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I. DIMENSIONAL REGULARIZATIONA. Introdu
tion and MotivationIn 1999, Gerardus 't Hooft and Martinus J.G. Velt-man re
eived the Nobel Prize in Physi
s1 �for elu
idat-ing the quantum stru
ture of ele
troweak intera
tions inphysi
s.� In parti
ular, they demonstrated that the non-abelian ele
troweak theory 
ould be 
onsistently renor-malized to yield unique and pre
ise predi
tions.An key ingredient for their demonstration was the de-velopment of the dimensional regularization te
hnique.That is, instead of working in pre
isely D=4 spa
e-timedimensions, they generalized the dimension to be a 
on-tinuous variable so they 
ould 
ompute the theory inD=4.01 or D=3.99 dimensions.An important property of the dimensional regulariza-tion is that it respe
ts gauge and Lorentz symmetries;2this is in 
ontrast to the older regularization s
hemes(e.g., 
uto� s
hemes, et
.) whi
h violates these symme-tries. The symmetries of the ele
troweak theory play an
riti
al role in determining the dynami
s of the parti
lesand their intera
tions. Be
ause it respe
ts these symme-tries, dimensional regularization has be
ome a essentialtool for the 
al
ulation of �eld theories.While dimensional regularization is an powerful andelegant te
hnique, most examples and appli
ations of di-0 This work is based on le
tures presented a the CTEQSummer S
hools on QCD Analysis and Phenomenology.http://www.
teq.org1 See Ref. [5℄ and also the webpage:http://nobelprize.org/nobel_prizes/physi
s/laureates/1999/2 Note, for 
hiral symmetries there are some subtle di�
ulties thatmust be handled 
arefully. In parti
ular, the properties of theparity operator are dependent on the dimensionality of spa
e-time.
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Figure 1: a) A right triangle spe
i�ed by angles {θ, φ} andhypotenuse c. b) The same triangular area 
an be des
ribedby two similar triangles of hypotenuse a and b.mensional regularization use 
omplex higher-order Quan-tum Field Theory (QFT) 
al
ulations involving gaugeand Lorentz symmetries.In the present paper, we will apply the dimensionalregularization method to a problem from an elementaryundergraduate physi
s 
ourse, namely the ele
tri
 po-tential of an in�nite line of 
harge.[2�4℄ The example issimple enough for the undergraduate to understand, yet
ontains many of 
on
epts we en
ounter in a true QFT
al
ulation. We will 
ontrast the symmetry-preservingdimensional regularization approa
h with a symmetry-violating 
uto� approa
h.Imagining a variable number of dimensions 
an bea produ
tive exer
ise. To explain the weak nature ofthe gravitational for
e physi
ists have re
ently positedthe existen
e of �Extra Dimensions.� After we 
onsiderspa
e-time dimensions in the neighborhood of D = 4, webrie�y 
onsider wider ex
ursions of D = 4, 5, 6, ... andthe impli
ations for ele
tri
 potential and �eld.II. DIMENSION ANALYSIS: THEPYTHAGOREAN THEOREMTo illustrate utility of dimensional regularization anddimensional analysis, we warm-up with a pre-example.Our goal will be to demonstrate the Pythagorean Theo-rem, and our method will be dimensional analysis.We 
onsider the right triangle displayed in Fig. 1-a).From the Angle-Side-Angle (ASA) theorem, this 
an beuniquely spe
i�ed using the two angles {θ, φ} and thehypotenuse c. We now 
onstru
t a formula for the areaof the triangle, Ac, using only these variables: {c, θ, φ}.Note that c has dimensions of length, and {θ, φ} are di-mensionless. From dimensional analysis, the area of thetriangle must have dimensions of length squared. As c isthe only dimensional quantity, the formula for Ac mustbe of the form:

