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I. DIMENSIONAL REGULARIZATIONA. Introdution and MotivationIn 1999, Gerardus 't Hooft and Martinus J.G. Velt-man reeived the Nobel Prize in Physis1 �for eluidat-ing the quantum struture of eletroweak interations inphysis.� In partiular, they demonstrated that the non-abelian eletroweak theory ould be onsistently renor-malized to yield unique and preise preditions.An key ingredient for their demonstration was the de-velopment of the dimensional regularization tehnique.That is, instead of working in preisely D=4 spae-timedimensions, they generalized the dimension to be a on-tinuous variable so they ould ompute the theory inD=4.01 or D=3.99 dimensions.An important property of the dimensional regulariza-tion is that it respets gauge and Lorentz symmetries;2this is in ontrast to the older regularization shemes(e.g., uto� shemes, et.) whih violates these symme-tries. The symmetries of the eletroweak theory play anritial role in determining the dynamis of the partilesand their interations. Beause it respets these symme-tries, dimensional regularization has beome a essentialtool for the alulation of �eld theories.While dimensional regularization is an powerful andelegant tehnique, most examples and appliations of di-0 This work is based on letures presented a the CTEQSummer Shools on QCD Analysis and Phenomenology.http://www.teq.org1 See Ref. [5℄ and also the webpage:http://nobelprize.org/nobel_prizes/physis/laureates/1999/2 Note, for hiral symmetries there are some subtle di�ulties thatmust be handled arefully. In partiular, the properties of theparity operator are dependent on the dimensionality of spae-time.



2

Figure 1: a) A right triangle spei�ed by angles {θ, φ} andhypotenuse c. b) The same triangular area an be desribedby two similar triangles of hypotenuse a and b.mensional regularization use omplex higher-order Quan-tum Field Theory (QFT) alulations involving gaugeand Lorentz symmetries.In the present paper, we will apply the dimensionalregularization method to a problem from an elementaryundergraduate physis ourse, namely the eletri po-tential of an in�nite line of harge.[2�4℄ The example issimple enough for the undergraduate to understand, yetontains many of onepts we enounter in a true QFTalulation. We will ontrast the symmetry-preservingdimensional regularization approah with a symmetry-violating uto� approah.Imagining a variable number of dimensions an bea produtive exerise. To explain the weak nature ofthe gravitational fore physiists have reently positedthe existene of �Extra Dimensions.� After we onsiderspae-time dimensions in the neighborhood of D = 4, webrie�y onsider wider exursions of D = 4, 5, 6, ... andthe impliations for eletri potential and �eld.II. DIMENSION ANALYSIS: THEPYTHAGOREAN THEOREMTo illustrate utility of dimensional regularization anddimensional analysis, we warm-up with a pre-example.Our goal will be to demonstrate the Pythagorean Theo-rem, and our method will be dimensional analysis.We onsider the right triangle displayed in Fig. 1-a).From the Angle-Side-Angle (ASA) theorem, this an beuniquely spei�ed using the two angles {θ, φ} and thehypotenuse c. We now onstrut a formula for the areaof the triangle, Ac, using only these variables: {c, θ, φ}.Note that c has dimensions of length, and {θ, φ} are di-mensionless. From dimensional analysis, the area of thetriangle must have dimensions of length squared. As c isthe only dimensional quantity, the formula for Ac mustbe of the form:

Ac = c2f(θ, φ) (1)where f(θ, φ) is an unknown dimensionless funtion.Note that f(θ, φ) annot depend on the length c as thiswould spoil the dimensionless nature of f(θ, φ).We now observe that we an divide the original triangleof Fig. 1-a) into two similar triangles of hypotenuse a and
b as displayed in Fig. 1-b). Again, using the ASA theo-rem, we an represent the area of these triangles, Aa and
Ab, in terms of the variables {a, θ, φ} and {b, θ, φ}, re-spetively. Again from dimensional onsiderations, theseareas must be proportional to a2 and b2; thus, we obtain:

Aa + Ab = a2f(θ, φ) + b2f(θ, φ) (2)Beause all three triangles are similar, their areas aredesribed by the same f(θ, φ). It is important to notethat the funtion f(θ, φ) is universal, dimensionless, andsale-invariant.Finally, we use �onservation of area� to obtain ourresult. Spei�ally, sine the area of the original triangle
Ac is equal to the sum of the ombined Aa and Ab,

