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The search for the Higgs boson has been one of the main motivations for the

construction of the Large Hadron Collider. In this study we show that there are new

Higgs decay channels, previously neglected by the literature that proceed via internal

photon conversion. For the Higgs masses of interest at the CERN LHC in the range

of 100-150 GeV, the conversions to pairs of fermions represent a significant fraction

of Higgs decays.

In addition to the Higgs boson, other particles might be produced, like magnetic

monopoles. We present the results of the simulation of the Dirac magnetic monopole

production and discuss the feasibility of its detection with the ATLAS detector. This

study shows that the magnetic monopole, if it exists, will be detected with the ATLAS

detector. The number of events estimated for a luminosity of 1 fb−1 corresponding

to the first year of the ATLAS experiment, indicates that the magnetic monopole will

be found in the early ATLAS data.
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Chapter 1

THE LARGE HADRON COLLIDER

1.1. Particle Physics and the need for LHC

The question ”What is the Universe made of?” haunted human kind for centuries.

The ”search for the origin of matter” means the understanding of the basic build-

ing blocks of matter, called elementary particles, where the term ”elementary” has a

reductionist meaning of structureless. This requires not only understanding of their

characteristics but also how they interact.

In ancient Greece, Aristoteles’ four-element theory suggested that the world was

built from four primordial elements: water, air, fire and earth. Later on, the idea

that matter consists of minimum units, called atoms, was proposed by another Greek

philosopher, Demokritos. ”Atom” means ”unable to be divided”. Atoms remained

the smallest known components of matter until 1897 Thomson discovered the elec-

tron and in 1909 Rutherford showed that the atom had a dense nucleus and orbiting

electrons. Later physicists showed that the nucleus was composed of neutrons and

protons. More recently, in 1968, the Stanford Linear Accelerator Center(SLAC), an-

nounced the discovery of quarks in electron proton collisions. Quarks join together

to form protons, neutrons and other subatomic particles like mesons and baryons.

Several hundred such subatomic particles have been discovered so far. However, most

of them are not fundamental, they are composed of smaller units, the quarks.

The fundamental particles are spin half particles called fermions.
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They are divided into two groups: quarks (up, down, charm, strange, top and

bottom) and leptons (electron, electron neutrino, muon, muon neutrino, tau and tau

neutrino) [1]. In Fig. 1.1 a diagram shows the organization of fermions.

Fermions are also classified into three generations which are identical in every

Figure 1.1. Standard Model; fermion organization and force carriers.

attribute except their masses. The first generation includes the up (u) and down (d)

quarks, that are the constituents of nucleons, and the electron and the electron neu-

trino. They are the basic constituents of the everyday world that surrounds us. The

quarks corresponding to the other two generations form heavier, short-lived particles.
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They and their corresponding charged leptons rapidly decay into quarks and leptons

of the first generation. Quarks have fractional electric charges in units of 1/3 or 2/3

of the charge of the electron (e = 1.602 · 10−19 C) and leptons have charges in units

of 1 or 0. For every quark or lepton there is a corresponding antiparticle. For ex-

ample, there are antiquarks, anti-electrons (called positrons). There is an unresolved

question whether neutrinos are their own antiparticles. If they are Dirac neutrinos,

then the antineutrinos and neutrinos are distinct; but if they are Majorana neutrinos,

then the antineutrinos and neutrinos are the same.

Free quarks cannot be observed as separate objects. They have an internal prop-

erty called color. There are three colors: red, blue and green. Each individual color

does not manifest itself in any observable that can be detected in experiments. Only

color neutral objects are detectable as isolated particles. Thus quarks combine to

form baryons and mesons. Baryons are made of three quarks. Examples of baryons

are the protons and neutrons found in the atomic nuclei (and also anti-protons and

anti-neutrons). Mesons are short lived particles that are made of quark-antiquark

pairs.

We describe interactions between all these particles as mediated by four distinct

forces, characterized by widely different ranges and strengths. The strong force binds

quarks into protons, neutrons and mesons, and holds the nucleus of the atom together

despite the repulsive electromagnetic force between protons. The strong nuclear force

has a range of about 10−15 m. The weak force is responsible for radioactive decay

of atomic nuclei and has a range of 10−17 m. The electromagnetic force describes

the interaction between charged particles. This force governs much of macroscopic

physics and has infinite range but its strength decreases with the inverse of the square

of the distance. The fourth force, gravity, also has infinite range but it is too weak to

be observable in laboratory experiments for elementary particles.
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The standard picture used in textbooks explains forces as resulting from matter

particles exchanging force-carrying particles. These carriers are integer spin particles

that follow the Bose-Einstein statistics called bosons [2].

Interactions among electrically charged particles are due to the exchange of quanta

of the electromagnetic field called photons. The photon is massless which accounts

for the long range of the electromagnetic force. The shorter range of the weak force

is mediated by the charged W+, W− and neutral Z bosons. Because the W± par-

ticles carry electric charge they must couple to the photon, implying a theory that

unites the weak and electromagnetic interactions. In distinction to the photons, the

W bosons couple only to left-handed fermions (with spin oriented opposite to the di-

rection of motion). The strong force is mediated by the exchange of massless gluons

between quarks. Quarks carry a quantum number called color which can be ”red”,

”blue” or ”green”. It takes the sum of the anti-symmetrized products of all three

colors to make a colorless object. Gluons possess color charge, because they carry

color-anticolor charge, and hence they couple to one another. As a consequence, the

color force between two colored particles increases in strength with increasing dis-

tance. Thus quarks and gluons cannot appear as free particles, but exist only inside

composite particles, called hadrons, that have no net color charge. In the quantum

description of the gravity, the gravitational force is associated with a neutral boson

named graviton.

Standard Model (SM) [3], [4], [5] of particle physics is a theoretical framework

that has been enormously successful in predicting a wide range of phenomena. The

main achievement of the SM is the elaboration of a unified description of the strong,

weak and electromagnetic forces in the language of quantum field theories.
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Moreover, the SM combines the weak and electromagnetic forces in a single elec-

troweak theory, similarly to the Maxwells unification of the apparently distinct forces

of electricity and magnetism [6].

Despite the Standard Model’s effectiveness at describing the phenomena within its

domain, it is nevertheless incomplete. The theory incorporates only three out of the

four fundamental forces, omitting gravity. There are also important questions that

it cannot answer, such as what is the dark matter, what happened to the missing

antimatter in the Universe, and more.

One of the most important questions that the Standard Model faces refers to the

unification of the weak and electromagnetic forces. If those two forces are part of the

same electroweak force, why is it that the exchange particle for the electromagnetic

interaction, the photon, is massless while the W and Z have masses more than 80

times that of a proton. In the Standard Model, spontaneous electroweak symmetry

breaking is the process that give masses to the W and Z bosons and the fermions. It

takes place when a system that is symmetric has a vacuum state that is not symetric.

A detailed description of the mechanism will be given in chapter (2.1).

In mathematical terms the behavior of a system is described by the Lagrangians.

The Lagrangians can be split into a kinetical term and a potential term. It is in the

potential term that the symmetry breaking occurs. If we assume a potential term

of the shape of the famous ”mexican hat”, and we imagine a ball sitting at the top

of the hat, that state is symmetric but it is not stable(Fig. 1.2). The ball could

spontaneously roll down at any time and by doing this will single out a preferred

direction thus breaking the symmetry. This is an intuitive example of symmetry

breaking. The idea of a field that fills all space and has a nonzero expectation value

was proposed by Peter Higgs in 1964 [7]. The field is called the Higgs field and its

quanta is called the Higgs boson.
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Figure 1.2. Mexican hat potential.

The Higgs mechanism explains how particles acquire mass as they move through

the Higgs field. This is a vital part of the Standard Model as without it the theory

suggests that all particles should be massless [8]. The quarks, leptons and W and Z

bosons continuously collide with these Higgs bosons as they move through the vac-

uum. The whole Higgs field acts as a molasses slowing down anything that interacts

with it; the stronger the interactions between the particles and the Higgs field are,

the heavier the particles become. The discovery of the Higgs boson is therefore a key

element in proving the validity of the Standard Model.

The SM is further characterized by a high degree of symmetry. CP is the product

of two symmetries: C for charge conjugation, which transforms a particle into its

antiparticle, and P for parity, which creates the mirror image of a physical system.

James Cronin and Val Fitch with co-workers proved in 1964 that CP symmetry could

be broken. Thus they won the 1980 Nobel Prize [9].
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Their discovery was based on the fact that neutral kaons can transform into their

antiparticles (in which each quark is replaced with its antiquark) and vice versa, but

such transformation does not occur with exactly the same probability in both direc-

tions. So it appears that antimatter is not precisely the three-coordinate mirror image

of matter. While this effect is small and may seem to be unimportant, it could explain

one of the largest questions in physics: ”Why is the universe made almost entirely of

matter?”. The big bang is believed to have produced equal amounts of matter and

antimatter. However, whenever matter and antimatter meet, they annihilate creating

gamma rays, so this theory would suggest that both matter and antimatter should all

have annihilated long ago, and the universe should today simply consist of radiation.

Since CP violation exists, the small difference between matter and antimatter may

explain why, after all the early annihilation and creation of mater antimatter pairs,

there is a tiny surplus of matter left over to form galaxies. This hypothesis remains

to be proven.

Supersymetry (SUSY) could probably provide some answers to questions like

”What is Dark Matter?” or ”Is it possible to unify electroweak and strong inter-

actions in one Grand Unified Theory?” [10]. In particle physics, SUSY is a symmetry

that relates each elementary particle of a given spin to other particles called super-

parteners that have a spin that differs by half a unit. That means that for every type

of boson there is a corresponding type of fermion, and vice-versa. Incorporating spin

supersymmetry into the Standard Model requires doubling the number of particles

because the particles in the Standard Model cannot be superpartners to each other.

With the addition of the new particles, there are many possible new interactions.

Each SUSY particle is expected to be short lived, decaying into supersymetric par-

ticles of lower mass. SUSY particles with the lowest mass cannot decay furthermore

and it is stable.
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Stable, charged supersymetric particles are excluded since they should have been

seen already. This leaves open the possibility that the lowest mass SUSY particle is

neutral and it is called neutralino. In many SUSY models neutralinos could serve as

a WIMPs (Weakly Interacting Massive Particles) proposed to explain astronomical

observations of dark matter [11]. Moreover, if supersymmetry exists close to the TeV

energy scale, it allows for a solution of another problem that puzzles particle physics:

the unification of the weak interactions, the strong interactions and electromagnetism.

In summary, we expect that the Standard Model of particle physics is only a part

of a bigger picture that includes new physics that has so far been hidden deep in

the subatomic world or in the dark recesses of the Universe. New information from

experiments at the Large Hadron Collider will help us find some of the missing pieces.

In addition to the Higgs boson, other particles that might be produced, like strangelets

[12], micro black holes [13], magnetic monopoles and supersymmetric particles.

1.2. The Large Hadron Collider

1.2.1. Description

Particle physicists study matter by colliding accelerated particles. Accelerators

use electric fields to accelerate charged particles to high energies. Many of today’s

accelerators are colliders in which two particle beams are accelerated in opposite

directions and are made to collide head on inside the devices that detect objects

created in these collisions. In these collisions practically all the particle energy can

be used for particle production. Based on Einstein’s equation E = mc2, when those

particles collide they can into ”transform” into more massive or even new particles.
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Highly energetic particles have high momentum and thus having short wavelengths

according to de Broglie formula λ = h/p where h is Planck’s constant, λ the wave-

length of the accelerated particles and is p the momentum. This makes possible the

exploration of the structure of matter with an extremely high spatial resolution. Us-

ing colliders is the most efficient and economic way to obtain high collision energies

to explore the interior of matter and to produce new particles. Huge detector systems

surround the collision points and register what is happening in the collisions.

The Large Hadron Collider (LHC) at CERN will extend the frontiers of known

particle physics. The high luminosity and increased cross-sections at the LHC will

allow precision tests of QCD (Quantum Chromodynamics), electroweak interactions,

and flavour physics. It is proton-proton particle accelerator located at CERN (Con-

seil Europen pour la Recherche Nuclaire -European Council for Nuclear Research),

near Geneva, Switzerland. The collider is situated underground, in a circular tunnel

on the border of France and Switzerland. The main ring has has a circumference

of 27 kilometres (17 mi) and a depth ranging from 50 to 175 metres underground.

The tunnel hosts two pipes, each pipe containing a beam of protons which travels in

opposite directions around the ring.

Before being injected in the main accelerator the protons are passed through a

series of systems that successively increase their kinetic energy. The first system is

the linear accelerator Linac 2 generating 50 MeV protons which feeds the Proton

Synchrotron Booster (PSB). Protons are then injected at 1.4 GeV into the Proton

Synchrotron (PS) and accelerated to 26 GeV. Finally the Super Proton Synchrotron

(SPS) is used to increase the energy of protons up to 450 GeV.
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Thus each proton will reach an energy of 7 TeV, giving a total collision energy

of 14 TeV. At these energies it will take less than 90 microseconds for an individual

proton to travel once around the collider. There are 1232 dipole magnets keeping the

two beams on their circular path.

The protons are ”bunched” together into 2,808 bunches, so that interactions be-

tween the two beams will take place at discrete intervals never shorter than 25 ns

apart. This means that bunches containing 1011 protons will collide 40 million times

per second.

Because the size of the proton is very small, about 10−14 m, they represent a very

small target. Therefor we need to reduce the distance between them, in a bunch,

by concentrating the beam to a very small diameter. This increases the interaction

probability between bunches traveling in opposite direction. There are 392 quadrupole

magnets used to keep the beams focused.

The interaction rate is measured by a parameter called Luminosity . Luminosity

is a function of the number of protons in the two colliding beams.