Ac = c2f(θ, φ) (1)where f(θ, φ) is an unknown dimensionless fun
tion.Note that f(θ, φ) 
annot depend on the length c as thiswould spoil the dimensionless nature of f(θ, φ).We now observe that we 
an divide the original triangleof Fig. 1-a) into two similar triangles of hypotenuse a and
b as displayed in Fig. 1-b). Again, using the ASA theo-rem, we 
an represent the area of these triangles, Aa and
Ab, in terms of the variables {a, θ, φ} and {b, θ, φ}, re-spe
tively. Again from dimensional 
onsiderations, theseareas must be proportional to a2 and b2; thus, we obtain:

Aa + Ab = a2f(θ, φ) + b2f(θ, φ) (2)Be
ause all three triangles are similar, their areas aredes
ribed by the same f(θ, φ). It is important to notethat the fun
tion f(θ, φ) is universal, dimensionless, ands
ale-invariant.Finally, we use �
onservation of area� to obtain ourresult. Spe
i�
ally, sin
e the area of the original triangle
Ac is equal to the sum of the 
ombined Aa and Ab,

Aa + Ab = Ac (3)We 
an substitute Eqs. 1 and 2 to obtain our desiredresult:
a2f(θ, φ) + b2f(θ, φ) = c2f(θ, φ)

a2 + b2 = c2 (4)The last equation is, of 
ourse, the Pythagorean The-orem. Clearly, there are mu
h simpler methods to provethis theorem; however, this method does illustrate thepower of the dimensional analysis approa
h. Addition-ally, we gain a new perspe
tive on the Pythagorean The-orem in this proof as it is linked to 
onservation of area.There are instan
es, su
h as renormalizable �eld theory,where use of dimensional analysis tools are essential tomaking 
ertain 
al
ulations tra
table. The following ex-ample will illustrate some of these features.III. AN INFINITE LINE OF CHARGEA. Statement of the problemFor our next example we 
onsider the 
al
ulation ofthe ele
tri
 potential V for the 
ase of an in�nite line of
harge with linear 
harge density λ = Q/L. The 
on-tribution to the ele
tri
 potential from an in�nitesimal
harge dQ is given by:33 We will use MKS units here so that our results redu
e to theusual undergraduate textbook expressions.
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Figure 2: Coordinate system for an in�nite line of 
hargerunning in the y-dire
tion. We 
ompute the potential V (x)at a �xed perpendi
ular distan
e x from the line of 
harge.The distan
e to the element of 
harge dQ is r =
√

x2 + y2.
dV =

1

4πǫ0

dQ

rWe 
hoose our 
oordinate system (
f., Fig. 2) su
h that
x spe
i�es the perpendi
ular distan
e from the wire, y isthe 
oordinate along the wire, and r =

√

x2 + y2. Given
λ = Q/y we have dQ = λdy and 
an integrate along thelength of the wire to obtain:

V (x) =
λ

4πǫ0

∫ +∞

−∞

dy
1

√

x2 + y2
= ∞ (5)Unfortunately, this integral is logarithmi
ally divergentand a we obtain an in�nite result.B. S
ale invarian
e:If we take a 
loser look at this integral, we noti
e thatit is s
ale invariant; that is, if we res
ale the argument xby a 
onstant fa
tor k, (x → k x), the result is invariant.

V (k x) =
λ

4πǫ0

∫ +∞

−∞

dy
1

√

(k x)2 + y2

=
λ

4πǫ0

∫ +∞

−∞

d(y/k)
1

√

x2 + (y/k)2

=
λ

4πǫ0

∫ +∞

−∞

dz
1√

x2 + z2
(6)

= V (x) (7)In the above we have implemented the res
aling z = y/k;sin
e both y and z are dummy variables and the integra-tion limits are in�nite, the integral is un
hanged. Thisequation implies the notable result that V (x) is s
ale in-variant:
V (x1) = V (x2) (8)

At �rst glan
e, this result appears to be a disaster sin
ethe usual purpose of the ele
tri
 potential is to 
omputethe work W via the formula
W/Q = ∆V = V (x2) − V (x1)or to 
ompute the ele
tri
 �eld via

