the experiment quickly
determine problems and then proceed to solve them
efficiently. Experience from the Tevatron experiments has
shown us that an automatic checking of data is needed in the

complex physics environment of proton-proton collisions.
DQMF has been designed to fulfill these requirements.

II. GENERAL DESCRIPTION
The purpose of the Data Quality Monitoring Framework

(DQMF) is to apply analysis algorithms to various types of
online monitoring data (histograms, messages, counters, etc.)
according to a particular configuration, which is defined by
detector experts. The results of this analysis may generate
alarms when deviations from the standard are encountered. A
summary of these results will be displayed to the shifter and
will also be archived for future retrieval. Using this summary,
the shift operator will make a final data quality assessment for
a given run. The archived results will permit a check or
refinement of this assessment offline.

Histograms

Counters

DQ Results

Alarms,
commands

Configuration

DQ Results

Information
Service

Data Quality
Monitoring
Framework

Online
Histogramming

Gatherer

Conditions DB

Run
Control

Configuration
DB

Fig.1: DQMF interaction with the online services.

DQMF interacts with the Online Monitoring Services as
well as with some other Online Services, provided as part of
the ATLAS TDAQ [4] software infrastructure (Fig. 1), in
order to be able to fulfill its objectives, in particular:
• Information Service (IS) [5] is used to retrieve the

required monitoring data and also to make the DQ
analysis results publicly available.

• Online Histogramming Service (OH) is used to retrieve
histograms produced in the current run and to transmit
requests to histogram providers. Histograms generated
within DQM algorithms are transmitted to OH to be
displayed and/or archived.

• Gatherer is used to sum up histograms from different
nodes. DQMF will then perform algorithms on full
statistics histograms produced from the Gatherer [6].

• Error/Message Reporting Service (ERS/MRS) is used to
send messages to the TDAQ system.

• Controls Service (CS) [7] is used to send messages to the
TDAQ control system in case a run needs to be paused,
reconfigured, etc. in order to avoid taking faulty data.

• Configuration Database (ConfDB) is used to store and
retrieve all the information that is necessary to configure
the DQM activity for the current run, i.e. algorithms to be
used, monitoring data to be retrieved, etc.

• Conditions Database is used to store and retrieve DQ
results.

III. MAIN REQUIREMENTS
Since the DQMF will be used in the prompt analysis of data

it must be able to analyze the input data in an efficient
manner. Therefore the algorithms written for analysis must be
light weight and must respect the time limits set for
processing. The timing of the system and synchronization is
important for keeping a consistent view of the status of the
detector.

The algorithms written for the DQMF should be easily
developed and tested in an offline manner by sub-component
experts. This ensures that the results of the DQMF will be
reliable and easily reproduced by the expert given the list of
parameters used.

The DQMF must be portable to both Point1, online, and
Tier-0, offline first pass reconstruction, running environment.
It is envisioned that the DQM status from express streams, fast
Tier-0 processing on subset of data, can be viewable at Point1
via a GUI. Although there may not be direct relaying of
information from Tier-0 to Point1, the information from both
environments shall be available to the shift personnel.

When possible, the DQMF implementation, utilizes the
software tools which are already available. For example for
archiving histograms and values produced by the DQMF we
will use a combination of Monitoring Data Archiver (MDA)
[8] and Online Asynchronous Interface to COOL (ONASIC)
[9]. For performing fits within the algorithms we use
ROOT[1]. For the configuration of the DQMF we use the
Object Kernel System (OKS) [10], which provides object-
oriented information representation.

IV. ARCHITECTURAL DESIGN
At high-level the DQMF can be split into several sub-

components as shown in Fig. 2. A detailed description of each
component is given after the diagram.

A. DQM Database
This component contains a complete description of the

DQMF for a particular DAQ configuration. This description
defines where the DQM Agents (application that implements
the DQMF) will be running, what information they will use,
what algorithms they will apply to analyze this information,
etc.

Fig. 2: Main components of the DQMF and their relationship with the online

services.

B. DQM Database
This component contains a complete description of the

DQMF for a particular DAQ configuration. This description
defines where the DQM Agents (application that implements
the DQMF) will be running, what information they will use,
what algorithms they will apply to analyze this information,
etc.

C. DQM Config
This component reads the DQM configuration

corresponding to a DQM Agent from the DQM Database and
makes this information available to the DQM Core. The main
aim of this component is to hide the particular database
technology that is used for the DQM Database
implementation.

D. DQM Input and DQM Output
These are two generic interfaces that have specific

implementations depending on the environment in which the
DQMF is used. For the online usage they are implemented
using the online services like IS and OH. In the offline
environment one reads the monitoring information from a
ROOT file. The offline results should then be sent to a
database.

E. DQM Core
This component is a central part of the DQMF. It reads the

input data via the DQM Input interface, performs analysis of
these data and publishes the DQM Results via the DQM
Output interface. In addition, it may generate alarms if the
DQM Results deviate significantly from the standard values.
The main components of the DQM Core are described below.