L = fn
N1N2

A
(1.1)

where N1 and N2 are the number of protons in each of the beam bunches, f is the

collision frequency , n is the number of bunches and A is the transverse area of the

beam. The LHC has a design luminosity of 1024 cm−2s−1.

Six detectors are being constructed at the LHC, located underground in large

caverns excavated at the LHC’s intersection points. Two are the general purpose de-

tectors, ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid).
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The ALICE detector is designed to study heavy ion collisions in order to evaluate the

properties of quark-gluon plasma. The other three (LHCb, TOTEM, and LHCf) are

relatively smaller and more specialized.

1.2.2. ATLAS detector

The ”A Toroidal LHC ApparatuS” (ATLAS) experiment consists of a series of

concentric detection layers arranged with cylindrical symmetry around the interaction

point where the proton beams collide. It has three major parts: the Inner Detector,

the calorimeters and the muon spectrometer. Each layer has a specific function. The

Inner Detector detects the trajectories of the particles, the calorimeters measure their

energies, and the muon system makes additional identification of highly penetrating

muons. The two magnet systems bend electrically charged particles in the Inner

Detector and the muon spectrometer, allowing their momenta to be measured. The

only long lived particles that cannot be detected directly are neutrinos; their presence

is inferred by noticing a momentum imbalance among detected particles [14]. In

fig. 1.3 the different layers of the ATLAS detector are presented in a longitudinal

section.

1.2.2.1. Inner Detector

The Inner Detector begins a few centimeters from the proton beam axis, extends

to a radius of 1.2 meters, and is seven meters in length along the beam pipe. Its basic

function is to track the path of charged particles. There is a two Tesla magnetic field

surrounding the entire Inner Detector region causing the trajectories of electrically

charged particles to bend.
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Figure 1.3. Cut-away view of the ATLAS detector.
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The direction of the curve gives information about the particle’s charge and the

degree of curvature relates its momentum.

The Inner Detector, being the closest detector to the interaction point, needs to

identify with extreme accuracy the trajectories of the produced particles. This is

done by precise pattern recognition, momentum and vertex measurements, and elec-

tron identification. The detector layers are designed to achieve these goals. There

are high-resolution semiconductor pixel and strip detectors in the inner part of the

tracking volume, and straw-tube tracking detectors with the capability to generate

and detect transition radiation in its outer part [15]. The Inner Detector has three

parts(see Fig. 1.4):

- the silicon Pixel detector

- the SemiConductor Tracker (SCT)

- the Transition Radiation Tracker (TRT)

The three layers have increasing resolution. Closest to the collision point, we have

pixel detector with the best spatial resolution. Silicon strips have larger spatial res-

olution but are more cost efficient. The TRT tubes are the less expensive and have

the poorest resolution.

The detectors sensors are silicon pixel and micro-strip sensors for SCT and TRT

sub-systems, and straw tubes filled with a Xe/CO2/O2 gas mixture for the TRT.

The silicon detectors detect the primary ionization directly. Silicon is a solid, so it is

much denser than gases that means that more primary ions are produced and it also

means that the charged particle loses more energy in order to be tracked. Being a

solid, there is also less diffusion than in a gas, which means it has a higher resolution.

The Pixel Detector is the innermost part of the detector and contains three con-

centric detection layers around the beam pipe, in the barrel region, and three disks

on each end-cap(see Fig. 1.3).
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Figure 1.4. Cut-away view of the ATLAS inner detector.
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It is a semiconductor detector made out of wafers with very small rectangular

two dimensional detection elements. The detecting material is 250 m thick silicon.

The smallest unit that can be read out is a pixel (each with dimensions of 50 by

400 micrometers). A large number of such detector elements uniformly spread on a

surface ensures high spatial resolution in two coordinates, in the plane of the wafer.

Because of their high precision, the pixel detector are used in vertex chambers [16].

The smallest unit that can be read out is a pixel (each 50 by 400 micrometers). The

pixels are organized in modules, each measuring two centimeters by six centimeters.

There are in total of 1744 modules. Each module contains roughly 47,000 pixels. This

makes possible extremely precise tracking very close to the interaction point [17].

The Semi-Conductor Tracker (SCT) is the middle component of the inner detector.

It has a similar concept and function to the Pixel Detector but with long, narrow strips

in order to assure coverage of a larger area. Each strip measures 80 micrometers by

12.6 cm. The SCT consists of 4088 modules organized in four coaxial cylindrical

layers in the barrel region and in nine disk layers in the two end-caps. It covers a

total area of 63 square meters.

The Transition Radiation Tracker (TRT), the outermost component of the inner

detector, is a combination of a straw tracker and a transition radiation detector. It

contains many small straws, each four millimeters in diameter and up to 144 cm long.

In the barrel region the straws are parallel to the beam and in the forward region

they are radial. Each straw is filled with gas that becomes ionized when a charged

particle passes through. With this set up the TRT covers a larger volume but with a

much coarser resolution than the other two detectors. The ions produce a current in

a high-voltage wire running through the middle of the the straw.
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The sum of the signals form many straws creates a pattern that allows the path of

the particle to be determined. The detector contains also alternating materials with

very different indices of refraction, causing charged particles to produce transition

radiation and leave much stronger signals in each straw. The TRT has about 351,000

straws in total.

1.2.2.2. Calorimeters

The calorimeters are situated outside the solenoidal magnet that surrounds the

Inner Detector. A particle entering the calorimeter generates a shower, which is

a cascade of particles produced as the result of a high-energy secondaries particle

interacting with dense matter. In the interaction, multiple new particles are produced,

each with lesser energy; each of these then interacts in the same way, a process

that continues until many low-energy particles are produced. There are two basic

types of showers: electromagnetic showers are produced by a particle that interacts

primarily or exclusively via the electromagnetic force (a photon or electron) and

hadronic showers are produced by hadrons (nucleons and other particles made of

quarks) that proceed mostly via the strong nuclear force.

There are two types of electromagnetic calorimeters: homogeneous and sampling

calorimeter. In a homogeneous calorimeter the entire volume is made of the sensitive

material whereas the sampling calorimeter has layers of active medium which detects

the signal and passive medium that acts as an absorber. The ATLAS calorimeter is a

sampling calorimeter composed of three basic calorimeter systems: electromagnetic,

hadronic and forward calorimeter. All are sampling detectors with full symmetry and

coverage around the beam axis.
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Figure 1.5. Electromagnetic shower.

Figure 1.6. Hadronic shower.
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In the electromagnetic, endcap hadronic and forward calorimeters liquid argon is

used as the active detector medium because of its stability of response over time and

its intrinsic radiation-hardness. A section through the calorimeters is illustrated in

Fig. 1.7.

The electromagnetic (EM) calorimeter absorbs energy from particles that interact

Figure 1.7. Cut-away view of the ATLAS calorimeters.

electromagnetically, which include charged particles and photons. Their detection is

based on the electromagnetic shower. High energy photons or electrons incident on

a thick absorber initiate an electromagnetic cascade through electron positron pair

production and bremsstrahlung.
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Bremsstrahlung is the process in which electromagnetic radiation( photons) is pro-

duced by the deceleration of a charged particle, such as an electron, when deflected

by another charged particle, such as an atomic nucleus. Pair production refers to the

creation of an electron positron pair by a photon with energy exceeding twice the

rest mass of the electron. Thus more electrons and photons with lower energies are

generated. These two processes will continue in turn, until the remaining particles

have lower energy and then they are absorbed by atoms form the material. Fig. 1.5

shows a diagram of the process.

The ATLAS electromagnetic calorimeter is made out of lead absorber and elec-

trode plates interleaved with liquid Argon (LAr) gaps. The lead is the energy-

absorbing material and the liquid argon is the sampling material. The plates have

an accordionshape geometry thus providing a hermetic and uniform φ coverage. Fur-

thermore the accordion shape ensures constant amount of absorber and sampling

liquid independent of the angle of incidence of the particle. For the barrel part, the

amplitude of the accordion increases with radius so that each accordion plate keeps

a constant φ. There are three electromagnetic detector parts: the electromagnetic

Barel (EMB) and two Electromagnetic End Caps (EMEC). A cryostat is required

around the EM calorimeter to keep it sufficiently cool [20].

The EMB is made out of two identical half-barrels. The length of each half-barrel

is 3.2 m, their inner and outer diameters are 2.8 m and 4 m respectively, and each

half-barrel weighs 57 tonnes. Each half-barrel is made of 1024 accordion-shaped ab-

sorbers, interleaved with readout electrodes. The electrodes are positioned in the

middle of the gap by honeycomb spacers. The size of the drift gap, on each side of

the electrode is 2.1 mm. The barrel calorimeter is complemented with a liquid-argon

presampler detector that consists on an active layer of liquid argon, corrects for the

energy loss upstream.
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The EMEC calorimeters consist of two wheels, one on each side of the electro-

magnetic barrel. Each wheel is 63 cm thick and weighs 27 tonnes, with external

and internal radii of 2098 mm and 330 mm, respectively. Each end-cap calorimeter

consists itself of two co-axial wheels. Each wheel is further divided into eight wedge-

shaped modules.

The hadron calorimeter absorbs energy from particles that pass through the EM

calorimeter, but do interact via the strong force; these particles are primarily hadrons.

The detection principle is based on the hadronic shower. This is produced by a high-

energy hadron such as a nucleon or a pion. Some of these particles have electric

charge, and so produce showers that are partially electromagnetic. All these particles

also interact with nuclei via the strong force producing several lower-energy hadrons.

The process continues, as with the electromagnetic shower, until all particles are

stopped or absorbed in the material see Fig. 1.6.

The ATLAS hadronic calorimeters are: the tile calorimeter, the liquid-argon

hadronic end-cap calorimeter (HEC) and the liquid-argon forward calorimeter (FCal).

The sampling medium for the Tile hadronic calorimeter is made of scintillator tiles.

The absorber medium is steel. The calorimeter is divided in 3 regions; a central bar-

rel and two extended barrels. The central barrel has a length of 5.8 m and an outer

radius of 4.25 m and inner radius of 2.6 m. The tiles are 3 mm thick and the total

thickness of the steel plates is 14 mm. The orientation of the scintillator tiles radially

and normal to the beam line, in combination with wavelength-shifting fibre readout

on the tile edges, allows for almost seamless azimuthal calorimeter coverage [21].
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The hadronic end-cap calorimeter (HEC) is a copper/liquid-argon sampling calorime-

ter. It consists of two wheels, a front wheel (HEC1) and a rear wheel (HEC2), each

wheel containing two longitudinal sections. The wheels are cylindrical with an outer

radius of 2030 mm. Each of the four HEC wheels is constructed of 32 identical wedge-

shaped modules. The modules of the front wheels are made of 24 copper plates, each

25 mm thick, and a 12.5 mm thick front plate. In the rear wheels, the sampling

fraction is coarser with modules made of 16 copper plates, each 50 mm thick, plus a

25 mm thick front plate. The gaps in between the plates have a thickness of 8.5 mm

which is maintained using a honeycomb sheet. The gap region between the barrel and

the extended barrel has special modules, made of steel-scintillator sandwiches that

allows to partially recover the energy lost in the crack regions between the detectors.

Because the FCal modules are located at high η, at a distance of approximately

4.7 m from the interaction point, they are exposed to high particle fluxes. This has

resulted in a design with very small liquid-argon gaps to avoid ions buildup, obtained

by using an electrode structure of small-diameter rods, center in tubes which are ori-

ented parallel to the beam direction.

1.2.2.3. Muon Detector

The muon spectrometer measures the paths in a magnetic field of these heavy

electron-like particles so that their momenta can be determined with high preci-

sion. It surrounds the calorimeters and extends from a radius of 4.25 m around the

calorimeters out to the full radius of the detector (11 m) [19]. The muon detection

is based on magnetic deflection of the muon tracks by the large toroid magnets. The

toroidal magnetic field present in the muon spectrometer is produced by eight very

large air-core superconducting barrel loops and two end-caps.
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Figure 1.8. Cut-away view of the ATLAS muon system.
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This magnetic field is 26 meters long and 20 meters in diameter, and it stores 1.2

gigajoules of energy. In the barrel region there are three cylindrical layers, oriented

along the beam direction. In the forward region the detection layers are oriented

perpendicular to the beam. The muon spectrometer has roughly one million readout

channels, and its layers of detectors cover a total area of 12,000 square meters. A

schematic representation of the muon system is shown if Fig. 1.7.

1.2.2.4. Trigger

With a bunch crossing frequency of 40 MHz at the LHC, the ATLAS experiment

will produce a large amount of data. Since we can only store only about 200 Hz of

data, we need to perform a selection of the event to be recorded. Sorting and storing

the selected interesting events requires performant Triggers and Data Acquisition

systems. The ATLAS trigger system has three levels: Level 1 (LVL1), Level 2 (LVL2)

end Event Filter (EF). The trigger system is based on seeded event processing, that

means that each trigger level starts with the decision made by the previous level and

refines it by applying additional selection cuts. Fig. 1.9 shows a schematic description

of the trigger levels.

The L1 trigger is a hardware trigger that selects event based on information from

all of the calorimeters (electromagnetic and hadronic; barrel, end-cap and forward)

and muon detector. It searches for high transverse-momentum muons, electrons,

photons, τs, as well as large missing and total transverse energy. Isolation can be

required, meaning that there must be a minimum angular separation from any other

significant energy deposits from the same trigger event. In each event one or more

Regions-of-Interest (RoIs) are defined. These are regions, within the detector, where

its selection process has identified interesting features.
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RoI information contains the eta and phi directions of the objects as well as a the

transverse momentum thresholds that have been passed.

The thresholds are encoded in a binary word. The threshold names follow the

following scheme:

(THRESHOLD TYPE)(THRESHOLD VALUE)(ADDINFO)

where THRESHOLD TYPE = type of the threshold in capital letters, THRESHOLD

VALUE = threshold value in GeV, ADDINFO = additional information in capital

letters. For example EM15I refers to an electromagnetic object with a transverse

momentum greater than 15 GeV which is isolated.