Aa + Ab = Ac (3)We an substitute Eqs. 1 and 2 to obtain our desiredresult:
a2f(θ, φ) + b2f(θ, φ) = c2f(θ, φ)

a2 + b2 = c2 (4)The last equation is, of ourse, the Pythagorean The-orem. Clearly, there are muh simpler methods to provethis theorem; however, this method does illustrate thepower of the dimensional analysis approah. Addition-ally, we gain a new perspetive on the Pythagorean The-orem in this proof as it is linked to onservation of area.There are instanes, suh as renormalizable �eld theory,where use of dimensional analysis tools are essential tomaking ertain alulations tratable. The following ex-ample will illustrate some of these features.III. AN INFINITE LINE OF CHARGEA. Statement of the problemFor our next example we onsider the alulation ofthe eletri potential V for the ase of an in�nite line ofharge with linear harge density λ = Q/L. The on-tribution to the eletri potential from an in�nitesimalharge dQ is given by:33 We will use MKS units here so that our results redue to theusual undergraduate textbook expressions.
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Figure 2: Coordinate system for an in�nite line of hargerunning in the y-diretion. We ompute the potential V (x)at a �xed perpendiular distane x from the line of harge.The distane to the element of harge dQ is r =
√

x2 + y2.
dV =

1

4πǫ0

dQ

rWe hoose our oordinate system (f., Fig. 2) suh that
x spei�es the perpendiular distane from the wire, y isthe oordinate along the wire, and r =

√

x2 + y2. Given
λ = Q/y we have dQ = λdy and an integrate along thelength of the wire to obtain:

V (x) =
λ

4πǫ0

∫ +∞

−∞

dy
1

√

x2 + y2
= ∞ (5)Unfortunately, this integral is logarithmially divergentand a we obtain an in�nite result.B. Sale invariane:If we take a loser look at this integral, we notie thatit is sale invariant; that is, if we resale the argument xby a onstant fator k, (x → k x), the result is invariant.

V (k x) =
λ

4πǫ0

∫ +∞

−∞

dy
1

√

(k x)2 + y2

=
λ

4πǫ0

∫ +∞

−∞

d(y/k)
1

√

x2 + (y/k)2

=
λ

4πǫ0

∫ +∞

−∞

dz
1√

x2 + z2
(6)

= V (x) (7)In the above we have implemented the resaling z = y/k;sine both y and z are dummy variables and the integra-tion limits are in�nite, the integral is unhanged. Thisequation implies the notable result that V (x) is sale in-variant:
V (x1) = V (x2) (8)

At �rst glane, this result appears to be a disaster sinethe usual purpose of the eletri potential is to omputethe work W via the formula
W/Q = ∆V = V (x2) − V (x1)or to ompute the eletri �eld via

~E = −~∇VAs Eq. 8 suggests V (x2) − V (x1) = 0, this implies thatour attempts to ompute the work W or the eletri �eld
~E will be meaningless.We now understand why it is fortunate that V (x) isin�nite as in�nite numbers have some unusual proper-ties. For example, for a �nite onstant c we an write(shematially) ∞ + c = ∞ whih implies ∞ − ∞ = c.We now understand that even though we have V (x1) =
V (x2), beause these quantities are in�nite we an still�nd that the di�erene is non-zero: V (x2) − V (x1) 6= 0.The hallenge is that the di�erene of two in�nite quan-tities is ambiguous; that is, how an tell if ∞−∞ = c1or ∞−∞ = c2 is the orret physial result?The solution is that we must regularize the in�nitequantities so that we an uniquely extrat the di�erene.IV. CUTOFF REGULARIZATION:A. Cuto� Regularization ComputationWe will �rst regularize the integral using a simple ut-o� method. That is, instead of onsidering an in�nitewire, we will ompute the potential for a �nite wire oflength 2L. In this instane, the potential beomes:4

V (x) =
λ

4πǫ0

∫ +L

−L

dy
1

√

x2 + y2

=
λ

4πǫ0
Log

[

+L +
√

L2 + x2

−L +
√

L2 + x2

] (9)We make the following observations.
• The result is �nite.
• In addition to the physial length sale x, V (x) de-pends on an arti�ial regulator L.
• We annot remove the regulator L without

V (x) beoming singular.
• The result for V (x) violates a symmetry of the orig-inal problem�translation invariane.4 For simpliity, we will alulate the potential at the mid-point ofthe wire; the general ase is more ompliated algebraially, butyields the same result in the L → ∞ limit.