~E = −~∇VAs Eq. 8 suggests V (x2) − V (x1) = 0, this implies thatour attempts to 
ompute the work W or the ele
tri
 �eld
~E will be meaningless.We now understand why it is fortunate that V (x) isin�nite as in�nite numbers have some unusual proper-ties. For example, for a �nite 
onstant c we 
an write(s
hemati
ally) ∞ + c = ∞ whi
h implies ∞ − ∞ = c.We now understand that even though we have V (x1) =
V (x2), be
ause these quantities are in�nite we 
an still�nd that the di�eren
e is non-zero: V (x2) − V (x1) 6= 0.The 
hallenge is that the di�eren
e of two in�nite quan-tities is ambiguous; that is, how 
an tell if ∞−∞ = c1or ∞−∞ = c2 is the 
orre
t physi
al result?The solution is that we must regularize the in�nitequantities so that we 
an uniquely extra
t the di�eren
e.IV. CUTOFF REGULARIZATION:A. Cuto� Regularization ComputationWe will �rst regularize the integral using a simple 
ut-o� method. That is, instead of 
onsidering an in�nitewire, we will 
ompute the potential for a �nite wire oflength 2L. In this instan
e, the potential be
omes:4

V (x) =
λ

4πǫ0

∫ +L

−L

dy
1

√

x2 + y2

=
λ

4πǫ0
Log

[

+L +
√

L2 + x2

−L +
√

L2 + x2

] (9)We make the following observations.
• The result is �nite.
• In addition to the physi
al length s
ale x, V (x) de-pends on an arti�
ial regulator L.
• We 
annot remove the regulator L without

V (x) be
oming singular.
• The result for V (x) violates a symmetry of the orig-inal problem�translation invarian
e.4 For simpli
ity, we will 
al
ulate the potential at the mid-point ofthe wire; the general 
ase is more 
ompli
ated algebrai
ally, butyields the same result in the L → ∞ limit.



4B. Computation of E and δVEven though V (x) depends on the arti�
ial regulator
L, we observe that all physi
al quantities are independentof this regulator in the limit L → ∞. Spe
i�
ally, for theele
tri
 �eld we have:

E(x) =
−∂V (x)

∂x
=

λ

2πǫ0x

L√
L2 + x2

−→
L→∞

λ

2πǫ0xand for the potential di�eren
e (proportional to the ele
-tri
 work W ) we have:
δV = V (x1) − V (x2)

−→
L→∞

λ

4πǫ0
Log

[

x2
2

x2
1

] (10)C. Broken translational symmetry:Noti
e that the presen
e of the 
uto� L breaks thetranslation symmetry of the original problem. That is,for a truly in�nite wire, our position in the y-dire
tionis in
onsequential; however, for a �nite wire this is nolonger the 
ase. Spe
i�
ally, if we shift our y-position bya 
onstant c to y → y′ = y + c, our result be
omes:
V (x) =

λ

4πǫ0

∫ +L+c

−L+c

dy
1

√

x2 + y2
(11)

=
λ

4πǫ0
Log

[

+(L + c) +
√

(L + c)2 + x2

−(L − c) +
√

(L − c)2 + x2

]Clearly we have lost the translation invarian
e y → y′ =
y + c.While preserving symmetries is not of paramount im-portan
e in this simple example, it is essential for 
ertain�eld theory 
al
ulations. We now repeat the this 
al
ula-tion, but instead using dimensional regularization whi
hwill preserve the translational symmetry.D. Re
apIn summary, we �nd that our problem is solved at theexpense of 1) an extra s
ale L whi
h serves to both regu-lates the in�nities and provide an auxiliary length s
ale,and 2) a broken symmetry�translational invarian
e.V. DIMENSIONAL REGULARIZATIONA. Generalization to arbitrary dimensionThe 
entral idea of dimensional regularization is to
ompute V (x) in n-dimensions where n is not ne
essarily

n Ω(n) Γ(n/2)1 2
√

π2 2π 13 4π
√

π

24 2π2 1Table I: Angular integration measure as a fun
tion of dimen-sion n. We re
ognize Ω(1) as the 1-dimensional integrationmeasure of ∫

