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We illustrate the dimensional regularization technique using a simple problem from elementary
electrostatics. We contrast this approach with the cutoff regularization approach, and demonstrate
dimensional regularization preserves the translational symmetry. We then introduce a Minimal Sub-
traction (MS) and a Modified Minimal Subtraction (M S) scheme to renormalize the result. Finally,
we consider dimensional transmutation as encountered in the case of compact extra-dimensions.
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I. DIMENSIONAL REGULARIZATION
A. Introduction and Motivation

In 1999, Gerardus 't Hooft and Martinus J.G. Velt-
man received the Nobel Prize in Physics® “for elucidat-
ing the quantum structure of electroweak interactions in
physics.” In particular, they demonstrated that the non-
abelian electroweak theory could be consistently renor-
malized to yield unique and precise predictions.

An key ingredient for their demonstration was the de-
velopment of the dimensional regularization technique.
That is, instead of working in precisely D=4 space-time
dimensions, they generalized the dimension to be a con-
tinuous variable so they could compute the theory in
D=4.01 or D=3.99 dimensions.

An important property of the dimensional regulariza-
tion is that it respects gauge and Lorentz symmetries;?
this is in contrast to the older regularization schemes
(e.g., cutoff schemes, etc.) which violates these symme-
tries. The symmetries of the electroweak theory play an
critical role in determining the dynamics of the particles
and their interactions. Because it respects these symme-
tries, dimensional regularization has become a essential
tool for the calculation of field theories.

While dimensional regularization is an powerful and
elegant technique, most examples and applications of di-

0 This work is based on lectures presented a the CTEQ
Summer Schools on QCD Analysis and Phenomenology.
http://www.cteq.org

L See Ref. [5] and also the webpage:
http://nobelprize.org/nobel _prizes/physics/laureates/1999/

2 Note, for chiral symmetries there are some subtle difficulties that
must be handled carefully. In particular, the properties of the
parity operator are dependent on the dimensionality of space-
time.
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Figure 1: a) A right triangle specified by angles {0, ¢} and
hypotenuse c¢. b) The same triangular area can be described
by two similar triangles of hypotenuse a and b.

mensional regularization use complex higher-order Quan-
tum Field Theory (QFT) calculations involving gauge
and Lorentz symmetries.

In the present paper, we will apply the dimensional
regularization method to a problem from an elementary
undergraduate physics course, namely the electric po-
tential of an infinite line of charge.[2-4] The example is
simple enough for the undergraduate to understand, yet
contains many of concepts we encounter in a true QFT
calculation. We will contrast the symmetry-preserving
dimensional regularization approach with a symmetry-
violating cutoff approach.

Imagining a variable number of dimensions can be
a productive exercise. To explain the weak nature of
the gravitational force physicists have recently posited
the existence of “Extra Dimensions.” After we consider
space-time dimensions in the neighborhood of D = 4, we
briefly consider wider excursions of D = 4,5,6,... and
the implications for electric potential and field.

II. DIMENSION ANALYSIS: THE
PYTHAGOREAN THEOREM

To illustrate utility of dimensional regularization and
dimensional analysis, we warm-up with a pre-example.
Our goal will be to demonstrate the Pythagorean Theo-
rem, and our method will be dimensional analysis.

We consider the right triangle displayed in Fig. 1-a).
From the Angle-Side-Angle (ASA) theorem, this can be
uniquely specified using the two angles {6, ¢} and the
hypotenuse c. We now construct a formula for the area
of the triangle, A., using ounly these variables: {c, 0, ¢}.
Note that ¢ has dimensions of length, and {6, ¢} are di-
mensionless. From dimensional analysis, the area of the
triangle must have dimensions of length squared. As c is
the only dimensional quantity, the formula for A. must
be of the form:

Ac=cf(0,9) (1)

where f(60,¢) is an unknown dimensionless function.
Note that f(6,¢) cannot depend on the length ¢ as this
would spoil the dimensionless nature of f(0, ¢).

We now observe that we can divide the original triangle
of Fig. 1-a) into two similar triangles of hypotenuse a and
b as displayed in Fig. 1-b). Again, using the ASA theo-
rem, we can represent the area of these triangles, A, and
Ap, in terms of the variables {a, 6, ¢} and {b,0, ¢}, re-
spectively. Again from dimensional considerations, these
areas must be proportional to a? and b?; thus, we obtain:

Aa + Ab = azf(ev (b) + b2f(6.7 (b) (2)

Because all three triangles are similar, their areas are
described by the same f(6,¢). It is important to note
that the function f(6, ¢) is universal, dimensionless, and
scale-invariant.

