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As a step in the development of a nonperturbative method for the solution of

bound-state problems in quantum chromodynamics (QCD), the Pauli–Villars (PV)

regularization scheme is applied to a calculation of the dressed-electron state and

its anomalous magnetic moment in light-front-quantized quantum electrodynamics

(QED) in Feynman gauge. The regularization is provided by heavy, negative-metric

fields added to the Lagrangian. The light-front QED Hamiltonian then leads to a well-

defined eigenvalue problem for the dressed-electron state expressed as a Fock-state

expansion. The Fock-state wave functions satisfy coupled integral equations that

come from this eigenproblem. A finite system of equations is obtained by truncation

to no more than two photons and no positrons; this extends earlier work that was

limited to dressing by a single photon. Numerical techniques are applied to solve the

coupled system and compute the anomalous moment, for which we obtain agreement

with experiment, within numerical errors. As part of the analysis, the one-photon

truncation is reconsidered in detail, and we find that the PV regularization requires a

second PV photon flavor to restore the chiral symmetry of the massless-electron limit

and to provide for slowly varying dependence on the PV masses. We also discuss the

prospects for application of the method to QCD.
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Chapter 1

INTRODUCTION

1.1. Motivation

High-energy scattering experiments have shown conclusively that the strong nu-

clear force is well described by a generalization of quantum electrodynamics (QED)

known as quantum chromodynamics (QCD). The “chromo” prefix refers to a multi-

component charge for the fundamental particles that is called color; it is the analog

of the single-component positive and negative charges of electrodynamics. The col-

ored particles are spin-1/2 quarks and antiquarks and spin-1 gluons, the analogs of

electrons, positrons, and photons, respectively. A key distinction is that gluons carry

color charge and therefore interact among themselves, making QCD very nonlinear.

The gluon color charge also causes the apparent coupling of quarks to appear weak

at short distances, a phenomenon known as asymptotic freedom. Since it is the short

distances that are probed by high-energy scattering, QCD can be analyzed perturba-

tively and compared to experiment.

At longer distances, at the scale of an atomic nucleus or larger, the effective

couplings are strong and nonlinear, such that no quark or gluon can appear in isola-

tion. Instead, they are bound to each other in color-neutral (i.e., without any QCD

charge) combinations called hadrons, such as pi-mesons, protons and neutrons. It is

the hadrons, the bound states of QCD, that one would like to study, to derive their

properties directly from the theory.
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This is a difficult task. Nonperturbative calculations are always difficult, but for

a strongly coupled theory such as QCD, they are worse. For a weakly coupled theory,

one can set aside much of the interaction for perturbative treatment and solve only

a small core problem nonperturbatively. For QED, this core problem is the Coulomb

problem, the binding of particles with opposite ordinary charge by an inverse square

force; when combined with high-order perturbation theory, amazingly accurate results

can be obtained for bound states of the theory [1]. In a strongly coupled theory one

cannot make this separation so easily.

In the work presented here, the purpose is to explore a nonperturbative method

that can be used to solve for the bound states of quantum field theories. Although the

bound states of QCD are of particular interest, the method is not yet mature enough

for application to QCD. Instead, we will continue with the program developed in the

earlier work of Brodsky, McCartor, and Hiller [2, 3, 4, 5, 6, 7, 8] and explore the

method within QED. This provides an analysis of a gauge theory, which is a critical

step toward solving a non-Abelian gauge theory, such as QCD.

The remainder of this chapter is intended as a brief overview of quantum field

theory and applications to bound-state problems. Many details, including precise

definitions and explanations, are given in the following chapters and appendices and

also in the cited references.