+1

−1
dr, Ω(2) as the 
ir
umferen
e of the unit 
ir-
le, Ω(3) as the surfa
e area of the unit sphere, and Ω(4) asthe 3-volume of the 4-dimensional unit hyper
ube.an integer. We 
an generalize the integration of Eq. 5 byrepla
ing the one-dimensional integration dy = d1y bythe general n-dimension result:

dy −→ dny =
dΩn

2
yn−1 dy (12)where the angular integration measure is given by

Ωn =

∫

dΩn =
2πn/2

Γ
(

n
2

) (13)It is instru
tive to verify that Ωn yields the expe
tedresult for integer dimensions as tabulated in Table I.B. Computation V in arbitrary dimensionsThe generalized formula for V (x) now reads:
V (x) =

λ

4πǫ0

∫ +∞

0

dΩn
yn−1

µn−1

dy
√

x2 + y2
(14)Note that we have introdu
ed an auxiliary s
ale fa
torof µn−1, where µ has units of length, to ensure V (x) hasthe 
orre
t mass dimension.5 Repla
ing n = 1 − 2ǫ tofa
ilitate expanding about n = 1 we obtain

V (x) =
λ

4πǫ0

Γ
[

1−n
2

]

(

x
µ

√
π
)1−n

=
λ

4πǫ0

(

µ2ǫ

x2ǫ

Γ[ǫ]

πǫ

) (15)We make the following observations about the dimen-sionally regularized result.5 Sin
e the fa
tor λ/(4πǫ0) has units of potential, the integral mustbe dimensionless. Also note we have 
hanged the integrationlimits from [−∞,+∞] to [0,+∞], and the 
ompensating fa
torof 2 
an
els the fa
tor of 2 in dΩn/2.
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• V (x) depends on an arti�
ial regulator ǫ whi
h isdimensionless.
• V (x) depends on an auxiliary s
ale µ whi
h hasdimensions of length.
• If we remove either the regulator ǫ or the auxiliarys
ale µ then V (x) will be
ome ill-de�ned.
• The dimensional regularization preserves the trans-lation invarian
e of the original problem.It is interesting to 
ontrast this result with the 
uto� reg-ularization method where L serves as both the regulatorand the auxiliary s
ale.C. Computation of E and δVAs before, we observe that all physi
al quantities areindependent of both the regulator ǫ and the auxiliarys
ale µ. For the potential di�eren
e we �nd

δV = V (x1) − V (x2)
−→

ǫ → 0

λ

4πǫ0
Log

[

x2
2

x2
1

] (16)and for the ele
tri
 �eld we obtain:
E =

−∂V (x)

∂x
=

λ

4πǫ0

[

2ǫµ2ǫΓ[ǫ]

πǫx1+2ǫ

]

−→

ǫ→0

λ

2πǫ0

1

x
(17)D. The Renormalization Group EquationThe fa
t that the physi
al observables are independentof the un-physi
al auxiliary s
ale µ is simply a 
onse-quen
e of the renormalization group equation:

µ
dσ

dµ
= 0 (18)where σ represents any physi
al observable. Thus, therenormalization group equation implies that the ele
tri
�eld ~E = ~∇V and the workW = δV are also independentof the µ s
ale:

µ
dE

dµ
= 0 µ

dW

dµ
= 0E. Re
apIn 
on
lusion we �nd that the problem for V (x) issolved at the expense of an arti�
ial regulator ǫ and anauxiliary s
ale µ. Also note the regulator ǫ and auxiliary

s
ale µ are separate entities in 
ontrast to the 
uto� reg-ularization method where the length L plays both roles.Additionally, translational invarian
e symmetry is pre-served; the fa
t that dimensional regularization respe
tssymmetry makes this te
hnique essential for �eld the-ory 
al
ulations involving gauge symmetries and Lorentzsymmetries. VI. RENORMALIZATIONHaving demonstrated two separate methods to regu-larize the in�nities that enter the 
al
ulation of V (x), wenow turn to renormalization.While physi
al quantities su
h as the work W ∼ δVand the ele
tri
 �eld ~E ∼ −~∇V are derived from V (x),the potential itself is not a physi
al quantity. In parti
u-lar, we 
an shift the potential by a 
onstant c, V → V +c,and the physi
al quantities will be un
hanged.To illustrate this point, let's expand V (x) of Eq. 15 inpowers of ǫ:
V (x) =