4B. Computation of E and δVEven though V (x) depends on the arti�ial regulator
L, we observe that all physial quantities are independentof this regulator in the limit L → ∞. Spei�ally, for theeletri �eld we have:

E(x) =
−∂V (x)

∂x
=

λ

2πǫ0x

L√
L2 + x2

−→
L→∞

λ

2πǫ0xand for the potential di�erene (proportional to the ele-tri work W ) we have:
δV = V (x1) − V (x2)

−→
L→∞

λ

4πǫ0
Log

[

x2
2

x2
1

] (10)C. Broken translational symmetry:Notie that the presene of the uto� L breaks thetranslation symmetry of the original problem. That is,for a truly in�nite wire, our position in the y-diretionis inonsequential; however, for a �nite wire this is nolonger the ase. Spei�ally, if we shift our y-position bya onstant c to y → y′ = y + c, our result beomes:
V (x) =

λ

4πǫ0

∫ +L+c

−L+c

dy
1

√

x2 + y2
(11)

=
λ

4πǫ0
Log

[

+(L + c) +
√

(L + c)2 + x2

−(L − c) +
√

(L − c)2 + x2

]Clearly we have lost the translation invariane y → y′ =
y + c.While preserving symmetries is not of paramount im-portane in this simple example, it is essential for ertain�eld theory alulations. We now repeat the this alula-tion, but instead using dimensional regularization whihwill preserve the translational symmetry.D. ReapIn summary, we �nd that our problem is solved at theexpense of 1) an extra sale L whih serves to both regu-lates the in�nities and provide an auxiliary length sale,and 2) a broken symmetry�translational invariane.V. DIMENSIONAL REGULARIZATIONA. Generalization to arbitrary dimensionThe entral idea of dimensional regularization is toompute V (x) in n-dimensions where n is not neessarily

n Ω(n) Γ(n/2)1 2
√

π2 2π 13 4π
√

π

24 2π2 1Table I: Angular integration measure as a funtion of dimen-sion n. We reognize Ω(1) as the 1-dimensional integrationmeasure of ∫

+1

−1
dr, Ω(2) as the irumferene of the unit ir-le, Ω(3) as the surfae area of the unit sphere, and Ω(4) asthe 3-volume of the 4-dimensional unit hyperube.an integer. We an generalize the integration of Eq. 5 byreplaing the one-dimensional integration dy = d1y bythe general n-dimension result:

dy −→ dny =
dΩn

2
yn−1 dy (12)where the angular integration measure is given by

Ωn =

∫

dΩn =
2πn/2

Γ
(

n
2

) (13)It is instrutive to verify that Ωn yields the expetedresult for integer dimensions as tabulated in Table I.B. Computation V in arbitrary dimensionsThe generalized formula for V (x) now reads:
V (x) =

λ

4πǫ0

∫ +∞

0

dΩn
yn−1

µn−1

dy
√

x2 + y2
(14)Note that we have introdued an auxiliary sale fatorof µn−1, where µ has units of length, to ensure V (x) hasthe orret mass dimension.5 Replaing n = 1 − 2ǫ tofailitate expanding about n = 1 we obtain

V (x) =
λ

4πǫ0

Γ
[

1−n
2

]

(

x
µ

√
π
)1−n

=
λ

4πǫ0

(

µ2ǫ

x2ǫ

Γ[ǫ]

πǫ

) (15)We make the following observations about the dimen-sionally regularized result.5 Sine the fator λ/(4πǫ0) has units of potential, the integral mustbe dimensionless. Also note we have hanged the integrationlimits from [−∞,+∞] to [0,+∞], and the ompensating fatorof 2 anels the fator of 2 in dΩn/2.



5
• V (x) depends on an arti�ial regulator ǫ whih isdimensionless.
• V (x) depends on an auxiliary sale µ whih hasdimensions of length.
• If we remove either the regulator ǫ or the auxiliarysale µ then V (x) will beome ill-de�ned.
• The dimensional regularization preserves the trans-lation invariane of the original problem.It is interesting to ontrast this result with the uto� reg-ularization method where L serves as both the regulatorand the auxiliary sale.C. Computation of E and δVAs before, we observe that all physial quantities areindependent of both the regulator ǫ and the auxiliarysale µ. For the potential di�erene we �nd

δV = V (x1) − V (x2)
−→

ǫ → 0

λ

4πǫ0
Log

[

x2
2

x2
1

] (16)and for the eletri �eld we obtain:
E =

−∂V (x)

∂x
=

λ

4πǫ0

[

2ǫµ2ǫΓ[ǫ]

πǫx1+2ǫ

]