Finally, we use “conservation of area” to obtain our
result. Specifically, since the area of the original triangle
A, is equal to the sum of the combined A, and A,

A, +A4, = A (3)

We can substitute Eqs. 1 and 2 to obtain our desired
result:

a’f(0,9) +b°f(0,6) = f(0,9)
a>+ b = & (4)

The last equation is, of course, the Pythagorean The-
orem. Clearly, there are much simpler methods to prove
this theorem; however, this method does illustrate the
power of the dimensional analysis approach. Addition-
ally, we gain a new perspective on the Pythagorean The-
orem in this proof as it is linked to conservation of area.
There are instances, such as renormalizable field theory,
where use of dimensional analysis tools are essential to
making certain calculations tractable. The following ex-
ample will illustrate some of these features.

III. AN INFINITE LINE OF CHARGE
A. Statement of the problem

For our next example we consider the calculation of
the electric potential V for the case of an infinite line of
charge with linear charge density A = @Q/L. The con-
tribution to the electric potential from an infinitesimal
charge dQ is given by:3

3 We will use MKS units here so that our results reduce to the
usual undergraduate textbook expressions.
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Figure 2: Coordinate system for an infinite line of charge
running in the y-direction. We compute the potential V(zx)
at a fixed perpendicular distance z from the line of charge.
The distance to the element of charge dQ is r = /22 + y2.

dV—lﬁ
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We choose our coordinate system (cf., Fig. 2) such that
x specifies the perpendicular distance from the wire, y is
the coordinate along the wire, and r = /22 + y2. Given
A = Q/y we have d@QQ = My and can integrate along the
length of the wire to obtain:

D

1
AN dy ——— —
47T60 oo Y '/.’L'2+y2

Unfortunately, this integral is logarithmically divergent
and a we obtain an infinite result.

V(z) = 00 (5)

B. Scale invariance:

If we take a closer look at this integral, we notice that
it is scale invariant; that is, if we rescale the argument z
by a constant factor k, (x — kx), the result is invariant.

A +oo 1
AN dy — —
ineo J oo DR 2
A +oo 1
= d(y/k)

Vikz) =

T ) RN
+oo
dmeo J_oo Va2 + 22
= V(z) (7)

In the above we have implemented the rescaling z = y/k;
since both y and z are dummy variables and the integra-
tion limits are infinite, the integral is unchanged. This
equation implies the notable result that V (z) is scale in-
variant:

V(zi) = V(zz) (8)

At first glance, this result appears to be a disaster since
the usual purpose of the electric potential is to compute
the work W via the formula

W/Q =AV = V(CL‘Q) — V(,Tl)
or to compute the electric field via
E=-VV

As Eq. 8 suggests V(z2) — V(x1) = 0, this implies that
our attempts to compute the work W or the electric field
E will be meaningless.

We now understand why it is fortunate that V(z) is
infinite as infinite numbers have some unusual proper-
ties. For example, for a finite constant ¢ we can write
(schematically) oo + ¢ = oo which implies co — 00 = ¢.
We now understand that even though we have V(z;) =
V(z2), because these quantities are infinite we can still
find that the difference is non-zero: V(a2) — V(z1) # 0.
The challenge is that the difference of two infinite quan-
tities is ambiguous; that is, how can tell if co — 00 = ¢
or 0o — 00 = ¢o is the correct physical result?

The solution is that we must regularize the infinite
quantities so that we can uniquely extract the difference.

IV. CUTOFF REGULARIZATION:
A. Cutoff Regularization Computation

We will first regularize the integral using a simple cut-
off method. That is, instead of considering an infinite
wire, we will compute the potential for a finite wire of

length 2L. In this instance, the potential becomes:*
P 1
Vi) = — dy———
(@) dmeo J_p T /22 +y?
A o | T VIE+a? ©)
= o
dmeo & —L+ VL% +2?

We make the following observations.
e The result is finite.

e In addition to the physical length scale z, V(x) de-
pends on an artificial regulator L.

e We cannot remove the regulator L without

V() becoming singular.

e The result for V(z) violates a symmetry of the orig-
inal problem translation invariance.