While the trigger decision is being formed, the information for all detector chan-

nels has to be retained in pipeline memories. The LVL1 latency is the time from the

proton-proton collision until the LVL1 trigger decision is made. This time interval

must therefore be kept as short as possible. For the LVL1 the latency has a value of

2.2 µs.

The LVL2 trigger is software based processing only sub-regions of the detec-

tor(RoI) seeded by LVL 1 trigger. It combines tracking and calorimetry information

.The average event processing time is about 40 ms.

The final step of the event selection is carried out by the EF which work similar to

the LVL2 trigger. At this level the offline reconstruction algorithms are used. How-

ever, compared to the offline reconstruction, which reconstructs in the entire event,

EF does only partial event reconstruction within the Level-2 RoI’s. Its latency is of

the order of a few seconds.

The LVL2 and EF together are called High-Level Trigger (HLT). Practically the

HLT starts from the RoIs delivered by the L1 trigger and applies trigger decisions in

a series of steps called a ”trigger chain”, each refining the preexisting information.

24



Figure 1.9. ATLAS trigger system.
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The combination of trigger elements in each step that could lead to a positive trig-

ger decision is called a ”trigger signature”. The decision is made by using extraction

algorithms that request detector data from within the RoI and attempt to identify

specific features, like a track or a calorimeter cluster. Subsequently, a hypothesis al-

gorithm determines whether the identified feature meets the signature’s criteria (such

as a shower shape, track-cluster match or ET threshold) necessary to continue. With

this set up, events can be rejected early at any intermediate step if no signatures

remain viable.

The ATLAS trigger needs to reduce the incoming interaction rate of approxima-

tively 1 GHz by a factor of 107 in order to have 200 Hz written to mass storage.

This trigger setup ensures efficient background rejection while maintaining excellent

selection efficiency for rare signals.
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Chapter 2

HIGGS DALITZ DECAY

2.1. The Higgs boson

Symmetry has always played an important role in theoretical physics. Symmetry

implies invariance. All the conservation laws of physics are related to the principles of

invariance [22]. There are Global Symmetries in which the symmetry transformation

is independent of space and time, and Local Symmetries or Gauge Symmetries for

which the transformation equation is space-time dependent. The Gauge Symmetries

are used to generate dynamics, the gauge interactions. The mathematical language

for symmetry is the group theory. A group is a set of elements ( a,b,c,...) with a mul-

tiplication law so that if a and b are elements of the group they satisfy the following

properties:

- Closure: If c = ab then c is an element of the group.

- Associativity:For any a,b,c we have a(bc) = (ab)c.

- Identity: Exists an element e such that ea= ae = a for any a.

- Inverse: For every a exists an element a−1 such that aa−1 = a−1a = e.

If the multiplication law is also Commutative: ab = ba then the group is called

Abelian Group.
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The Unitary group, U(n) is a set of n× n unitary matrices:

UU+ = U+U = I (2.1)

where U+ is the conjugate transpose of U and I is the identity element of the group.

For n = 1 we have the U(1)unitary group which is an Abelian group that consists

of 1 × 1 unitary matrices, like phase transformations eiθ. It is the symmetry group

associated with QED.

The group of n× n unitary matrices with unit determinant is called Special Uni-

tary group, SU(n). In this case the matrices need to satisfy the relation:

detA = 1 (2.2)

The group of isospin invariance is SU(2)and the SU(3) group is used to describe the

symmetry based on three-quark flavors as well as three-quark color of the theory of

the strong interactions known as QCD (Quantum Chromodynamics). In the language

of group theory, the product SU(3)× SU(2)× U(1), represents the underlying sym-

metry of the SM. This is equivalent to saying the SM incorporates the symmetries

representing the electroweak theory (SU(2),U(1)) and QCD (SU(3)).

The Higgs mechanism [7] has been introduced into the Standard Model [3, 4, 5] to

explain electroweak symmetry breaking and the masses of the fundamental particles.

For a brief, intuitive description of the Higgs mechanism [23] consider a U(1) gauge

theory with a single gauge field, the photon.
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The Lagrangian in this case is:

L = −1

4
FµνF

µν (2.3)

with Fµν = ∂νAµ − ∂µAν the field strength tensor and Aν is the gauge field. This

Lagrangian is invariant under the transformation Aµ(x) → Aµ(x) − ∂µη(x) for any η

and x, thus satisfying the local U(1) gauge invariance. If we add a mass term for the

photon in the Lagrangian it becomes:

L = −1

4
FµνF

µν +
1

2
m2AµA

ν (2.4)

In this case the gauge invariance is broken. So the U(1) gauge invariance requires for

the photon to be massless.

The same procedure is applied for a complex scalar field with charge e which cou-

ples to the photon. In this case the Lagrangian is:

L = −1

4
FµνF

µν + |Dµφ|2 − V (φ) (2.5)

with

Dµ = ∂µ − ieAµ (2.6)

V (φ) = µ2|φ|2 + λ(|φ|2)2 (2.7)

29



The potential V (φ) is a renormalizable potential allowed by the U(1) gauge symme-

try. Following the idea that a Gauge Symmetry is a local manifestation of a Global

Symmetry, this Lagrangian has to be invariant under a global U(1) rotation φ → eiθφ

as well as under local gauge transformations. So the Lagrangian needs to be invariant

under the transformations:

φ(x) → eiη(x)φ(x) (2.8)

Aµ(x) → Aµ(x)− ∂µη(x) (2.9)

There are two scenarios. When µ2 > 0 the symmetry is preserved. The vacuum

Figure 2.1. The shape of the potential in the case: a) µ2 > 0 and b) µ2 < 0 .
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state, which is obtained for the φ that minimizes the potential V (φ), has a zero value

φ = 0 and potential has the shape shown in fig. 2.1(a). This describes the quantum

electrodynamics with a massless photon and a charged scalar field φ with mass µ.

If µ2 < 0 the potential can be rewritten as:

V (φ) = −µ2|φ|2 + λ(|φ|2)2 (2.10)

This potential has the ”mexican hat” shape shown in fig. 2.1(b). The minimum en-

ergy state is not at zero but at φ = ±
√
−µ2

λ
≡ v. The existence of this non zero

vacuum expectation value (VEV) clearly breaks the U(1) global symmetry. To deter-

mine the spectrum in the region of minimum, consider a small perturbation η(x) at

the minimum value and expand around η = 0 :

φ(x) = v + η(x) (2.11)

The fact that the same expansion when done around the negative minimum (-v) would

result in the same physics generates the term of spontaneous symmetry breaking (

there is no preferential direction). Using eq.( 2.10) and eq.( 2.11) the Lagrangian

becomes:

L =
1

2
(∂µη∂µη)− (λv2η3 + λvη3 +

1

4
λη4) + const (2.12)

The result, instead of being the Lagrangian of the field φ now is the Lagrangian of

the perturbation η.
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This new Lagrangian describes the Higgs particle with mass m2 = 2λv2 = −2µ2.

The Higgs boson is the quantum component of the Higgs field, a field imbedded

in all space that has a non-zero vacuum expectation value. The gauge bosons and all

fermions get their masses by interacting with this field. In the Standard Model, the

Higgs field is a scalar field that means it requires the existence of a spin zero Higgs

boson. The Higgs boson also has no charge and it is its own antiparticle.

The theoretical properties of the Standard Model Higgs boson have been exten-

sively studied [24] including the production mechanisms, couplings and most of its

major decays. The mass of the Higgs boson remains as an only free parameter. If the

mass of the Higgs boson is between 115 and 180 GeV, then the Standard Model can

be valid at energy scales all the way up to the Planck scale (1016 TeV) [25].

Many theorists predict the existence of new physics beyond the Standard Model.

The Supersymmetric (SUSY) extensions to SM are of interest, since they provide a

consistent framework for the unification of the gauge interactions at a high-energy

scale[26]. Moreover, their predictions are compatible with existing high-precision

data. The Minimal Supersymmetric Standard Model (MSSM) (reviewed in refer-

ence [27] and [24]) is the SUSY extension of the SM with minimal new particle

content. This model predicts three neutral and two charged Higgs bosons. The light-

est of the neutral Higgs bosons is predicted to have its mass of about 135 GeV.

Although the mass of the Higgs boson is an arbitrary parameter in the Standard

Model and may have any value, the global fits to the numerous data on electroweak

processes show a strong preference for the low mass of the Higgs. In fig. 2.2 the χ2

for a global fit to electroweak data is shown as a function of the Higgs mass [28]. The

shaded part of the plot indicates the region excluded by direct searches for the Higgs

boson.
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Figure 2.2. The χ2 for a global fit to electroweak data as a function of the Higgs

mass.

33



B
R

  f
or

 S
M

  H
ig

gs
_

bb

τ+ τ−

cc
_

gg

WW

ZZ

tt-

Zγ

50 100 200 500 1000
10

-3

10
-2

10
-1

1
140 GeV

γγ

Higgs Mass      (GeV)

Figure 2.3. Branching ratios for different decay channels of the Higgs boson as a

function of the Higgs mass.

Past searches have not been successful in finding the Higgs boson, but a lower

limit on the mass - mH > 114.4 GeV at 95 %CL - has been established in the LEP

experiments [29]. From the fit, a relatively light value for the Higgs mass is favored.

The current best fit value is mH < 186 GeV at 95 %CL.

Low mass Higgs will decay predominantly to a pair of fermions. The dominant

branching ratio fractions are shown in Fig. 2.3, including all charged leptons and

quarks except the top quark, or a pair of bosons ( γ, W±, Z). The identification of a

Higgs particle in the mass region from 80 GeV to 130 GeV will be a challenge for the

LHC. The dominant decay will be H → bb but with the large background of QCD-

jets this channel will be difficult to distinguish from the background. In Fig. 2.4 are

shown the cross-sections for the SM background processes.
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Figure 2.4. Cross sections for the Standard Model processes.
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Once the center-of-mass energy exceeds the top-quark pair threshold, this process

also contributes as one of the main backgrounds.

One of the most promising channels for the discovery of the Higgs boson is its de-

cay H → γγ. This decay, to two photons, has a relatively small branching fraction of

about 10−3 that falls rapidly with increasing Higgs mass making this decay mode use-

ful only in the region 80 GeV < mH < 130 GeV. In spite of a small branching fraction,

this decay represents a ”golden discovery channel” because it is the Higgs resonance

in the γγ invariant mass is easy to distinguish from the very small background. The

main irreducible background comes from QCD processes of quark-antiquark annihi-

lation (qq → γγ) and gluon-gluon fusion (gg → γγ). This background is expected to

be low for γγ mass range below Mγγ < 200 GeV . For MH = 110 GeV the ATLAS

collaboration estimates a ratio [32]:

Signal√
Background

∼ 9.0 (2.13)

This important characteristic has been used as a benchmark in optimization of the

ATLAS and CMS detectors and in estimates of the Higgs discovery potential.

2.2. The Higgs Dalitz decay

Internal photon conversion is by definition the decay of a virtual off-shell photon

into electron-positron pair in the absence of matter. The process is also called Dalitz

decay after the name of the physicist R.H Dalitz who was first to describe this process

in the decay of the neutral pion [33]. While studying the π0 decay he noticed that

most of the time the π0 decayed to two photons.
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Fig. 2.5 shows the Feynman diagram for this process. In some rare instances

though, that occurred only with a frequency of only 1.18 % ,the π0 decayed into a

photon and an electron positron pair. The Feynman diagram for this rare decay is

shown in Fig. 2.6.

In SM, the Higgs particle is a neutral scalar boson. Its spin and decay character-

Figure 2.5. The Feynman diagram for the π0 decay to two photons

istics are similar to that of the neutral pion with the only difference being the higher

mass. It is then possible that the Higgs decay into two photons proceeds via the

internal conversion process analogous to the Dalitz decay of a neutral pion. Fig. 2.7

illustrates the Feynman diagram for the Higgs Dalitz decay process.

The main difference between the π0 Dalitz decay and the Higgs Dalitz decay is

that in the Higgs case, the higher mass of the Higgs boson results in more energetic

decay photons than for the π0 case. Since photon couples to all charged particles via

electromagnetic interactions, higher energy of the photons allows for higher masses

of the decay products.
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Figure 2.6. The Feynman diagram for the π0 Dalitz decay

The mass of the virtual photon can range up to a value of the mass of the Higgs

so in contrast to the case of a neutral pion, the choice of the fermion type is not

limited to electrons only but will include all charged leptons and all quarks allowed

by the kinematics: electrons, muons and tau leptons and up, down, strange, charm

and bottom quarks. For higher Higgs masses the top quark is also allowed. In the

Feynman diagram shown in Fig. 2.7, f refers to all energetically allowed fermions.

Since the photon is massless there is no direct coupling between the SM Higgs

and the photon. However, the decay is possible through loop processes with either

fermions or bosons in the triangular loop. The dominant process will be the virtual

top/anti-top quark pair or a W boson because the couplings of the Higgs to up or

down quarks or leptons are very small, due to the small masses of these particles.
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Figure 2.7. The Feynman diagram for the Higgs decay with internal conversion

In the next chapter we proceed to the calculation of the Higgs Dalitz decay branch-

ing ratio with respect to the Higgs to gamma gamma process following the same pro-

cedure as for the π0 Dalitz decay calculation.