λ

4πǫ0

[

1

ǫ
+ ln

[

e−γE

π

]

+ ln

[

µ2

x2

]

+ O(ǫ)

]Let us now invent a Minimal Subtra
tion (MS) pre-s
ription. I have the freedom to shift V (x) by a 
onstant,and I design this to eliminate the 1/ǫ term:
VMS(x) =

λ

4πǫ0

[

ln

[

e−γE

π

]

+ ln

[

µ2

x2

]

+ O(ǫ)

]I 
an go even further and invent a Modi�ed Minimal Sub-tra
tion (MS) pres
ription to eliminate the ln[e−γE/π]term as well:
VMS(x) =

λ

4πǫ0

[

ln

[

µ2

x2

]

+ O(ǫ)

]After renormalization we 
an remove the regulator (ǫ →
0), but not the auxiliary s
ale µ; re
all that without anauxiliary s
ale to generate a dimensionless ratio µ/x we
ould not have any substantive x-dependen
e.In addition to the µ-dependen
e we will also haverenormalization s
heme dependen
e in V (x). However,physi
al observablesmust be independent of the auxiliarys
ale µ and the parti
ular renormalization s
heme. Forexample, the 
omputed potential di�eren
es yield identi-
al results when 
al
ulated 
onsistently in a single renor-malization s
heme.

VMS(x1) − VMS(x2) = δV = VMS(x1) − VMS(x2)Here, the results of the Minimal Subtra
tion (MS) andthe Modi�ed Minimal Subtra
tion (MS) are identi
al forphysi
al quantities.



6
Deff E(r) V (r) Example3 1

r2

1

r
Point 
harge2 1

r1 ln r Line 
harge1 1

r0 r Sheet 
hargeTable II: Example 
harge 
on�gurations that illustrate
Deff = {3, 2, 1} e�e
tive dimensions.However, if you mix renormalization s
hemes in
onsis-tently you will obtain non-sensible results that are de-pendent on the 
hoi
e of s
heme:6

VMS(x1) − VMS(x2) 6= δV 6= VMS(x1) − VMS(x2)A. Conne
tion to QFTThis elementary problem of the in�nite line 
harge
ontains all the key 
on
epts of the dimensional regu-larization and renormalization that we en
ounter in thefull QFT radiative 
al
ulations. For example, in the ra-diative Quantum Chromodynami
s (QCD) 
al
ulation ofthe Drell-Yan pro
ess (qq̄ → γ∗ → µ+µ−) we en
ounterthe following in�nite expression:7
D(ǫ)

ǫ
=

(

4πµ2

Q2

)ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

∼ 1

ǫ
− ln

(

e+γE

4π

)

+ ln

(

µ2

Q2

)In this equation, Q represents the 
hara
teristi
 energys
ale; this is the independent variable that is analogousto x in our example. While this is for a 4-dimensionalQCD 
al
ulation, the stru
ture of the divergent term isremarkably similar to our simple one-dimensional exam-ple above. For the QCD 
al
ulation, the Minimal Sub-tra
tion (MS) pres
ription for this Drell-Yan 
al
ula-tion eliminates the 1/ǫ term, and the Modi�ed MinimalSubtra
tion (MS) pres
ription for this Drell-Yan 
al
u-lation eliminates the 1/ǫ− ln[e+γe/(4π)] so that only the
ln[µ2/Q2] remains.6 The reader is invited to verify that the 
omputation of the ele
-tri
 �eld ~E(x) in a 
onsistent renormalization s
heme yields theprevious results of Eq. 17, and a in
onsistent appli
ation of thes
hemes does not.7 Cf., Ref. [6℄, Eq. (46) and Eq. (47).