−→

ǫ→0

λ

2πǫ0

1

x
(17)D. The Renormalization Group EquationThe fat that the physial observables are independentof the un-physial auxiliary sale µ is simply a onse-quene of the renormalization group equation:

µ
dσ

dµ
= 0 (18)where σ represents any physial observable. Thus, therenormalization group equation implies that the eletri�eld ~E = ~∇V and the workW = δV are also independentof the µ sale:

µ
dE

dµ
= 0 µ

dW

dµ
= 0E. ReapIn onlusion we �nd that the problem for V (x) issolved at the expense of an arti�ial regulator ǫ and anauxiliary sale µ. Also note the regulator ǫ and auxiliary

sale µ are separate entities in ontrast to the uto� reg-ularization method where the length L plays both roles.Additionally, translational invariane symmetry is pre-served; the fat that dimensional regularization respetssymmetry makes this tehnique essential for �eld the-ory alulations involving gauge symmetries and Lorentzsymmetries. VI. RENORMALIZATIONHaving demonstrated two separate methods to regu-larize the in�nities that enter the alulation of V (x), wenow turn to renormalization.While physial quantities suh as the work W ∼ δVand the eletri �eld ~E ∼ −~∇V are derived from V (x),the potential itself is not a physial quantity. In partiu-lar, we an shift the potential by a onstant c, V → V +c,and the physial quantities will be unhanged.To illustrate this point, let's expand V (x) of Eq. 15 inpowers of ǫ:
V (x) =

λ

4πǫ0

[

1

ǫ
+ ln

[

e−γE

π

]

+ ln

[

µ2

x2

]

+ O(ǫ)

]Let us now invent a Minimal Subtration (MS) pre-sription. I have the freedom to shift V (x) by a onstant,and I design this to eliminate the 1/ǫ term:
VMS(x) =

λ

4πǫ0

[

ln

[

e−γE

π

]

+ ln

[

µ2

x2

]

+ O(ǫ)

]I an go even further and invent a Modi�ed Minimal Sub-tration (MS) presription to eliminate the ln[e−γE/π]term as well:
VMS(x) =

λ

4πǫ0

[

ln

[

µ2

x2

]

+ O(ǫ)

]After renormalization we an remove the regulator (ǫ →
0), but not the auxiliary sale µ; reall that without anauxiliary sale to generate a dimensionless ratio µ/x weould not have any substantive x-dependene.In addition to the µ-dependene we will also haverenormalization sheme dependene in V (x). However,physial observablesmust be independent of the auxiliarysale µ and the partiular renormalization sheme. Forexample, the omputed potential di�erenes yield identi-al results when alulated onsistently in a single renor-malization sheme.

VMS(x1) − VMS(x2) = δV = VMS(x1) − VMS(x2)Here, the results of the Minimal Subtration (MS) andthe Modi�ed Minimal Subtration (MS) are idential forphysial quantities.
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Deff E(r) V (r) Example3 1

r2

1

r
Point harge2 1

r1 ln r Line harge1 1

r0 r Sheet hargeTable II: Example harge on�gurations that illustrate
Deff = {3, 2, 1} e�etive dimensions.However, if you mix renormalization shemes inonsis-tently you will obtain non-sensible results that are de-pendent on the hoie of sheme:6

VMS(x1) − VMS(x2) 6= δV 6= VMS(x1) − VMS(x2)A. Connetion to QFTThis elementary problem of the in�nite line hargeontains all the key onepts of the dimensional regu-larization and renormalization that we enounter in thefull QFT radiative alulations. For example, in the ra-diative Quantum Chromodynamis (QCD) alulation ofthe Drell-Yan proess (qq̄ → γ∗ → µ+µ−) we enounterthe following in�nite expression:7
D(ǫ)

ǫ
=

(

4πµ2

Q2

)ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

∼ 1

ǫ
− ln

(

e+γE

4π

)

+ ln

(

µ2

Q2

)In this equation, Q represents the harateristi energysale; this is the independent variable that is analogousto x in our example. While this is for a 4-dimensionalQCD alulation, the struture of the divergent term isremarkably similar to our simple one-dimensional exam-ple above. For the QCD alulation, the Minimal Sub-tration (MS) presription for this Drell-Yan alula-tion eliminates the 1/ǫ term, and the Modi�ed MinimalSubtration (MS) presription for this Drell-Yan alu-lation eliminates the 1/ǫ− ln[e+γe/(4π)] so that only the
ln[µ2/Q2] remains.6 The reader is invited to verify that the omputation of the ele-tri �eld ~E(x) in a onsistent renormalization sheme yields theprevious results of Eq. 17, and a inonsistent appliation of theshemes does not.7 Cf., Ref. [6℄, Eq. (46) and Eq. (47).