2.3. Correction to the Higgs to gamma gamma branching ratio

The Dalitz decay process was first studied systematically by Kroll and Wada [34]

in 1955. It was later reevaluated in much more details by Miyazaki and Takasugi [35]

in 1973. In their work they calculate the fraction of the neutral pion decay rates into

γe+e− to the overall rate for the decay to γγ.
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For the π0 → γγ the decay width, Γ, is [35]:

Γ(π0 → γγ) =
|f |2µ
16π

(2.14)

where f = f(k2
1, k

2
2) is the form factor dependent on the momenta of the two photons,

k1 and k2, and µ is the π0 mass. The π0 → γe+e− has a decay width expressed as:

dΓ(π0 → γe+e−)

dq
=
|f |2µα0

12π
(1− q2

µ2
)3(1− 4m2

e

q2
)1/2(1 +

2m2
e

q2
) (2.15)

In this case, α0 = 1/137 is the electromagnetic coupling constant, q denotes momen-

tum of the virtual photon and me is the mass of the electron. The range of q is given

by 2me < q < µ. The conversion rate is introduced as:

ρ =
Γ(π0 → γe+e−)

Γ(π0 → γγ)
(2.16)

By combining eq.( 2.16) and (eq. 2.17), the resulting expression for ρ is given by an

integral over phase space for each final state leptons:

ρ =
4α0

3π

∫ µ

2me

(
1− q2

µ2

)3 (
1− 4m2

e

q2

)1/2 (
1 +

2m2
e

q2

)
dq

q
. (2.17)

The resulting theoretical value for this ratio, ρ, is found to have the numerical value

of 0.0118 which is in excellent agreement with the experimental value [29].
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To evaluate the rate of internal conversions for the H → γγ decay we follow the

procedure used for the evaluation of the π0 Dalitz decay and calculate the fraction:

ρH =
Γ(H → γff)

Γ(H → γγ)
(2.18)

There are a few correction that need to be taken into account when estimating

the ratio in this case. Because of the higher energy range we need to use the running

effective coupling of the virtual photon to the fermion pair evaluated at the mass of

the virtual photon, q [36]:

αeff (q
2) =

α0

1− αo

3π

∑
i e

2
i Θ(q2 − 4mi) ln

(
q2

4mi

) (2.19)

where α0 = 1/137, ei is the charge and mi the mass of the fermion in Θ the Callan-

Symanzik beta function,Θ [37] [38]. For example for energies up to a Higgs mass

of 120 GeV, we could have electrons, muons, taus, up, down, strange and bottom

quarks in the function so the coupling becomes:

αeff (q
2) =

α0

1− αo

3π
[ln( q2

4me
) + ln( q2

4mµ
) + (2

3
)2 ln( q2

4mu
) + (−1

3
)2 ln( q2

4md
) + (−1

3
)2 ln( q2

4ms
)]

(2.20)

Since αeff (q
2) contains a step function Θ(q2 − 4mi), it must be integrated in steps

across all of the particle mass thresholds as q varies from 2mf to mH .
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With all these considerations included, in the case of leptons as final decay prod-

uct of the virtual photon, the ratio ρl is given by:

ρl =
4

3π

∫ mH

2ml

αeff (q
2)

(
1− q2

m2
H

)3 (
1− 4m2

l

q2

)1/2 (
1 +

2m2
l

q2

)
dq

q
(2.21)

where ml is the lepton mass.

In the case of quarks we need to take into account the color factors for the quarks

and the charge dependence of the couplings . The modification of the eq.( 2.23) takes

the form:

ρq = 3(ei)
2 4

3π

∫ mH

2mq

αeff (q
2)

(
1− q2

m2
H

)3 (
1− 4m2

q

q2

)1/2 (
1 +

2m2
q

q2

)
dq

q
(2.22)

In this equation mq represents the quark mass, ei is the fractional charge of the quarks

and the factor 3 accounts for the three possible quarks colors. We assume the lower

limit of the mass integration to be equal to the lowest mass of a physical hadron

produced in the decay, i.e., pion mass for the u and d quarks and kaon mass for

the strange quark; we use the particle Data Group values for the masses of c and b

quarks [29]. The corresponding partial width is:

Γi = ρi ×Br(H → γγ)× Γtot (2.23)
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where Γtot denotes the total width. The results of the evaluation of this ratio for

three values of the Higgs mass are listed in Tables 2.1 , 2.2 and 2.3 . In Fig

2.8 we show the shift in the branching fraction value for the H → γγ due to the

Higgs Dalitz decays. As can be seen, in the region just above the limit of the present

day observation, the total Dalitz decay rate of the neutral Higgs is about 10% of the

H → γγ branching fraction.

Table 2.1. Values of the ratio ρ and branching fractions for the Higgs with mass

mH = 120 GeV decaying to two photons with single internal conversions.

HiggsMass mH = 120 GeV

Channel ρ BranchingFraction

H → e+e−γ 0.0332 71.38× 10−6

H → µ+µ−γ 0.0167 35.90× 10−6

H → τ+τ−γ 0.0078 16.77× 10−6

H → uūγ 0.0211 45.36× 10−6

H → dd̄γ 0.0053 11.39× 10−6

H → ss̄γ 0.0040 8.38× 10−6

H → cc̄γ 0.0123 26.44× 10−6

H → bb̄γ 0.0018 3.87× 10−6

0.1022 219× 10−6
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Table 2.2. Values of the ratio ρ and branching fractions for the Higgs with mass

mH = 150 GeV decaying to two photons with single internal conversions.

HiggsMass mH = 150 GeV

Channel ρ BranchingFraction

H → e+e−γ 0.0340 47.12× 10−6

H → µ+µ−γ 0.0174 24.19× 10−6

H → τ+τ−γ 0.0086 11.81× 10−6

H → uūγ 0.0220 30.58× 10−6

H → dd̄γ 0.0055 7.64× 10−6

H → ss̄γ 0.0042 5.83× 10−6

H → cc̄γ 0.0132 18.35× 10−6

H → bb̄γ 0.0020 2.78× 10−6

0.1070 148× 10−6
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Table 2.3. Values of the ratio ρ and branching fractions for the Higgs with mass

mH = 180 GeV decaying to two photons with single internal conversions.

HiggsMass mH = 180 GeV

Channel ρ BranchingFraction

H → e+e−γ 0.0346 3.4× 10−6

H → µ+µ−γ 0.0180 1.79× 10−6

H → τ+τ−γ 0.0091 0.91× 10−6

H → uūγ 0.0229 2.28× 10−6

H → dd̄γ 0.0057 0.57× 10−6

H → ss̄γ 0.0044 0.44× 10−6

H → cc̄γ 0.0140 1.39× 10−6

H → bb̄γ 0.0022 0.22× 10−6

0.1110 11× 10−6
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Figure 2.8. The shift in the Branching Fraction Br(H → γγ) due to the Dalitz decay

correction. The dotted line represents the Branching Fraction without the Dalitz

decay corrections and the solid line takes into account the corrections
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2.4. Conclusion

The search for the Higgs boson has been one of the main motivations for the con-

struction of the Large Hadron Collider (LHC). The potential for the Higgs discovery

was the object of a detailed assessment study that was done by both the ATLAS [39]

team, and the CMS [40] teams. According to their results, it is expected that the

Standard Model Higgs can be discovered if its mass ranges from 80 GeV/c2 up to 1

TeV/c2 . The Higgs boson mass can be measured with 1 % precision across the entire

mass range.

After the discovery of a Higgs particle it will be important to measure the rate

of its decay into several decay channels to check if the coupling strength is indeed

proportional to the mass of the fermions, as predicted by the Standard Model. From

this point of view, the correct estimation the branching fractions is of extreme im-

portance.

This study shows that there are new Higgs decay channels, previously neglected

by the literature that proceed via the Higgs Dalitz decay mechanism. Even though

the cross sections for these processes are very low making them unsuitable for direct

discovery channels, they impose corrections to the branching fraction for the Higgs

to gamma gamma process that is the ”golden channel” for Higgs discovery. All LHC

experiments should include the corresponding correction in their respective Monte

Carlo programs.

This work has been published in Physical Reviews D76 057301 (2007) [41].
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Chapter 3

MONTE CARLO STUDIES ON METHODS TO SEARCH FOR DIRAC

MAGNETIC MONOPOLES

3.1. History of magnetic monopoles and the present status

Classical Electrodynamics is regarded as the best established theory of physics.

Maxwell’s equations and Lorentz law of forces describe the interactions of systems of

electromagnetic fields and charged particles. In these equations there are two fields,

the electric field E and the magnetic field B, and only one charge, the electric charge.

Fundamentally, all electromagnetic effects can be derived from a set of differential

equations known as the Maxwell equations. For a vacuum without sources they have

the following form [42]:

∇ · E = 0, (3.1)

∇ ·B = 0, (3.2)

∇× E +
1

c

∂B

∂t
= 0, (3.3)

∇×B− 1

c

∂E

∂t
= 0, (3.4)
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In equations ( 3.1) - ( 3.4), there is a striking symmetry between electric and

magnetic charges, more precisely the electric and magnetic fields. The equations are

invariant under the electromagnetic duality transformations which refers to the ex-

change of:

E −→ B (3.5)

B −→ −E (3.6)

In the presence of an electric charge density ρe and an electric current density Je,

Maxwell equations are:

∇ · E = 4πρe, (3.7)

∇ ·B = 0, (3.8)

∇× E +
1

c

∂B

∂t
= 0, (3.9)

∇×B− 1

c

∂E

∂t
=

4π

c
Je (3.10)

In this case, the equations are no longer symmetric under the electromagnetic duality

transformations; we say that the absence of magnetically charged particles breaks the

symmetry.
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To restore symmetry we need another particle called by the literature the magnetic

monopole. Experimentally, such a particle has never been observed [25]. This lack of

experimental evidence was interpreted as a proof of their non-existence.

If we assume that magnetic monopoles might exist but we are just not able to

detect them yet, we need to modify Maxwell equations by adding in the magnetic

charge density ρm and the magnetic current Jm:

∇ · E = 4πρe, (3.11)

∇ ·B = 4πρm, (3.12)

∇× E +
1

c

∂B

∂t
=

4π

c
Jm, (3.13)

∇×B− 1

c

∂E

∂t
=

4π

c
Je, (3.14)

These ”new” Maxwell equations remain unmodified under the following duality trans-

formations:

E → B, ρe → ρm,Je → Jm (3.15)

B → −E, ρm → −ρe,Jm → −Je (3.16)

Thus, the introduction of the concept of the magnetic monopole in Classical Electro-

dynamics, restores the symmetry of Maxwell equations.
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In theoretical particle physics, we use relativistic quantum field theory to describe

particles and their interactions. When describing the magnetic monopole in Quan-

tum Mechanics there is one fundamental problem. In classical electrodynamics we

have as basic quantities the electric and magnetic fields, but in quantum mechanics

those two fields do not provide a complete description of the electromagnetic effects

on the wave functions of the charged particles. We need to use another vector field

called vector potential A and a scalar field called scalar potential φ. If we define the

magnetic field by analogy with the electric field, we have the expression:

B = ∇×A (3.17)

In addition, B needs to satisfy the vector identity [43]:

∇ · (∇×A) = 0 (3.18)

Equations ( 3.17) and ( 3.18) imply that:

∇ ·B = 0 (3.19)

But from Maxwell equations we should have:

∇ ·B = 4πρm (3.20)
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This creates an obvious contradiction and, in the early 20-th century, it seemed

that the concept of magnetic monopole had to be abandoned in order to maintain

the vector potential without which we cannot describe the behavior of the electron

in magnetic field [43].

In 1931 P.A.M. Dirac introduced the idea of a magnetic monopole in his paper

”Quantised singularities in the electromagnetic field” [44] and then revised later, in

1948, in ”The theory of magnetic monopoles” [45]. In his work, he showed that it

is possible to have both magnetic monopole and vector potential in quantum me-

chanics. While doing this he showed that the existence of the magnetic monopole

would explain the quantization of electric charge. In nature all electric charges are

the multiples of the electron’s charge [46]. This behavior was well documented by

numerous experiments but no one could find a valid theoretical explanation for it.

Dirac introduced the idea of a magnetic ”Dirac” potential of the form:

AD(r) = −1

2

g

4πr
(

n̂× r

r− n̂ · r −
n̂× r

r + n̂ · r) =
g

4πr
(
1− cos θ

sin θ
)φ̂ (3.21)

which has a singularity along the n̂ direction. In this equation, θ is the polar angle

and φ is the azimuthal angle and r is the position vector.

To understand the idea behind this construct we need to look back at equations

( 3.17)-( 3.19). It is clear that B cannot be defined as ∇ × A everywhere. But B

could be defined this way everywhere but on a infinite line along the negative z-axis.

This setup is similar to a field of a infinitely long and thin solenoid placed along the

negative z-axis with its positive pole of strength g placed at origin.
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The magnetic field for the solenoid is [23]:

BSol =
g

4πr2
r̂ + gθ(−z)δ(x)δ(y)ẑ (3.22)

, where r̂ is the unit vector in the radial direction and ẑ is the unit vector in the

z-direction. Since this magnetic field has no sources it satisfies ∇ · BSol = 0 and it

can be written as:

BSol = ∇×ASol (3.23)

with:

ASol =
g

4πr
(
1− cos θ

sin θ
)φ̂ (3.24)

In the case of the magnetic monopole, the ”Dirac” potential vector, with the n̂ in

the negative z-direction, and the solenoid vector potential have similar expressions.

In this case the solenoid line is called the ”Dirac String”. Respecting the electromag-

netic duality, the magnetic field for a magnetic charge g has to have the form:

B =
g2

4πr2
r̂ (3.25)

This is actually the first term in equation ( 3.22).
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Using equations ( 3.23)- ( 3.24) the magnetic field can be redefined as:

B = ∇×AD − gθ(−z)δ(x)δ(y)ẑ =
g2

4πr2
r̂ (3.26)

From this equation it can be seen that in order to define the magnetic field, we need a

vector potential, AD, and a string. The string is not an observable, but just a math-

ematical artifact. The requirement that the physical charge should not be able to

”see” the string results in the quantization of electric charge. A detailed description

of the calculation is given in one of the recent reviews of the field [60]. Dirac charge

quantization condition states that if we have a magnetic charge g, and an electric

charge e, their product must be:

eg =
n

2
(3.27)

Taking n = 1 the equation becomes:

gD =
1

2e
=

e

2e2
(3.28)

but

αem = e2 (3.29)

where αem is the electromagnetic coupling constant.
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From equations ( 3.28) and ( 3.29) we have:

gD =
e

2αem

= 68.5e (3.30)

This value is called by the literature the ”Dirac charge” and represents the elementary

magnetic charge.