1) DQM Algorithm
The DQM Algorithm class provides generic interface for

any kind of operations that can be applied to the monitoring

data in order to evaluate a status of the corresponding DAQ
system elements. The algorithms work in a plug-in manner
into the core. This allows user defined algorithms to be used
in the system on the fly without modifying the core software.

DQMF provides a number of predefined DQM Algorithms
for the most common operations like histogram comparison,
histogram fitting, thresholds application, etc. In addition to the
predefined ones, a user can develop his/her own DQM
Algorithms.

A DQM Algorithm is responsible for producing the DQM
Result object. In addition a DQM Algorithm can also produce
some additional information during its execution such
numerical results like fit results or a difference histogram.
This information can be published to the Information Service
and/or Histogramming Service in order to be used for eventual
future analysis.

2) DQM Parameter
A DQM Parameter object represents the element of the

DAQ system whose state can be assessed using a single
monitoring information, i.e. a particular histogram or
information object.

A DQM Parameter object is responsible for applying the
algorithm defined for that object to a particular piece of
information with the aim of producing the DQ status for the
corresponding DAQ element. The description of the DQM
Parameter is taken from the DQM Database and provides the
following information:
• the location of the monitoring information that

represents the state of a particular DAQ element
• the weight (or degree of importance when calculating

the DQM Result) for that DQM Parameter
• the DQM Algorithm that has to be used for evaluating

the DQ status of that element
• specific parameters for the given DQM Algorithm, e.g.

fit parameters, minimum statistics, etc.
• reference values or histograms
• the list of thresholds values corresponding to

Red/Yellow/Green DQM Result
• actions that have to be taken depending on the results

of the DQM Algorithm execution.
3) DQM Region

An object of the DQM Region class represents a certain
subset of the DAQ system elements and contains a set of
DQM Parameters or low-level DQM Regions, which
correspond to these elements. This class is used for
representing a self-contained part of the DAQ system, like a
detector, a sub-detector, a sub-farm, etc. For any particular
DAQ partition all the available DQM Regions and DQM
Parameters will be organized into a tree (DQ Tree) with the
root node representing the state of the whole partition. This
state is defined by the DQM Result calculated as a
combination of the DQM Results for the contained DQM
Parameters and DQM Regions. The rules for DQM Result
calculation (for a given DQM Region) are provided by the
DQM SummaryMaker that is associated with that region. A

possibility to define different summary algorithms for
different DQM Regions will also be supported. This class
provides a reference to the DQM Summary Maker algorithm
that produces the DQM Result for that region.

4) DQM Result
A DQM Result object represents the DQ status for a given

DAQ system element. Each DQM Result contains a color
code value (Red-Yellow-Green) that shows the state of the
particular DAQ element. In addition to that it may also contain
a reference to the detailed numerical results or histograms that
have been produced by the DQM Algorithm.

5) DQM SummaryMaker
The DQM SummaryMaker is a special implementation of

the DQM Algorithm interface that evaluates the DQM Result
for a given DQM Region. To calculate a new DQM Result the
DQM SummaryMaker object uses the DQM Results produced
by the DQM Regions and DQM Parameters that belong to the
given region.

V. SCALABILITY

A. DQ Tree
In order to make the DQMF scalable its functionality is

provided by a set of processes with each of them hosting an
instance of the DQM Agent application. Each DQM Agent is
responsible for the subset of all the defined DQM Regions and
DQM Parameters up to the configurable level. The term
‘region’ here refers to any scope of data quality information
within which there can be a hierarchy of evaluation. When a
DQM Agent process is created it gets the list of [DQM
Parameter; Tree Depth] pairs, which defines the scope of
responsibility of this agent. For example consider the DQ tree
shown on Fig. 3 organized around the SCT detector regions.

Fig. 3: An example of DQ Tree.

There is a number of ways in which responsibility can be
distributed between different DQM Agent processes:
[1] One DQM Agent is started with the [SCT;3] parameter. It

will be responsible for the whole DQ tree. Only one agent
is necessary in this case.

[2] Three DMQ Agents are started with the [DQRegioni;2]
parameters, one for each DQMRegion.

[3] Seven DQM Agents are started with [DQRegioni,,

DQParameteri;1] parameters, one for each
DQMParameter and DQMRegion.

The functionality described here is meant to be general in
its accommodation of scalability. For instance, while there are
clear hierarchies of organization of data quality results for
sub-detector elements, other vantages are possible. One can
consider data quality results that are organized around
reconstructed objects like electrons, jets or Etmiss. In analogy
to the scenario shown in Fig. 3 for SCT data quality, we can
envision a Jets hierarchy under an overall Jets DQM Region.
There might be Calorimeter, Tracking, and Calibration DQM
Regions under this. The lowest level under Calorimeter might
include Width and EM fraction DQM Regions. The users,
whether they are detector, offline reconstruction, or trigger
algorithm experts will determine the specific hierarchies
actually chosen.