4 For simplicity, we will calculate the potential at the mid-point of
the wire; the general case is more complicated algebraically, but
yields the same result in the L — oo limit.



B. Computation of E and §V

Even though V(x) depends on the artificial regulator
L, we observe that all physical quantities are independent
of this regulator in the limit L — co. Specifically, for the
electric field we have:

Blr) = —oV(x) A L
= Or  2meox /L2 + 22
_ A

L—oo 27T60$

and for the potential difference (proportional to the elec-
tric work W) we have:

SN A

oV = V(J,'l) — V(,TQ)

Log B_} (10)

L—o0 47T60

C. Broken translational symmetry:

Notice that the presence of the cutoff L breaks the
translation symmetry of the original problem. That is,
for a truly infinite wire, our position in the y-direction
is inconsequential; however, for a finite wire this is no
longer the case. Specifically, if we shift our y-position by
a constant ¢ to y — y’ = y + ¢, our result becomes:

by +L+c 1
V(z) = Tres /_Hc dy7x2+y2 (11)
A +H(L+c)+ /(L +c)?+ a2
dmeo —(L—c¢)++/(L—c)?+a?

Clearly we have lost the translation invariance y — ¢’ =
Y+ c.

While preserving symmetries is not of paramount im-
portance in this simple example, it is essential for certain
field theory calculations. We now repeat the this calcula-
tion, but instead using dimensional regularization which
will preserve the translational symmetry.

D. Recap

In summary, we find that our problem is solved at the
expense of 1) an extra scale L which serves to both regu-
lates the infinities and provide an auxiliary length scale,
and 2) a broken symmetry translational invariance.

V. DIMENSIONAL REGULARIZATION
A. Generalization to arbitrary dimension

The central idea of dimensional regularization is to
compute V(z) in n-dimensions where n is not necessarily

Table I: Angular integration measure as a function of dimen-
sion n. We recognize (1) as the 1-dimensional integration

measure of fjll dr, Q(2) as the circumference of the unit cir-

cle, ©(3) as the surface area of the unit sphere, and (4) as
the 3-volume of the 4-dimensional unit hypercube.

an integer. We can generalize the integration of Eq. 5 by
replacing the one-dimensional integration dy = d'y by
the general n-dimension result:

Q.
dy — d"y = 5 Y 1 dy (12)

where the angular integration measure is given by

n/2
Qn:/dﬂn o (13)
I'(3)

It is instructive to verify that €, yields the expected
result for integer dimensions as tabulated in Table I.

B. Computation V in arbitrary dimensions

The generalized formula for V(z) now reads:

“+o0 n—1
A / a0, L Wy
0

47eg prl 2 2

Note that we have introduced an auxiliary scale factor
of u"~1, where p has units of length, to ensure V(z) has
the correct mass dimension.® Replacing n = 1 — 2¢ to
facilitate expanding about n = 1 we obtain

V(z) =

Vi) = > 5

A <u2€ F[f]) (15)

4dmeg \ x2¢ 7€

We make the following observations about the dimen-
sionally regularized result.

5 Since the factor \/(4mep) has units of potential, the integral must
be dimensionless. Also note we have changed the integration
limits from [—o0,400] to [0, +o0], and the compensating factor
of 2 cancels the factor of 2 in d2, /2.



e V(z) depends on an artificial regulator e which is
dimensionless.

e V(x) depends on an auxiliary scale g which has
dimensions of length.

e If we remove either the regulator € or the auxiliary
scale p then V(z) will become ill-defined.

e The dimensional regularization preserves the trans-
lation invariance of the original problem.

It is interesting to contrast this result with the cutoff reg-
ularization method where L serves as both the regulator
and the auxiliary scale.