In spite of the lack of experimental evidence, most theories predict the existence

of magnetic monopoles. Practically, any theory that tries to unify electromagnetism

with other fundamental forces introduces the concept of magnetic monopole. In 1974

t’Hooft [48] and Polyakov [49] proved that in the Grand Unified Theories (GUT)

of electroweak and strong interactions the magnetic monopoles are produced in the

Early Universe as topological defects during phase transition. There are also Kaluza-

Klein monopoles [50] that appear during the unification of the GUT interaction and

gravitational interaction, monopoles in String Theory, Wu-Yang monopoles [51] and

the list goes on.

Over the last several years, a lot of searches for the magnetic monopoles were

conducted in different settings. The observation of a signal consistent with the passage

of a single magnetic monopole in a single superconductive loop [52] initiated new

interest in the topic. Physicist at high energy accelerators searched for the low mass

magnetic monopoles immediately after their production or investigated the possibility

of finding them trapped in the matter located around the beam interaction points [53].

These searches focused mainly on Dirac type magnetic monopoles, which are point

like particles with spin 1/2 that carry the unit magnetic charge gD. In 1998, the D0

group searched for the virtual magnetic monopoles [70] that would have a signature

of highly energetic photons.
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Then later in 2000 and 2004, searches were conducted by the CDF and D0

groups for magnetically charged particles trapped in the matter around the interac-

tion point [54], [55]. GUT theories predict monopoles masses about 1017 GeV which

are not accessible to any accelerator experiments. In this case, the searches focused

on studying cosmic radiation looking for magnetic monopoles left over as relics from

the Big Bang. Attempts to find magnetic monopoles trapped in exotic materials like

moon rocks or old church windows were also not successful.

Unfortunately Dirac could not constrain the mass of the magnetic monopole. The

mass can only be estimated based on the equality of the classical electron radius and

the magnetic monopole radius [56]:

re =
e2

mec2
= rM =

g2

mMc2
(3.31)

this gives a monopole mass of mM = 2.4 GeV. This value is already excluded by

many searches. The superstring model predicts monopole masses of 1 TeV and the

GUT monopole can be expected to have even higher mass. Thus any mass region for

magnetic monopoles remains still open. The current lower limit of mass of the Dirac

magnetic monopole was set at 350 GeV by the CDF experiment at the Tevatron [57].

The Large Hadron Collider can open a new era in the search for the Dirac type

magnetic monopoles because of the new energy range available that allows to search

for monopoles with higher masses that were not accessible at older accelerators. If

these particles are produced during highly energetic proton-proton collisions, they

will leave specific signatures inside the ATLAS detector. Defining this signature is

the main goal of this study.
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To achieve this goal we need a reliable Monte Carlo simulations based upon our

best knowledge of the monopole production mechanisms and the behavior in interac-

tion with matter.

3.2. Monte Carlo simulation of the Magnetic Monopole

3.2.1. Generation

3.2.1.1. Cross section calculations

Monopole searches at colliders are restricted to searches for the Dirac type monopoles,

assumed to be spin 1/2 particles that carry a elementary magnetic Dirac charge gD.

In proton-proton collisions, models of Dirac monopole production are mainly based

on the Drell-Yan (DY) type of process in which a quark and antiquark (qq) from

the interacting protons annihilate to produce a monopole anti-monopole pair (mm)

[55], [58], [54]. In fig 3.2 is shown the Feymnman diagram for the ”classical” Drell-

Yan process in which a lepton-antilepton pair is produced. In the monopole Drell-Yan

process, for which the Feynman diagram is shown in Fig. 3.2, the electromagnetic

coupling constant at the monopole/anti-monopole vertex has been replaced by the

magnetic coupling constant αmm.

The field theory for the magnetic monopoles is still in a primitive stage mainly

because of the large monopole coupling implied by the Dirac quantization condition

that prevents the use of the perturbation theory. Thus a non-perturbative approxi-

mation must be used.
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Figure 3.1. Feynman diagram for Drell-Yan

Figure 3.2. Feynman diagram for magnetic monopole Drell-Yan
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If we define the magnetic monopole coupling by analogy with the electromagnetic

coupling, we have:

αmm = g2. (3.32)

where αmm is the magnetic coupling constant. Squaring the charge quantization con-

dition, eq.( 3.27) and setting n = 1 we have:

e2g2 =
1

4
⇒ αemαmm =

1

4
. (3.33)

This leads to a definition of a magnetic monopole coupling constant as:

αmm =
1

4αem

= 34.25. (3.34)

Because of this huge coupling constant, the perturbative calculation of the cross sec-

tion fails and leaves us with a lowest order approximation as our only means to

proceed.

To define a more rigorous magnetic coupling constant we follow in our study the

work done by Schwinger [59] which shows that for relativistic scattering, the monopole

effective charge is obtained by the substitution :

e → gβ (3.35)
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where is defined as β = v
c

is the velocity of the monopole. This result is obtained

by comparing the cross section for electron-monopole scattering and electron-electron

scattering. A detailed description is given by [60]. For small scattering angles the

cross section for electron-electron scattering is:

dσ

dΩ
= (

e2

2mev2
)2 1

(θ/2)4
(3.36)

with me representing the electron mass, v its velocity and θ the scattering angle. The

corresponding cross section for electron-monopole scattering is:

dσ

dΩ
= (

1

2mMv
)2(

eg

c
)2 1

(θ/2)4
(3.37)

Comparing those two formulas, the substitution e
v
→ g

c
is evident.

The magnetic coupling constant can be defined by an analogy with the electro-

magnetic coupling using eq.( 3.35):

αem = e2 (3.38)

αmm = (gβ)2 (3.39)

But squaring the charge quantization condition we have:

e2g2 =
1

4
⇒ αemg2 =

1

4
(3.40)
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which leads to a definition of the magnetic monopole charge as

g2 =
1

4αem

(3.41)

From equations (3.42) and (3.44) we obtain the magnetic coupling constant formula:

αmm(β) =
1

4αem

β2 (3.42)

In the limit β → 1 we obtain the classical formulation presented in equation ( 3.34).

In the classical DY process, a lepton pair can be produced in the collision of two

protons via a virtual photon or Z-boson. In fact, one quark in one proton and one

antiquark from the other annihilate into a virtual photon which then decays into a

lepton pair. An extensive review of the DY process is presented in ref. [61]. The

differential cross section for the process is:

dσ

dM2
=

4πα2
em

3nM4
Σe2

i

M2

s

∫
dx1dx2[Gqi/p(x1)Gqi/p(x2)+Gqi/p(x1)Gqi/p(x2)]δ(

M2

s
−x1x2)

(3.43)

where M is the mass of the virtual photon, ei represents the quark charge and n is

the number of possible quark colors. The variables xi are the fractional momenta of

the quarks and are defined each as the the ratio between the quark momentum and

the momentum of the parent proton. The functions Gqi/p(x) and Gqi/p(x) represent

the probability that quark qi( or the antiquark qi) has a fractional momentum xi.
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The mass of the photon, M, is related with the fractional momentum of the quarks,

xi and the center of mass energy energy squared, s = 4E2
beam, through:

M2 = sx1x2 (3.44)

The cross section for the magnetic monopole DY production is derived from equa-

tion ( 3.43). In this case the term α2
em has to be replaced by αemαmm to correct for

the magnetic coupling present at the monopole/anti-monopole vertex( see the Fey-

man diagram in Fig. 3.2). With these considerations the term α2
em:

α2
em → αemαmm (3.45)

Using eq.( 3.42) we have:

α2
em → αem

1

4αem

β2 =
β2

4
(3.46)

This equation depends on the fractional momentum of the quarks trough the velocity

dependence of the virtual photon mass M:

β =

√
1− 4m2

M

M2
(3.47)

where mM is the magnetic monopole mass.
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Because of this dependence, in the cross section for the magnetic monopole, the

term described by eq.( 3.45) has to be integrated over the quarks fractional momenta:

dσMM

dM2
=

4π

3nM4
Σ

e2
i M

2

s

∫
dx1dx2

β2

4
[Gqi/p(x1)Gqi/p(x2)+Gqi/p(x1)Gqi/p(x2)]δ(

M2

s
−x1x2)

(3.48)

Comparing the cross section of the two Drell-Yan processes we have, in the limit

β = 1:

σMM

σDY

=
β2

4

α2
em

=
β2

4α2
em

(3.49)

From this equation we can see that the cross section for the magnetic monopole pro-

duction is about 4700 times larger than the one for lepton production. With such a

big estimated production cross section, monopole searches at LHC look optimistic.

3.2.1.2. Using Pythia to generate magnetic monopoles

In order to generate monopoles via the Drell-Yan process, the Pythia generator,

version 6.403, was chosen and used as a part of the standard ATLAS computing

framework, ATHENA [62]. To implement the correct cross section, as described in

section 3.2.1.1, we need to modify the way the generator calculates the cross-section.
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From the eq.( 3.46) we observe that we can define a ”modified” coupling constant

αmod as:

αmod =
β

2
(3.50)

With this new coupling constant approach, we can minimize the number of changes

to the generation software package. The only modification we need to make is to

replace the electromagnetic coupling constant with the ”modified” coupling constant:

αem → αmod (3.51)

Using this new coupling constant in equation( 3.43) we get the cross section for the

magnetic monopole DY process identical with the one presented in equation( 3.48).

The changing of the definition of the coupling constant was implemented in a

FORTRAN subroutine pysgwz.F which is a part of the standard ATHENA Gener-

ators package. The Drell-Yan monopole production process was setup in the python

jobOption by setting ”msub 1 1” flag with the Z∗/γ interference switched on (”mstp

43 1”). Since the magnetic monopoles are not implemented in Pythia, the generator

was set to produce ”heavy muons” by assigning to the flag ”pmas 13” values equiva-

lent to the monopole mass.

In the ATHENA framework, each particle is assigned a numeric identification(ID)

code according to the Particle Data Group(PDG) convention. There is a standard

meaning for the digits in a PDG code that is described in the PDG review articles [29].

Note 11(c) of the PDG table says that ”one-of-a-kind particles are assigned numbers

in the range 41-80”. The (PDG) ID of the magnetic monopole was chosen to be 50.
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After generation, the ID of the ”heavy muons” was change to 50, in order to be

able to propagate the monopole through the detector correctly. This ID reassignment

was done by adding a piece of code called TranslateMonoID to the HepMCTools

package. In Fig. 3.3 and Fig. 3.4 we show the histograms confirming that a particle

with ID 50 and mass 350 GeV has been produced in PYTHIA.

The cross section values, as calculated by Pythia, for a different magnetic monopole

Figure 3.3. Magnetic monopole ID

masses are listed in 3.1. These values show good agreement with the theoretical

predictions. The expected values of the cross section at the LHC, as a function of the

monopole mass are shown in Fig. 3.5.

The generation of a full monopole event with the Pythia code has to account for

the modified coupling constant.
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Figure 3.4. Magnetic monopole mass

Table 3.1. Values of the DY magnetic monopole cross section,

as calculated by Pythia, for different monopole masses.

Mass(GeV ) CrossSection(pb)

350 19.00

500 4.04

750 0.56
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Figure 3.5. Expected magnetic monopole for the Drell-Yan process at LHC

Since using this coupling constant would lead to wrong generation of all standard

charged particles, which should have standard electromagnetic coupling, we generate

the monopole event with all parton showers and hadronization processes turned off.

Then a standard Drell-Yan muon sample is produced with the ”heavy” muon mass

matching the magnetic monopole mass in order to ensure energy and momentum

conservation. The muons were eliminated and the remaining event was superimposed

over the monopole sample. Thus we were able to create a ”real” magnetic monopole

event.
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3.2.2. Simulation

The coordinate system and the names of variables used for describing the ATLAS

detector are briefly described here as they are used repeatedly in the following para-

graphs. The beam direction defines the z-axis and the x-y plane is the plane transverse

to the beam direction. The positive x-axis is defined as pointing from the interaction

point to the centre of the LHC ring and the positive y-axis is defined as pointing up-

wards. The azimuthal angle φ is measured around the beam axis, and the polar angle

θ is the angle from the beam axis. A new variable called pseudorapidity is defined as :

η = −ln(tan
θ

2
) (3.52)

Variable of the form AT are defined in the x-y plane unless stated otherwise. They

are called transverse variables like transverse momentum pT or transverse energy ET .

They describe the fraction of the momentum or energy projected on the transverse

plane.

Another term frequently mentioned is the ATHENA framework. This framework,

developed by the ATLAS experiment, is a skeleton of an application in which develop-

ers plug in their codes. The framework provides most of the common functionalities

needed and ensures communication between different components.

The system of units used in Particle Physics is not the International System (SI).

Instead a system of units called natural system of units is used. Because Parti-

cle Physics relies on Special Relativity and Quantum Mechanics almost all formulas

contain the speed of light in vacuum c = 3.0 × 108m/s and the Planck constant

h̄ = h/2π = 1.055× 10−34Js. The natural system of units sets h̄ ≡ c ≡ 1 .
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With this convention we have E2 = m2+p2 . This implies that the units for energy,

mass and momentum are the same. The unit for energy is 1GeV = 1.602 × 10−10J

and its multiples.