Figure 3: Ele
tri
 �eld for a point 
harge 
on�ned in onein�nite dimension (x) and one �nite dimension (y) of s
ale R.VII. EXTRA DIMENSIONSA. E and V in arbitrary dimensionsIn the above example, we used the mathemati
al tri
kof generalizing the number of integration dimensions froman integer to a 
ontinuous parameter. While we only letthe dimension stray by 2ǫ, it is useful to 
onsider moredrasti
 shifts as in the 
ase of �Extra-Dimensions� whi
hhave re
ently been hypothesized.[1, 7℄ In this se
tion, weprovide an example of a dimensional transmutation; thatis where the e�e
tive dimension Deff 
hanges from oneinteger to another as we probe the system at di�erents
ales.For example, we 
an generalize the r-dependen
e of thepotential and ele
tri
 �eld in for the 
ase of D-dimensionsas:8
V (r) ∼ 1

rD−2
E(r) ∼ 1

rD−1A qui
k 
he
k will verify that this reprodu
es the usualexpressions in ordinary D = 3 spa
ial dimensions. Ad-ditionally, in 3-dimensions we 
an 
reate 
harge distri-butions that mimi
 lower order spatial dimensions; thisis illustrated in Table II. For a (zero-dimensional) point-
harge in 3-dimensions, a

ording to Gauss's law the ele
-tri
 �eld lines spread out on a surfa
e of D−1 = 2 dimen-sions, and we observe E(r) ∼ 1/r2. Similarly, for a (one-dimensional) line-
harge, our spa
e is now e�e
tively
D = 2 dimensional; hen
e the ele
tri
 �eld lines spreadout on a surfa
e of D − 1 = 1 dimension, and we ob-serve E(r) ∼ 1/r. Finally, for a (two-dimensional) sheet-
harge, our spa
e is now e�e
tively D = 1 dimension;hen
e the ele
tri
 �eld lines spread out on in D − 1 = 0dimensions, and we observe E(r) ∼ 1/r0 = constant.8 Note, for the spe
ial 
ase D=2 the potential V (r) has a logarith-mi
 form; see Table II for details.



7B. Relation to 
ompa
ti�ed dimensionsFigure 3 displays the ele
tri
 �eld lines for a point
harge 
on�ned to one in�nite dimension (x) and one�nite (or 
ompa
t) dimension (y) of s
ale R. We observethat if we examine the ele
tri
 �eld at s
ales small 
om-pared to the 
ompa
t dimension R (r ≪ R), we �nd thethe ele
tri
 �eld lines spread out in 2 dimensions and weobtain the usual 2-dimensional result ~E(r) ∼ 1/r; 
on-versely, if we examine the ele
tri
 �eld at distan
e s
aleslarge 
ompared to the 
ompa
t dimension R (r ≫ R), we�nd the 1-dimensional result ~E(r) ∼ constant. In thisexample, the e�e
tive dimension of our spa
e 
hangesas we move from small (D = 2) to large length s
ales(D = 1). VIII. CONCLUSIONSIn this paper we have 
omputed the potential of an in-�nite line of 
harge using dimensional regularization. By
ontrasting this 
al
ulation with the 
onventional 
uto�approa
h, we demonstrated that dimensional regulariza-tion respe
ts the symmetries of the problem�namely,

translational invarian
e. The dimensional regularizationrequires that we introdu
e a regulator ǫ and an auxil-iary length s
ale µ. We then renormalized the potentialto eliminate the 1/ǫ singularities; this potential was �-nite and independent of the regulator ǫ, but it dependedon the parti
ular renormalization s
heme. However, wedemonstrated that all physi
al observables (E, δV ) weres
heme and s
ale invariant.As this example exhibits many of the key features ofdimensional regularization as applied to QFT, it providesan ex
ellent opportunity to understand the features ofthis regularization method without the 
ompli
ations ofgauge symmetries. As su
h, this example serves as anideal pedagogi
al study.A
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