C. Computation of E and §V

As before, we observe that all physical quantities are
independent of both the regulator ¢ and the auxiliary
scale pu. For the potential difference we find

oV = V(J,'l) — V(CL‘Q)

and for the electric field we obtain:

E - —0V(z) X [2eu*Tle]
N dr  Adwey | mexlt2e
Al
— 42 1
=0 oreq x (17)

D. The Renormalization Group Equation

The fact that the physical observables are independent
of the un-physical auxiliary scale p is simply a conse-
quence of the renormalization group equation:

do

— =0 18
e (18)
where ¢ represents any physical observable. Thus, the
renormalization group equation implies that the electric
field E = VV and the work W = §V are also independent
of the u scale:

dE

i

E. Recap

In conclusion we find that the problem for V(z) is
solved at the expense of an artificial regulator € and an
auxiliary scale . Also note the regulator € and auxiliary

scale u are separate entities in contrast to the cutoff reg-
ularization method where the length L plays both roles.
Additionally, translational invariance symmetry is pre-
served; the fact that dimensional regularization respects
symmetry makes this technique essential for field the-
ory calculations involving gauge symmetries and Lorentz
symmetries.

VI. RENORMALIZATION

Having demonstrated two separate methods to regu-
larize the infinities that enter the calculation of V (z), we
now turn to renormalization.

While physical quantities such as the work W ~ §V
and the electric field E ~ —VV are derived from V (z),
the potential itself is not a physical quantity. In particu-
lar, we can shift the potential by a constant ¢, V — V +¢,
and the physical quantities will be unchanged.

To illustrate this point, let’s expand V(x) of Eq. 15 in
powers of e:

Vi) = 2 [1+1n [ef} +In [’;—z] +(9(e)}

4meg | €

Let us now invent a Minimal Subtraction (MS) pre-
scription. I have the freedom to shift V() by a constant,
and I design this to eliminate the 1/¢ term:

A [ In [e_w} +1n {Z—z] +(9(e)}

4meg T

VMs(.’L') =

I can go even further and invent a Modified Minimal Sub-
traction (M S) prescription to eliminate the In[e™77 /7]
term as well:

In [M_} +000)

A
Vars(@) = 4meq [ x?
After renormalization we can remove the regulator (¢ —
0), but not the auxiliary scale y; recall that without an
auxiliary scale to generate a dimensionless ratio u/x we
could not have any substantive x-dependence.

In addition to the p-dependence we will also have
renormalization scheme dependence in V(z). However,
physical observables must be independent of the auxiliary
scale p and the particular renormalization scheme. For
example, the computed potential differences yield identi-
cal results when calculated consistently in a single renor-
malization scheme.

Vus(x1) = Vius(wa) = 0V = Vorg(zr) —

Here, the results of the Minimal Subtraction (MS) and
the Modified Minimal Subtraction (M .S) are identical for
physical quantities.

VM—S(IQ)



|D€ff |E(7') | V(r) | Example

3 %2 % Point charge
2 %1 In r | Line charge
1 %o r |Sheet charge

Table II: Example charge configurations that illustrate
D.sy ={3,2,1} effective dimensions.

However, if you mix renormalization schemes inconsis-
tently you will obtain non-sensible results that are de-
pendent on the choice of scheme:®

Vars(w1) = Vius(z2) # 0V # Vis(w1) — Varg(a2)

A. Connection to QFT

This elementary problem of the infinite line charge
contains all the key concepts of the dimensional regu-
larization and renormalization that we encounter in the
full QFT radiative calculations. For example, in the ra-
diative Quantum Chromodynamics (QCD) calculation of
the Drell-Yan process (g7 — v* — p™pu~) we encounter
the following infinite expression:”

In this equation, @ represents the characteristic energy
scale; this is the independent variable that is analogous
to = in our example. While this is for a 4-dimensional
QCD calculation, the structure of the divergent term is
remarkably similar to our simple one-dimensional exam-
ple above. For the QCD calculation, the Minimal Sub-
traction (M S) prescription for this Drell-Yan calcula-
tion eliminates the 1/¢ term, and the Modified Minimal
Subtraction (MS) prescription for this Drell-Yan calcu-
lation eliminates the 1/¢ —In[e™7¢/(47)] so that only the
In[p?/Q?] remains.

6 The reader is invited to verify that the computation of the elec-
tric field E‘(m) in a consistent renormalization scheme yields the
previous results of Eq. 17, and a inconsistent application of the
schemes does not.

7 Cf., Ref. [6], Eq. (46) and Eq. (47).

X

Figure 3: Electric field for a point charge confined in one
infinite dimension (z) and one finite dimension (y) of scale R.