3.2.2.1. Trajectory in Inner Detector

To evaluate the momentum of particles produced in a proton-proton collision, the

Inner detector uses the fact that the trajectories of electrically charged particles in

the presence of a magnetic field will bend due to the Lorentz force and that the radius

of curvature of this bending is directly proportional to the particle’s momentum. For

a particle with the momentum p (in GeV) and a charge ze in a uniform magnetic

field B (in Tesla) the trajectory is a helix with the pitch angle λ and radius R (in

meters). The relation connecting the momentum to the radius is given by [29]:

p · cosλ = 0.3z ·B ·R (3.53)

Based on this concept, the Inner Detector region is enclosed inside the solenoid that

produces a two Tesla magnetic field oriented parallel to the beam axis. By measuring

the radius of a curved trajectory we have information about the momentum of the

particle.

The magnetic monopole trajectory inside the ATLAS detector will be distinct

because will bend in the ”wrong” direction. In contrast to an electron, the monopole

will be accelerated by the magnetic field and its trajectory will thus bend in the x−z

plane while remaining a straight line in the x− y plane.

69



However, because of the expected huge mass of the magnetic monopole mass, the

acceleration in the direction of the magnetic field is negligible. A detailed evaluation

is given in Appendix A.

Using the electric/magnetic duality, the behavior of the magnetic charge in uni-

form magnetic field can be considered analogous to the behavior of the electric charge

in electric field. Assuming a uniform magnetic field in the z direction, the solution of

the monopole equation of motion is, as presented by [68]:

−→r (t) =
ET0

gB
(

√
1 + (

gB

ET0

t)2 − 1)êz +
pT0

gB
arcsinh(

gB

ET0

t)êT (3.54)

where

ET0 = p2
T0 + m2 (3.55)

is the transverse initial energy, pT0 is the transverse momentum, êz is the unit vector

along the z direction, êT is the unit vector in the transverse direction and t is the time.

In Fig. 3.6 are plotted the trajectories of a 350 GeV mass monopole in a uniform

magnetic field of two Tesla oriented along the z axis. The transverse momentum was

varied from 50 KeV to 10 MeV. The plot focuses on a spatial region of 7 meters of

length and 1.2 meters in radius corresponding to the Inner detector dimensions. In

this region, the bending of the trajectory for a magnetic monopole with pT larger

than a few GeV is negligible.

To establish a precise limit in which the linear trajectory approximation is valid

one needs to evaluate the displacement, along the z direction, of the curved trajectory

from the linear track and then to compare it with the resolution of the Inner Detector.
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Figure 3.6. Trajectory of a Magnetic Monopole with 350 GeV mass and different pT

in 2T uniform magnetic field
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The trajectories for which the displacement remains smaller than the resolution

will be detected as linear.

We are plotting the displacement as a function of pT for a magnetic monopole with

350 GeV mass, and comparing it with specific resolutions in two regions of the Inner

Detector. In the the Semiconductor Tracker (Fig. 3.7) the resolution in z direction

has a value of 66 µm. The resolution of the Silicon Strips region of the Inner Detector

is 680 µm(Fig. 3.8). The specific resolutions are represented by the dotted lines on

the two plots.

We conclude that the trajectory of a magnetic monopole with a pT greater than 60

MeV can be approximated by a straight line. This conclusion was used in the Monte

Carlo setup of the Geant4 Simulation where the magnetic monopole was propagated

similar to a neutral particle.

Figure 3.7. Displacement from the linear path for a 350 GeV monopole mass com-

pared to the Pixel Detector resolution(the dotted line)
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Figure 3.8. Displacement from the linear path for a 350 GeV monopole mass com-

pared to the Semiconductor Tracker resolution(the dotted line)

3.2.2.2. Relativistic monopole energy loss in matter

The way the magnetic monopole interacts with matter depends on values of their

velocities. A detailed description is given in reference [56]. Fast magnetic monopoles,

with β > 10−2, which are the objects of this study, behave like an equivalent electric

charge with an electric charge (ze)eq = gDβ where gD is the Dirac magnetic monopole

charge. Monopole with 10−4 < β < 10−2the energy is lost in ionization or excitation

of the atoms and molecules of the medium. Low velocity monopoles, with β < 10−4,

lose energy in elastic collisions with atoms or with nuclei. In Fig. 3.9 we show the

energy loss of magnetic monopole with Dirac magnetic charge in liquid hydrogen as

a function of β as presented by [56].
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Figure 3.9. The energy losses,in MeV/cm, for Dirac Magnetic Monopoles in liquid

hydrogen as a function of β: a) corresponds to elastic monopolehydrogen atom scat-

tering; b) corresponds to excitation of the hydrogen atoms; c) describes the ionization

energy loss.

Figure 3.10. The β distribution for the Drell-Yan process producing a magnetic

monopoles with 350 GeV mass.
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In Fig. 3.10, the β distribution is plotted for a magnetic monopole sample with

mass of 350 GeV, produced through the DY process described in chapter (3.2.1.1)-

(3.2.1.2). From the plot it is evident that most of the events have β > 0.1 which

clearly situates them in the category of fast magnetic monopoles that interact with

matter predominantly through ionization.

The monopole-matter interaction was described in references [63] and [64]. We

consider the energy loss due three mechanisms: the ionization of the medium, pair

production and bremsstrahlung.

For relativistic monopoles, the energy loss by ionization is described by the for-

mula [65]:

dEM

dx
= −4πZαemαmmNA

Ame

[ln(
meβ

2γ2

I
)− δ

2
] (3.56)

where :

-γ =
√

1
1−β2 and β = v

c
,

-Z atomic number of the medium,

-me is the electron mass,

-I mean excitation energy of the material,

-A is the atomic mass of the medium,

-αem = 1
137

electromagnetic coupling constant,

-αmm = 34.5 magnetic monopole coupling constant,

-δ parameterizes the density effect [66].

The density effect refers to the tendency of matter to become polarized as the velocity

of the incident particle increases.
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From this formula we can conclude that the energy loss by the magnetic monopole

due to ionization is not dependent on the monopole mass, but it depends on the mag-

netic coupling constant αmm.

The energy loss by magnetic monopole through pair production is obtained by

adapting the study on the energy loss through pair production by muons to the mag-

netic monopole case [65]. For the region of interest, defined by mM > me and γ < 105,

where mM is the monopole mass:

dEpair

dx
' −19π

9

α3αmmZ2NA

Ame

γ[(1−B1) ln(
γ

4
)−B2] (3.57)

where:

B1 =
48

19π2

me

mM

ln(
mM

me

)2 (3.58)

B2 =
11

6
− 16

19π2

me

mM

ln(
mM

me

)3 (3.59)

The energy loss by Bremsstrahlung is inversely proportional to the mass of the

particle, so taking into account the huge monopole mass, this energy loss should be

negligible:

dEbrem

dx
= −16

3

αα2
mmZ2NA

AmM

γ ln(γ) (3.60)

In Fig. 3.11 we show the energy losses for a magnetic monopole with a 350GeV

monopole mass in silicon block. From those three plots, we conclude that the energy

loss due to ionization is the dominant process.
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Figure 3.11. The electromagnetic energy loss from ionization-red, pair production-

blue and bremsstrahlung-green for a 350 GeV monopole mass in Silicon

We use this result in modeling the interactions of the magnetic monopole with

matter using the Monte Carlo Geant4 Simulation package.

3.2.2.3. Geant4 Simulation

The propagation of particles through matter is simulated by an elaborated pro-

gram called Geant4 [67]. Its areas of application include high energy physics, nuclear

physics and accelerator physics, as well as medical and space science. The under-

standing of the experimental conditions and performance of an experiment, both in

the optimization and design phase as well as during data acquisition, relies heavily

on the computer simulation of the experiment. Starting from 2004 Geant4 is the only

officially supported software for the ATLAS detector simulation.
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This highly configurable and flexible software can therefore accommodate all the

requirements the simulation of a complex experiment such as ATLAS imposes.

GEANT4 is a toolkit for simulating the passage of particles through matter. It

includes tools for designing the geometry of the system, a large set of materials and

fundamental particles and most importantly, a wide range of physical processes. In

Geant4 each particle with a given momentum vector is propagated in steps through

the material. At each step the probability of interaction is calculated . The resulting

secondary particles are then propagated in the same manner. This enable us to track

the passage of a particle passage through the defined geometry, to record its interac-

tion with the materials and the response of sensitive detectors. A comparison of the

known generated particles with the reconstructed particles ( particle for which the

passage through the detector was simulated) gives us means to evaluate the detection

efficiency.

Up to now, we established that the magnetic monopole will behave like a neutral,

massive particle that interacts with matter via ionization. The magnetic monopole,

with the PDG ID 50, was implemented in the Geant4 Simulation by adding a new

package called Monopole to the Simulation/G4Extensions/. This code was set to

propagate the magnetic monopole in straight line according the conclusions of chap-

ter (3.2.2.1 ) through the ATLAS detector and models an energy loss following the

modified Bethe-Bloch presented in eq.(3.58).

Using the Monopole simulation package, a sample of magnetic monopoles pro-

duced by a Single Particle Gun generator was propagated through the ATLAS detec-

tor and then analyzed. The Single Particle Gun generator produces single particles,

specified by their PDG ID codes and either (pT , η, φ) or (E, θ, φ) where E is the energy

of the particle. In our case the magnetic monopoles, with mass of 350 GeV , were

produced with a flat eta and phi distributions.
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The energy of the gun was set at 1 TeV .

To check that indeed the tracks of the simulate magnetic monopole events are

Figure 3.12. Inverse momentum for monopoles in red vs electrons with 200 GeV

energy in black

linear, we investigate the values of the inverse momentum of the particle. The re-

lation between the radius of curvature of the trajectory and the momentum of the

particle, eq.(3.56), implies that for a linear track, R →∞, we expect a very small in-

verse momentum 1/p → 0. In Fig. 3.12 the inverse momentum of a monopole sample

with the mass 350 GeV (the red line) is compared with the one of an electron sam-

ple(black) with an energy of 200 GeV. For consistency, the electron-control sample

was produced in the same conditions, using the Single Particle Gun with the same

geometrical settings. The plot shows a peak of zero value for 1/p corresponding to

infinite radius of curvature for the magnetic monopole events from which we conclude

that they are propagated following a linear track.
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The magnetic monopole losses energy in interaction with matter according to

equation ( 3.56). To prove that indeed our simulated sample follows this behavior,

we compared the energy deposited in the Electromagnetic Calorimeter Barrel (EMB)

by the monopole sample with the energy loss of a muon-control sample. Again for

consistency the muon-control sample was created using the Single Particle gun with

similar geometrical setting and with an energy set at 10 GeV. The choice for the

value of the muon energy was made so that the β of the muon and monopole samples

match. The Bethe-Bloch energy loss formula for muon is:

dEmuon

dx
= −4πZα2

emNA

Ame

1

β2
[ln(

meβ
2γ2

I
)− δ

2
] (3.61)

where:

-Z atomic number of the medium,

-me is the electron mass,

-I mean excitation energy of the material,

-A is the atomic mass of the medium,

-αem = 1
137

electromagnetic coupling constant,

-δ parameterizes the density effect [66].

By dividing equations ( 3.56) and ( 3.61) we have:

dEM

dx
dEmuon

dx

=
αmm

αem

β2 (3.62)

In the limit β → 1 this ratio has a value of approximately 4700. This implies that we

expect the magnetic monopole to deposit 4700 times more energy in the calorimeter

than the muon.
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Figure 3.13. Energy deposited in EMB by monopoles

Figure 3.14. Energy deposited in EMB by muons
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We show the total energy loss in EMB by monopoles in Fig. 3.13 , and muons in

Fig. 3.14 . From the plots, the ratio between the two energies is around 200 which

is a lot less than expected. The explanation for this unexpected behavior would be

the saturation of the detector cells. The ATLAS calorimeters are segmented in cells

in (R, θ, φ). Each of these cells is read out independently. The calorimeter cell is

thus the smallest detection unit that provides energy deposition readings through the

read-out system. When the energy deposition exceeds a certain limit the electronics

signals get saturated. Furthermore, the increase of the deposited energy does not

increase the signal response. To prove that this indeed the case with the magnetic

monopole signal we increased the energy of the particle gun and plotted the energy

deposited in different layers inside the EMB.

Figure 3.15. Stoping power for a magnetic monopole in water as calculated by Ahlen

(1976) and then corrected it(1978)
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Figure 3.16. The energy deposited in the Presampler by magnetic monopoles with

mass 350 GeV and energy:a) 0.9 TeV, b) 1TeV, c) 4 TeV ; d) reconstructed energy

In the detector versus the actual energy of the magnetic monopole
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Figure 3.17. The energy deposited in the first Layer of the EMB by magnetic

monopoles with mass 350 GeV and energy:a) 0.9 TeV, b) 1TeV, c) 4 TeV ; d) recon-

structed energy In the detector versus the actual energy of the magnetic monopole
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In Fig. 3.16 we show the plots for the energy deposited in the Presampler. The

magnetic monopole has a mass of 350 GeV and its energy is set to 0.9 TeV (plot a),

1 TeV (plot b) and 4 TeV (plot c). The last plot (plot d) shows the reconstructed

energy deposition as a function of the actual energy of the magnetic monopole. From

this plot it is easy to see the saturation effect. In Fig. 3.15 we show the expected

energy loss in the passage of the magnetic monopole through matter [64] as a func-

tion of β. The corresponding plot for ATLAS detector is expected to have similar

characteristics. The material composition of the ATLAS detector is too complex to

perform accurate calculations. Nevertheless, although the vertical scale will change

due to the different Z composition of the ATLAS calorimeter, the smooth rise with

the increase of β or γ will remain the same. Thus, it is expected that as the initial

energy increases so does the energy loss. The discrepancy between the two facts is

explained by the saturation of the readout electronics of the detector cells resulting

in a lower reconstructed energy.

To prove consistency of the saturation throughout the detector, the energy de-

posited in all three layers were checked. Fig. 3.17 shows the energy deposited, by

the same magnetic monopole sample, in Layer 1 inside the EMB. Again the satura-

tion of the detector cells becomes obvious in the plot d) that shows the dependence

of the energy deposited in the calorimeter on the initial energy of the particle.