Figure 3: Eletri �eld for a point harge on�ned in onein�nite dimension (x) and one �nite dimension (y) of sale R.VII. EXTRA DIMENSIONSA. E and V in arbitrary dimensionsIn the above example, we used the mathematial trikof generalizing the number of integration dimensions froman integer to a ontinuous parameter. While we only letthe dimension stray by 2ǫ, it is useful to onsider moredrasti shifts as in the ase of �Extra-Dimensions� whihhave reently been hypothesized.[1, 7℄ In this setion, weprovide an example of a dimensional transmutation; thatis where the e�etive dimension Deff hanges from oneinteger to another as we probe the system at di�erentsales.For example, we an generalize the r-dependene of thepotential and eletri �eld in for the ase of D-dimensionsas:8
V (r) ∼ 1

rD−2
E(r) ∼ 1

rD−1A quik hek will verify that this reprodues the usualexpressions in ordinary D = 3 spaial dimensions. Ad-ditionally, in 3-dimensions we an reate harge distri-butions that mimi lower order spatial dimensions; thisis illustrated in Table II. For a (zero-dimensional) point-harge in 3-dimensions, aording to Gauss's law the ele-tri �eld lines spread out on a surfae of D−1 = 2 dimen-sions, and we observe E(r) ∼ 1/r2. Similarly, for a (one-dimensional) line-harge, our spae is now e�etively
D = 2 dimensional; hene the eletri �eld lines spreadout on a surfae of D − 1 = 1 dimension, and we ob-serve E(r) ∼ 1/r. Finally, for a (two-dimensional) sheet-harge, our spae is now e�etively D = 1 dimension;hene the eletri �eld lines spread out on in D − 1 = 0dimensions, and we observe E(r) ∼ 1/r0 = constant.8 Note, for the speial ase D=2 the potential V (r) has a logarith-mi form; see Table II for details.



7B. Relation to ompati�ed dimensionsFigure 3 displays the eletri �eld lines for a pointharge on�ned to one in�nite dimension (x) and one�nite (or ompat) dimension (y) of sale R. We observethat if we examine the eletri �eld at sales small om-pared to the ompat dimension R (r ≪ R), we �nd thethe eletri �eld lines spread out in 2 dimensions and weobtain the usual 2-dimensional result ~E(r) ∼ 1/r; on-versely, if we examine the eletri �eld at distane saleslarge ompared to the ompat dimension R (r ≫ R), we�nd the 1-dimensional result ~E(r) ∼ constant. In thisexample, the e�etive dimension of our spae hangesas we move from small (D = 2) to large length sales(D = 1). VIII. CONCLUSIONSIn this paper we have omputed the potential of an in-�nite line of harge using dimensional regularization. Byontrasting this alulation with the onventional uto�approah, we demonstrated that dimensional regulariza-tion respets the symmetries of the problem�namely,

translational invariane. The dimensional regularizationrequires that we introdue a regulator ǫ and an auxil-iary length sale µ. We then renormalized the potentialto eliminate the 1/ǫ singularities; this potential was �-nite and independent of the regulator ǫ, but it dependedon the partiular renormalization sheme. However, wedemonstrated that all physial observables (E, δV ) weresheme and sale invariant.As this example exhibits many of the key features ofdimensional regularization as applied to QFT, it providesan exellent opportunity to understand the features ofthis regularization method without the ompliations ofgauge symmetries. As suh, this example serves as anideal pedagogial study.AknowledgmentWe thank Robert Ja�e for valuable disussions. F.I.Oaknowledge the hospitality of Argonne National Lab-oratory and CERN where a portion of this work wasperformed. This work is supported by the U.S. Depart-ment of Energy under grant DE-FG02-04ER41299, theLightner-Sams Foundation.[1℄ Nima Arkani-Hamed, Savas Dimopoulos, and G. R. Dvali.The hierarhy problem and new dimensions at a millime-ter. Phys. Lett., B429:263�272, 1998.[2℄ Bertrand Delamotte. A hint of renormalization. Am. J.Phys., 72:170�184, 2004.[3℄ M. Hans. An eletrostati example to illustrate dimen-sional regularization and renormalization group tehnique.Am. J. Phys., 51:694�698, 1983.[4℄ C. Kaufman. An Illustration from Classial Physis ofRenormalization Mathematis. Am. J. Phys., 37:560�561,
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