VII. EXTRA DIMENSIONS
A. E and V in arbitrary dimensions

In the above example, we used the mathematical trick
of generalizing the number of integration dimensions from
an integer to a continuous parameter. While we only let
the dimension stray by 2e, it is useful to consider more
drastic shifts as in the case of “Extra-Dimensions” which
have recently been hypothesized.[1, 7] In this section, we
provide an example of a dimensional transmutation; that
is where the effective dimension D¢ changes from one
integer to another as we probe the system at different
scales.

For example, we can generalize the r-dependence of the
potential and electric field in for the case of D-dimensions

A quick check will verify that this reproduces the usual
expressions in ordinary D = 3 spacial dimensions. Ad-
ditionally, in 3-dimensions we can create charge distri-
butions that mimic lower order spatial dimensions; this
is illustrated in Table II. For a (zero-dimensional) point-
charge in 3-dimensions, according to Gauss’s law the elec-
tric field lines spread out on a surface of D—1 = 2 dimen-
sions, and we observe E(r) ~ 1/r%. Similarly, for a (one-
dimensional) line-charge, our space is now effectively
D = 2 dimensional; hence the electric field lines spread
out on a surface of D —1 = 1 dimension, and we ob-
serve E(r) ~ 1/r. Finally, for a (two-dimensional) sheet-
charge, our space is now effectively D = 1 dimension;
hence the electric field lines spread out onin D —1 =10
dimensions, and we observe E(r) ~ 1/r% = constant.

& Note, for the special case D=2 the potential V'(r) has a logarith-
mic form; see Table II for details.



B. Relation to compactified dimensions

Figure 3 displays the electric field lines for a point
charge confined to one infinite dimension (z) and one
finite (or compact) dimension (y) of scale R. We observe
that if we examine the electric field at scales small com-
pared to the compact dimension R (r < R), we find the
the electric field lines spread out in 2 dimensions and we
obtain the usual 2-dimensional result E(r) ~ 1/r; con-
versely, if we examine the electric field at distance scales
large compared to the compact dimension R (r > R), we
find the 1-dimensional result E(r) ~ constant. In this
example, the effective dimension of our space changes

as we move from small (D = 2) to large length scales
(D =1).

VIII. CONCLUSIONS

In this paper we have computed the potential of an in-
finite line of charge using dimensional regularization. By
contrasting this calculation with the conventional cutoff
approach, we demonstrated that dimensional regulariza-
tion respects the symmetries of the problem—mnamely,

translational invariance. The dimensional regularization
requires that we introduce a regulator ¢ and an auxil-
iary length scale p. We then renormalized the potential
to eliminate the 1/e singularities; this potential was fi-
nite and independent of the regulator e, but it depended
on the particular renormalization scheme. However, we
demonstrated that all physical observables (E, V') were
scheme and scale invariant.

As this example exhibits many of the key features of
dimensional regularization as applied to QFT, it provides
an excellent opportunity to understand the features of
this regularization method without the complications of
gauge symmetries. As such, this example serves as an
ideal pedagogical study.

Acknowledgment

We thank Robert Jaffe for valuable discussions. F.I.O
acknowledge the hospitality of Argonne National Lab-
oratory and CERN where a portion of this work was
performed. This work is supported by the U.S. Depart-
ment of Energy under grant DE-FG02-04ER41299, the
Lightner-Sams Foundation.

[1] Nima Arkani-Hamed, Savas Dimopoulos, and G. R. Dvali.
The hierarchy problem and new dimensions at a millime-
ter. Phys. Lett., B429:263-272, 1998.

[2] Bertrand Delamotte. A hint of renormalization. Am. J.
Phys., 72:170 184, 2004.

[3] M. Hans. An electrostatic example to illustrate dimen-
sional regularization and renormalization group technique.
Am. J. Phys., 51:694-698, 1983.

[4] C. Kaufman. An Illustration from Classical Physics of
Renormalization Mathematics. Am. J. Phys., 37:560-561,

1969.

[5] Gloria B. Lubkink. Nobel Prize to ’t Hooft and Veltman
for Putting Electroweak Theory on Firmer Foundation.
Physics Today, 52:17, 1999.

[6] B. Potter. Calculational techniques in perturbative QCD:
The Drell-Yan process. 1998.

[7] Lisa Randall and Raman Sundrum. A large mass hierarchy
from a small extra dimension. Phys. Rev. Lett., 83:3370—
3373, 1999.