With the understanding of the way that the magnetic monopole is generated and

propagated through the ATLAS detector we now need to define a search strategy

that will successfully identify the unique magnetic monopole signal.
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3.2.3. Search criteria

3.2.3.1. Trigger

ATLAS has a three level trigger system designed to reduce the volume of data-

recording event. Each trigger level refines made by the previous. A more detailed

description was presented in chapter 1 (1.2.2.4). The Level 1 trigger (LVL1) works on

information from the calorimeter and muon detectors to identify regions that contain

relevant physics information called a Regions of Interest(RoI). The RoI are passed

then to the Level 2(LVL2) trigger for further analysis based on refining the selection

of candidate objects using information from all detectors, including the inner tracker

which is not used at LVL1. The last step, the Event Filter analyzes fully reconstructed

events.

In order to estimate correctly the number of magnetic monopole events expected

to be found by the LHC we need to evaluate two efficiencies: the trigger selection effi-

ciency, εtrig, and the reconstruction efficiency, εReco; that measures the probability of

correct reconstruction of the monopole event. The number of expected events is then:

N = σ · εtrig · εReco · L (3.63)

where σ is the event cross section and L is the integrated luminosity of the LHC run

period.

The trigger efficiency was calculated using the formula:

εTrig =
N(passEF )

N(truth)
, (3.64)
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where N(passEF ) is the number of events that passed the Event Filter requirements

and N(truth) is the number of generated events.

The ATLAS trigger algorithm does not have a specific magnetic monopole hy-

pothesis. We need to use one of the already defined signatures to see if the monopole

signal will pass the trigger. The magnetic monopole ionizes heavily and while doing

so losses energy rapidly. It will eventually be stopped in the detector material. Be-

cause of this specific behavior, only a small number of events will reach the Hadronic

Calorimeter and practically none will reach the Muon Detector. Therefore, the trigger

signatures for muon and hadrons cannot be used. Because the monopole signal has

geometry similar to that of heavily ionizing charged particle, it has a track component

and does not resemble a photon event.

Thus the closest match is the electron trigger signature. We chose to use the ”e10”

Table 3.2. Cuts for e10 signature.

LV L1 LV L2 LV L2(track) EF

ET > 7GeV ET = 10GeV pT > 1.0GeV ET cluster > 10GeV

ET HAD < 2GeV delPhi < 0.1

RCore > 0.86 delEta < 0.05

ERatio > 0.8

signature which refers to electrons with transverse momentum greater than 10 GeV.

The selection criteria for this signature at each trigger level are summarized in Ta-

ble 3.2. In the table:

-ET is the electromagnetic transverse energy,

-ET HAD is the hadronic transverse energy,
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-RCore = E3×7

E7×7
with En×m the energy deposited in a window of n ×m cells around

the LVL1 RoI,

-ERatio = E1st−E2nd

E1st+E2nd
where E1st and E2nd are the energies of the two highest maxima.

-pT is the transverse momentum,

-delPhi the phi extent of the cluster,

-delEta the eta extent of the cluster,

-ET cluster transverse energy of the cluster.

The trigger efficiencies were evaluated in a model independent setup at first, using

the Single Particle Gun generator described in chapter (3.2.2.3), to produce magnetic

monopole events with a uniform eta and phi distributions. Then, the particular case

of the Drell-Yan monopole production process was studied. We expect a dependency

on both mass and energy, so both aspects were carefully evaluated.

To establish the dependency on energy of the particle, a sample of magnetic

monopoles with fixed mass of 350 GeV, and different energies ranging from 0.75

TeV to 2 TeV was used. Table 3.3 shows these efficiencies evaluated in two regions:

the Electromagnetic Calorimeter Barrel only (η < 1.4) and in the full detector region

(η < 2.5). The plot of the trigger efficiency as a function of eta is shown in Fig. 3.18.

As the energy of the magnetic monopole increases the efficiency becomes close to one.

The magnetic monopoles mass is another factor that plays an important role. In

this case a Single Particle Gun generator was used to produce magnetic monopole

events with different masses: 600 GeV, 500 GeV and 350 GeV at a fixed energy of 1

TeV . In Table 3.4 we show the mass dependence of the trigger efficiency in the EMB

and in the whole calorimeter. Fig 3.19 illustrates the eta distribution of efficiencies

in this case. As the mass of the magnetic monopole increases the efficiency drops.

After evaluating the overall trigger efficiency, a specific production channel

was studied, the magnetic monopole Drell-Yan process.
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Table 3.3. Trigger efficiency for for magnetic monopoles with fixed mass

of 350 GeV and energies ranging from 0.75 TeV to 2 TeV.

Single Particle εTrig

Energy(TeV ) η < 1.4 η < 2.5

0.75 0.55± 0.013 0.37± 0.010

0.9 1.00± 0.027 0.86± 0.007

1 1.00± 0.019 0.92± 0.004

2 1.00± 0.027 1.00± 0.022

Table 3.4. Trigger efficiency for magnetic monopole masses with fixed

1TeV energy and different masses.

ParticleGun εTrig

Mass(GeV ) η < 1.4 η < 2.5

350 1.00± 0.019 0.92± 0.004

500 0.52± 0.010 0.47± 0.008

600 0.00± 0.022 0.00± 0.017
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Figure 3.18. Eta distribution of trigger efficiencies for magnetic monopoles with fixed

mass of 350 GeV but energies ranging from 0.75 TeV to 2 TeV
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Figure 3.19. Eta distribution for trigger efficiencies for magnetic monopole masses

with fixed 1TeV energy but different masses
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The sample used in this case was produced using the modified Pythia code with

all parton showers and hadronization processes turned off for reasons explained in

the Cross Section paragraph (3.2.1.2). For this process, the eta dependence of the

efficiency(see Fig. 3.20) shows higher values in the region of the forward calorimeter

compared to the EMB.

This behavior is due to the kinematic of the Drell-Yan process. In Fig. 3.21 and

Figure 3.20. Eta distribution for trigger efficiencies for the Drell-Yan process

Fig. 3.22 we show the eta distribution of the energies before and after a 1 TeV energy

cut. It is clear that higher energetic events are in the forward region.
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Figure 3.21. Energy distribution of the Drell-Yan sample

Figure 3.22. Energy above 1 TeV for the Drell-Yan sample
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All eta trigger efficiency distributions show a drop in efficiency in the region of eta

between η = 1.4 and η = 1.6. One reason for this is the existence of a crack at η = 1.4

between the barrel and the forward calorimeter. Also, the material distribution in

Inner Detector (see Fig. 3.23) shows an increase in the material density in the region of

eta between η = 1.4 and η = 2.0 that would explain why lower energetic samples will

lose all their energy and get trapped in the material before reaching the calorimeter.

Figure 3.23. Eta distribution for trigger efficiencies
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In conclusion, in spite the fact that we do not have a specific magnetic monopole

trigger signature, using the single electron e10 is working with satisfactory results.

3.2.3.2. Calorimeter event reconstruction

We now proceed to define specific signatures of the magnetic monopole passage

through the ATLAS detector. A magnetic monopole sample with a mass of 350 GeV

was produced with a particle gun set up with flat eta and phi distributions. Based

on the trigger efficiency study the energy of the gun was set at 1 TeV because for this

energy all events fulfil the trigger requirements. As a control, we used an electron

sample with the same geometry as the magnetic monopole sample. The electrons

were produced using the Single Particle Gun generator setup to produce events with

flat eta and phi distribution and fixed energy. To ensure an unbiased selection for the

value of the cuts, the energy of the electron samples was varied from 100 GeV to 1

TeV . There are two aspects that are worth investigating, the linearity of the track

and the shape of the electromagnetic cluster.

To investigate the linearity of the tracks, we use the variable Q/P which is the

ratio of the charge to the reconstructed momentum of the particle. This variable is

proportional with the inverse of the radius of the curvature of the monopoles tracks.

Its value can be compared with the one for the electrons tracks see Fig. 3.24. The

solid line marks the value Q/P = 10−6. As the energy of the electrons increases the

curvature of the tracks diminishes. There is some overlapping of the two distributions

for the electrons and monopoles. Nevertheless, a cut at Q/P < 10−6 would select the

monopole tracks.
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Figure 3.24. Q/P of monopole-red and electrons-black
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The shape of the shower is investigated using a variable called Fracs1 defined as:

Fracs1 =
E7 − E3

E7

(3.65)

where E7, E3 are the energy in seven and three cells, respectively around the core of

the calorimeter cluster. The values of this variable for the magnetic monopoles and

for the electrons are shown in Fig. 3.25. These plots point to a value of Fracs1 = 0

for the magnetic monopole. From equation( 3.65) we have E7 = E3 which means all

the energy of the cluster is contained by three cells cluster implying a very narrow

cluster. In this plot the value Fracs1 = 0.05 is marked by the solid line.A cut of

Fracs1 < 0.05 will separate the monopoles clusters from the electrons clusters.

Once we established the magnetic monopole identification criteria, we have

Table 3.5. Magnetic monopole reconstruction cuts.

Variable Cut value

Q/p 1 ×10−6

Fracs1 0.05

to study how efficient those criteria are in selecting the monopole events. Table 3.5

summarizes the ATHENA variable defining the selections and their corresponding

numerical values.

To calculate the reconstruction efficiency the following formula was used:

εRec =
N(Rec)

N(truth)
(3.66)
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Figure 3.25. Fracs1 of monopole-red and electrons-black
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where N(Rec) represents the number of reconstructed events and N(truth) represents

the number of generated events. The reconstructed events are the events that the

simulation package has propagate through the ATLAS detector. We are using events

that passed already the Trigger requirements.

Just like in the trigger efficiency study, we start with a model independent effi-

ciency evaluation using magnetic monopole events generated with the Single Particle

Gun generator setup to produce events with uniform eta and phi distributions. Then

we study the particular case of the Drell-Yan magnetic monopole process representing

one of the models of the magnetic monopole production.

The reconstruction efficiencies were evaluated in two regions; the electromagnetic

barrel (η < 1.4) and full detector region (η < 2.5) using a magnetic monopole sample

with a fixed mass of 350 GeV . The resulting values are summarized in Table 3.6.

Fig. 3.26 shows the dependency of the reconstruction efficiency on eta for the same

sample.

Just like in the trigger study, the reconstruction efficiency depends on the monopole

mass.

99



Figure 3.26. Eta distribution for reconstructed efficiencies for different monopole

energies and same mass
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Table 3.6. Reconstruction efficiency for magnetic monopoles with fixed mass

of 350 GeV and different energies.

SingleParticle εRec

Energy(TeV ) η < 1.4 η < 2.5

0.75 0.00± 0.027 0.00± 0.021

0.9 0.37± 0.013 0.24± 0.009

1 0.38± 0.010 0.40± 0.008

2 1.00± 0.027 1.00± 0.022

A sample of magnetic monopole produced using the Single Particle Gun generator

was used. The generation energy is fixed at 1TeV, but the mass of the magnetic

monopole is varied. Table 3.7 summarizes the results and Fig. 3.27 illustrates the

eta distributions.

Table 3.7. Reconstruction efficiency for magnetic monopole with fixed

energy of 1TeV and different masses.

SingleParticle εRec

Mass(TeV ) η < 1.4 η < 2.5

0.35 0.38± 0.010 0.40± 0.008

0.50 0.18± 0.008 0.11± 0.005

0.60 0.00± 0.022 0.00± 0.017
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Figure 3.27. Eta distribution for reconstructed efficiencies for different monopole

masses and same energy
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The reconstruction efficiency for the Drell-Yan magnetic monopole channel is

shown in Fig. 3.28. The sample used in this case is the same as in the trigger study. It

was produced using the modified Pythia code. For the same reasons mentioned in the

trigger study (existence of the crack between the EMB and the forward calorimeter at

η = 1.4, and the increase in material density in Inner Detector) we observe a decrease

in efficiency in the region 1.0 < η < 1.6. Also the kinematics of the sample explains

the high efficiency in the forward region.

Figure 3.28. Eta distribution for trigger efficiencies for the Drell-Yan process
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Knowing the reconstruction efficiency, the cross section calculated by Pythia and

using the estimated luminosity for the first year for the ATLAS experiment, we can

now evaluate the event rate which is the product of the two efficiencies eq.( 3.63).

In Fig.( 3.29)we show the estimated number of events as a function of eta for two

magnetic monopole Drell-Yan samples with two different masses 350 GeV and 500

GeV after a year of running with an luminosity of 1 fb−1.As expected most of the

detectable events will be in the forward calorimeter.

Figure 3.29. Event rate based on a 1fb−1 luminosity
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3.2.3.3. Background

The LHC will collide protons with a centre-of-mass energy of 14 TeV. Most of the

time the protons will pass through each other with low amount of momentum (low-pt)

being transferred between the interacting partons. Only occasionally there will be

a hard parton-parton collision, resulting in outgoing particles with large transverse

momentum. The background of an event is everything except the two outgoing hard

scattered particles. There are two components of the background: the minimum bias

and the Underlying Event (UE). Both consists of events dominated by soft interac-

tions. They differ only by the correlation of the UE with the ”interesting” physics

process with which it shares the same vertex.

We tested the validity of our analysis by applying the selection criteria listed in

Table. 3.5 to signal and to the minimum bias data samples. In Fig. 3.30 we show

the distribution of the Fracs variable before and after the 0.05 selection cut. Most

of the events from both samples passed this cut. This can be explained by the fact

that the minimum bias events have low energy thus generating narrow showers with

characteristics similar to the magnetic monopole showers.

In Fig. 3.31 the distributions for the Q/P variable is shown. In this case, a cut

at Q/P ¡ 1× 10−6 clearly separates the linear trajectories of the magnetic monopole

events from all others tracks, thus providing a very good background rejection.