B. Deployment
The diagram on Fig. 4 shows a possible distribution of the

DQMF processes on a number of nodes, which have to be
connected via the ATLAS Control Network.

Fig. 4: Example of DQM processes distribution on five computing nodes.

This distribution is just an example that illustrates the
approach of addressing the DQMF scalability issue. For small
DAQ partitions, which don’t require substantial processing
power for the DQ analysis, various DQMF processes can be
deliberately combined with each other to be executed on a
smaller number of computers.

VI. IMPLEMENTATION
Different engines are implemented (Fig. 5) in order to be

able to run the DQMF in online and offline environments or
in algorithm development mode (ROOT).

A. DQM Agent
This application represents the online engine of the DQMF.

DQMF may contain one or more DQM Agents with each of
them responsible for a well defined subset of the whole DAQ
system. Each DQM Agent evaluates the information that is
used for the DQ assessment and produces the DQM Result for
all the individual components of that subset as well as an

overall DQ status for this subset as a whole.

B. DQM Workbench
 The algorithms which are running in the framework can also
be used standalone in ROOT, or the Workbench. In this
environment developers get a chance to test the algorithms
without setting up any configuration database and without any
dependency on the framework. The aim of the workbench is
to help determine the best configuration for a given
DQParameter. The tuning of the DQParameter objects can be
very sensitive and developers need this experience to
understand the behavior once plugged in to the framework.

Fig. 5: Different environments to run DQMF.

C. DQA offline
 The offline DQM framework, DQA, is similar to the
online version in functionality. The data source, output, and
configuration are the only differences. DQA uses a file
based input and output. In order not to have additional
dependency on online release from offline, a simple text
based configuration file is used to configure DQA. This
configuration file can then be bundled with a reference root
histogram, if needed, into a root file object. In this manner
the information needed to perform the algorithm is provided
from one source. This functionality is needed in the tier-0
environment.

VII. CONCLUSIONS
 The first implementation of DQM core has been available
since Jan 2007. It includes 24 algorithms, a default summary
maker, and a workbench for developing and testing
algorithms.
 The initial implementation of the framework was for
online use, DQMF. It has been, and continues to be, used
during ATLAS commissioning activities. The system also
includes an online GUI for displaying results as they are
made available by the framework.
 A prototype of the offline implementation has also been
provided recently. The aim is to use this implementation in
tier-0 tests during this summer.

REFERENCES
[1] Rene Brun & Fons Rademakers , “Root: An Object Oriented Data

Analysis Framework,” [Online]. Available:
http://root.cern.ch/.

http://root.cern.ch/

[2] ATLAS Collaboration, “ATLAS technical co-ordination technical
design report,” CERN/LHCC/99–01.

[3] ATLAS Collaboration, “ATLAS detector and physics performance
technical design report,” CERN/LHCC/99–14.

[4] ATLAS Collaboration, “ATLAS DAQ, EF, LVL2, and DCS”,
CERN/LHCC/98-16.

[5] Kolos, S. et al, “Experience with CORBA Communication Middleware
in the ATLAS DAQ, CERN-ATL-DAQ-2005-001.

[6] Conde-Muino, P. et al, “Portable Gathering System for Monitoring and
Online Calibration at ATLAS”, CERN-ATL-DAQ-2004-014.

[7] Liko, D. et al, “Control in the ATLAS TDAQ System”, CERN-ATL-
DAQ-2004-013.

[8] F. Zema, "Monitoring Data Archiving", Proceedings of IEEE NSS/MIC
2006 Nuclear Science Symposium, Medical Imaging Conference,
October 29 - November 4, 2006, San Diego California.

[9] “ATLAS:ONASICUserGuide”, [Online]. Available:
http://sim.fc.ul.pt/sim_en/ATLAS:ONASICUserGuide.

[10] R.Jones, L.Mapelli, Yu.Ryabov, I.Soloviev, “The OKS Persistent In-
Memory Object Manager”, IEEE transaction on Nuclear Science, August
1988, Vol 45, No.4, pp.1958-1964 (ISSN 0018-9499).

http://www.nss-mic.org/2006/
http://www.nss-mic.org/2006/
http://sim.fc.ul.pt/sim_en/ATLAS:ONASICUserGuide

	I. Introduction
	II. General Description
	III. Main Requirements
	IV. Architectural Design
	A. DQM Database
	B. DQM Database
	C. DQM Config
	D. DQM Input and DQM Output
	E. DQM Core
	1) DQM Algorithm
	2) DQM Parameter
	3) DQM Region
	4) DQM Result
	5) DQM SummaryMaker

	V. Scalability
	A. DQ Tree
	B. Deployment

	VI. Implementation
	A. DQM Agent
	B. DQM Workbench
	C. DQA offline

	VII. Conclusions