We proceed in the same manner to test the UE. The way this sample was created

was described in details in chapter 3.2.1.2. Because the particles in these events are

created in the same parton-parton interactions that generate the magnetic monopole

pairs they have higher energies and materialize in wider showers as illustrated in

Fig. 3.32. Thus the cut on narrow shape of the shower easily selects the magnetic

monopole events only.
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Figure 3.30. Effect on Fracs1 = 0.05 cut on Monopole vs minimum bias sample;

Distribution before the cut (a), Distribution after the cut (b)

Figure 3.31. Effect on Q/P = 1 × 10−6 cut on Monopole vs minimum bias sam-

ple;Distribution before the cut (a), Distribution after the cut (b)
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Figure 3.32. Effect on Fracs1 = 0.05 cut on Monopole vs UE sample; Distribution

before the cut (a), Distribution after the cut (b)

Figure 3.33. Effect on Q/P = 1× 10−6 cut on Monopole vs UE sample;Distribution

before the cut (a), Distribution after the cut (b)
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The linearity of the tracks criteria is not satisfied by any of background events

either, as seen in Fig. 3.33, thus leaving a pure magnetic monopole sample.

From this study, we conclude that in each individual background sample there are

events that pass either the linearity of the track or the shape of the cluster selection

threshold but the combination of the two conditions creates a powerful tool in sepa-

rating magnetic monopole events only.

We proceed next to identify and evaluate the source of fake events. The fake events

are standard physics events with other SM particles that survived all the magnetic

monopole selection cuts. We tested the selection criteria on Drell-Yan events that

produce muons, electrons and taus. In table 3.8 we show the cross section calculated

by Pythia for 5000 events for the considered Drell-Yan background processes com-

pared to the magnetic monopole DY cross section. In the last column to the right the

ratios of event to background, for each individual background are shown. Based on

these figures we normalize the signal to background. Furthermore, we apply a scale

factor of 1000 : 1 to reduce the background. The number of events in each sample

as well as the percentage of events that passed each cut individually are are listed

in Table 3.9. In the last right column are listed the number of events passing both

selection criteria.

In Fig. 3.34 we plot the eta distribution of the reconstructed clusters for the

signal and for all of the background processes. After the narrow cluster cut the

distribution changes to the one shown in Fig. 3.35. We can see that there are still

background events that survived the cut. The second cut, which requires linear tracks,

is then applied and the remaining event distribution is shown in Fig. 3.36. No back-

ground events pass this second selection criteria.
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Table 3.8. Cross sections for the magnetic monopole DY production and background

samples.

Drell-Yan process σDY (mb) σDY /σMM

Z → µµ 1.11× 10−4 5842

Z → ττ 3.57× 10−5 1842

Z → ee 1.10× 10−4 5789

MM with mass 350GeV 1.90× 10−8 1

Table 3.9. Magnetic monopole reconstruction cuts tested on different

possible background samples.

Drell-Yan No. of events Passed Passed Passed

process generated Q/p < 1× 10−6 Fracs1 < 0.05 Both cuts

Z → µµ 44567 0.003± 0.007 0.069± 0.002 0.000±0.005

Z → ττ 14892 0.003± 0.008 0.124± 0.005 0.000±0.008

Z → ee 41615 0.011± 0.001 0.185± 0.004 0.000±0.005

MM m=350GeV 8248 0.456± 0.007 0.434± 0.005 0.183±0.004
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Figure 3.34. Eta distribution of reconstructed clusters for the signal and background
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Figure 3.35. Eta distribution of clusters that qualify as a monopole cluster for the

signal and background
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Figure 3.36. Eta distribution of monopole like events in signal and background
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The estimated number of events versus background is calculated taking into ac-

count the cross section listed in Table 3.8 and the expected luminosity for the first

year for the ATLAS experiment which is 1 fb−1. The fact that a scaling factor was

used is taken into account and the results are listed in Table 3.10. As an observation,

the estimated number of magnetic monopoles events for the first year, obtained from

this background evaluation study matches closely the estimation obtained in chapter

3.2.3.2 and plotted in Fig. 3.29.

As expected, the combination of these two cuts ensures a very good background

Table 3.10. Estimated magnetic monopole and background events.

Drell-Yan process Number of events

Z → µµ 13

Z → ττ 3

Z → ee 13

MM with mass 350GeV 3777

rejection mainly because the combination of a linear track and a narrow shower does

not commonly occur. Usually, the linear track would infer a highly energetic particle

which should create a wide shower. This unique signature is specific to magnetic

monopoles events only.
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3.3. Conclusion

This study shows that the magnetic monopole, if exist, will be detected with

the ATLAS detector. The model independent selection cuts for the event makes this

analysis a powerful tool that can be used with any future theoretical predicted process

like the two photon monopole production [69].

In the particular case of the Drell-Yan magnetic monopole production that is

used in this study, the huge production cross section is compensated by the important

energy loss in interaction with the detector material. In spite the fact that a significant

number of events are trapped before reaching the detector, the event rate is still

optimistic.

A few images of the magnetic monopole Drell-Yan event were obtained using the

ATLANTIS visualization package available in ATHENA. In Fig. 3.37 the magnetic

monopole track is simulated in the Inner Detector. The shorter track represents

a magnetic monopole that, after a certain distance inside the detector losses all of

its energy thus getting stopped. The remaining track reaches the Electromagnetic

Calorimeter where it creates a cluster as seen in Fig. 3.38.
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Figure 3.37. Three dimensional monopole track in Inner detector
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Figure 3.38. The magnetic monopole event inside the ATLAS detector
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Appendix A

Acceleration of a magnetic charge in magnetic field

We need to evaluate the acceleration that a 2T magnetic field would exert on a

unit magnetic charge( the Dirac charge gD = 68.5e). Working with magnetic charges

and magnetic fields is difficult so it is more useful to use the more familiar electric

charge and electric field. The electromagnetic duality allows us to assume similar

behavior of the magnetic charge in magnetic field as an electric charge in electric

field. In electrodynamics the energy density of the field is defined as:

UEB =
1

2
(ε0E

2 +
1

µ0

B2) (A.1)

where E and B are the electric and magnetic fields, ε0 is the permittivity and µ0 is

the permeability of free space. If we assume equal contributions from the electric and

magnetic fields we have:

ε0E
2 =

1

µ0

B2 (A.2)

which implies that:

E =
B√
ε0µ0

(A.3)
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Numerically we have:

E =
2T√

10−7 N
A2 10−12 F

m

=
2 kg

As2√
10−7 1

A2 (
kg·m

s2 )10−12 1
m

( s4A2

m2kg
)

=
2√

10−19

kg ·m
As3

= 0.63
V

m

(A.4)

This electric field represents the ”equivalent” electric field that corresponds to the 2T

magnetic field. Now we reduced the problem to finding the acceleration that a 0.63

V/m electric field would exert on a qM = 68.5e electric charge. The equation that

give us the acceleration is:

qME = mM · aM ⇒ aM =
qME

mM

(A.5)

where mM is the magnetic monopole mass. The acceleration that the same field

would have on an electron would be:

qeE = me · ae ⇒ ae =
qeE

me

(A.6)

In this equation qe is the electron charge and me is the electron mass. The ratio of

the two acceleration is:

ae

aM

=
qemM

qMme

(A.7)

Using the lowest magnetic monopole mass of 350 GeV this ratio is of the order of:
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ae

aM

' 104 (A.8)

From equation (A.8) we can conclude that the acceleration of the magnetic monopole

in a 2 T magnetic field is 104 time smaller than the acceleration of the electron in an

”equivalent” electric field. This effect is mainly due to the huge magnetic monopole

mass. As the monopole mass increases the acceleration due to the magnetic field

become negligible.

119



REFERENCES

[1] D.J.Griffiths, Introduction to Elementary Particles, Wiley,John Sons,ISBN 0-
471-60386-4.

[2] I.J.Aitchison, A.J.Hey, Gauge Theories in Particle Physics,Inst.of Physics Pub.
Inc.,ISBN 0-7503-0864-8.

[3] S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.

[4] A. Salam, Proceedings of the 8th Nobel Symposium, edited by N. Svartholm,
Almquist and Wicksel, Stockholm, 1968 p.367.

[5] S. Glashow, Nucl. Phys. 22 (1961) 579.

[6] J.C. Maxwell,Philosophical Transactions of the Royal Society of London
155(1865) 459-512.

[7] P.W. Higgs,Phys. Rev. Lett. 13(1964) 508.

[8] T. P. Cheng,L.F. Li , Gauge Theory of Elementary Particles, Oxford University
Press,ISBN 0-19-851961-3.

[9] J.W. Cronin,Rev.Mod. Phys. 53(1981) 373-383.

[10] J. Ellis,Nature 448(2007) 297-301.

[11] S. Witten,Phys. Rev. Lett. B 105(1974) 267-271.

[12] E. Farhi, R. Jaffe,Phys. Rev. Lett. D30272 (1984).

[13] S. Dimopoulos, S. Landsberg,Phys. Rev. Lett. 87161602(2001).

[14] ATLAS Technical Design Report.

[15] ATLAS Colaboration, Inner Detector Technical Design Report,
CERN/LHCC/97-016/017 (1997).

[16] G.D. Hallewell,Nucl. Instrum. Meth. Phys. Res. A383(1996) 44.

120



[17] ATLAS Colaboration, Pixel Detector Technical Design
Report,CERN/LHCC/98-013(1998).

[18] submitted to JINST on 24/12/2007,https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasTechnicalPaper.

[19] ATLAS Colaboration, Muon Spectrometer Technical Design Report
CERN/LHCC/97-22(1997).

[20] ATLAS Collaboration, Liquid Argon Calorimeter Technical Design Report,
CERN/LHCC/96-041(1996).

[21] ATLAS Collaboration, Tile Calorimeter Technical Design Report, CERN/11205
LHCC/96-042(1996).

[22] E.Noether,”Invariante Variations probleme”. Math-phys.253-257 (1918).

[23] Ta-Pei Cheng, Ling-Fong Li Gauge Theory of Elementary Particle
Physics,Oxford University Press,ISBN:0-19-851961-3.

[24] J.F. Gunion, H. E. Haber, G. Kane and S. Dawson, The Higgs Hunter’s Guide,
Addison Wesley,1990.

[25] W.M. Yao et al.,J. Phys. G33(2006) 1.

[26] J. Wess, B. Zumino,Phys. Lett 49B (1974) 52,

[27] A.Djouadi hep-ph/0503173.

[28] D0 Collaboration, Nature 429 638-642 (2004).

[29] Review of Particle Properties, J.Phys.G:Nucl.Part.Phys 33 (2006).

[30] E. Brubaker for the CDF Collaboration,arXiv:hep-ex/0605092v12006.

[31] N. M .Kroll and W. Wada, Phys. Rev.Lett 89 (2002) 1355.

[32] LOI of the ATLAS Collaboration, CERN/LHCC/92-4, Oct., 1992.

[33] R.H. Dalitz,Proc.Phys.Soc.(London) A64 ( 1951) 667.

[34] N. M. Kroll and W. Wada, Phys. Rev 98 (1955) 1355.

[35] T. Miyazaki and E. Tagasugi, Phys. Rev D8 (1973) 2051.

[36] M. and D. Schroeder, Collider Physics, Westview Press, 1996 ISBN:0-201-14945-
1.

[37] C. G. Callan Phys. Rev. D2, 1541 (1970).

121



[38] K. SymanzikCommun. Math. Phys. 18, 227 (1970).

[39] ATLAS Colaboration.CERN-LHCC/99-15(1999)

[40] Technical proposal CERN-LHCC/94-38(1994)

[41] A. Firan and R. Stroynowski, Phys. Rev. D76 (2007) 057301.

[42] J.D. Jackson,Classical Electrodynamics (3rd ed.)Wiley ISBN 0-471-30932-X.

[43] J. Griffiths,Introduction to Electrodynamics (3rd ed.)Prentice-Hall,Inc., ISBN 0-
138-05326-X.

[44] P.A.M. Dirac Proc. R. Soc. A 133, 60 (1931).

[45] P.A.M. Dirac Phys. Rev. 74, 817-830 (1948).

[46] R.A. Millikan Phys. Rev. II 2 109 (1913).

[47] L. Gamberg, K.A. Milton, Eikonal Scattering of Monopoles and Dyons in Dual
QED, hep-ph/0005016

[48] G. tHooft,Nucl. Phys. B79, 276 (1974).

[49] A. Polyakov, Pisma. Eksp.Teor. Fiz. 20, 430 (1974) [JETP Lett. 20, 194 (1974)].

[50] R.D. Sorkin Phys. Rev Lett B 51 87 (1983).

[51] T.T.Wu,C.N.Yang, The Properties of Matter Under Unusual Conditions, Ed. by
H.Mark,S.Fernbach, Wiley, 1969.

[52] B. Cabrera Phys. Rev. Lett. 48 1378-1381 (1982).

[53] G. Giacomelli and L. Patrizii,hep-ex/0112009(2001).

[54] CDF Collaboration, Phys. Rev. Lett 96,201801 (2006).

[55] G.R. Kalbfleisch et all., Phys. Rev. Lett 85, 5292 (2000;G.R. Kalbfleisch et all.,
Phys. Rev. D 69, 052002 (2004.

[56] G. Giacomelli and L. Patrizii,hep-ex/0302011(2003).

[57] G.R. Kalbfleisch et all., Phys. Rev. D 69, 052002 (2004.

[58] M.J. Mulhearn, A Direct Search for Magnetic Monopoles FERMILAB-
THESIS 2004-51.

122



[59] J.S. Schwinger, K.A. Milton, W.Y.Tsai, L.L.DeRaad and D.C. Clark, Nonrela-
tivistic dyon dyon scattering, Annals Phys. 1001,451 (1976.

[60] K.A.Milton Prog.Rep in Phys. 69 1637-1711 (2006).

[61] R. Stroynowski,Phys.Rept 71,1 (1981).
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