1.2. Quantum Field Theory

Another consequence of strong coupling is that the internal velocities of con-

stituents in a bound system are typically relativistic. So, quantum mechanics must

be merged with relativistic kinematics, and the result is quantum field theory.
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1.2.1. Quantum Mechanics and Relativity

The relativistic analogs of the Schrödinger equation, such as the Dirac equation

for spin-1/2 particles, admit not only positive-energy solutions but also a negative

spectrum extending to negative infinity. The existence of these negative-energy states

eventually leads to inconsistencies, and they must be re-interpreted as positive-energy

particles of opposite spin moving backward in time. A consistent formulation of this

idea is a quantum field theory, which QED and QCD are.

The price to be paid in this convergence of quantum mechanics and relativity is

the loss of particle-number conservation. Electrons and positrons can emit and absorb

photons, photons can change to an electron-positron pair, and an electron-positron

pair can annihilate to a photon. Analogous processes happen for quarks and gluons

in QCD, as well as two gluons annihilating to produce one or two gluons and one

gluon producing or absorbing two more gluons. Thus the bound states of a quantum

field theory are linear superpositions of states with different numbers of particles.

Of course, the possibilities are not limitless; conservation laws such as (total) charge

conservation still apply.

1.2.2. Fock-State Expansions

The states with definite particle number and definite momentum for each particle

are called Fock states. We will use Fock states as the basis for the expansion of

eigenstates. The coefficients in such an expansion are the wave functions for each

possible set of constituent particles. These functions describe the distribution of

internal momentum among the constituents. Such an expansion is infinite, and we

truncate the expansion to have a calculation of finite size.

The wave functions are determined by a coupled set of integral equations which

are obtained from the bound-state eigenvalue problem of the theory. Each bound
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state is an eigenstate of the field-theoretic Hamiltonian, and projections of this eigen-

problem onto individual Fock states yields these coupled equations. Each equation

is a relativistic analog of the momentum-space Schrödinger equation, but with terms

that couple the equation to other wave functions that represent different sets of con-

stituents, perhaps one gluon more or less or a quark-antiquark pair in place of a gluon

or vice-versa.

The solution of such equations, in general, requires numerical techniques. The

equations are converted to a matrix eigenvalue problem by some discretization of the

integrals or by a function expansion for the wave functions. The matrix is usually

large and not diagonalizable by standard techniques; instead, one or some of the

eigenvalues and eigenvectors are extracted by the iterative Lanczos process [9, 10].

The eigenvector of the matrix yields the wave functions, and from these can be cal-

culated the properties of the eigenstate, by considering expectation values of physical

observables.

1.2.3. Regularization and Renormalization Conditions

Although this may seem straightforward, a serious complication quickly arises: the

solutions for the wave functions yield integrals that are not finite. Thus, the integral

equations are not consistent. The integrals must be regulated in some way, to make

them finite, and then the regulators removed at the end of the calculation by taking a

limit. This may require modification of the integral equations with addition of terms

(counterterms) that depend on the regulator and that restore symmetries broken by

regulating the original integrals. Basically, the original equations are replaced by new

equations that return to the original set in some limit, but the limit is not taken until

after physical quantities have been calculated.
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During the limiting process, the parameters of the theory – coupling strengths and

constituent masses – become functions of the regulating parameters and are deter-

mined by what are called renormalization conditions, such as requiring fixed values

of bound-state masses or scattering cross sections. This rescaling, or renormalization,

of the original (also called bare) parameters of the theory is critical for the consistent

definition of the limit.

One frequently finds that one or more of the bare parameters is driven to infinity

when the limit is taken; however, this is not an inconsistency because the bare pa-

rameters are not observable. For example, the physical mass scales of a theory are

the eigenmasses of the Hamiltonian, not the mass parameters in the Hamiltonian.

In particular, the bare mass of the electron can be quite different from the physical

mass of the electron eigenstate, which is a bare electron dressed by many photons

and electron-positron pairs, as expressed in a Fock-state expansion.

1.2.4. Pauli–Villars Regularization

The method of regularization that we use is called Pauli–Villars (PV) regular-

ization [11]. The basic idea is to subtract from each integral a contribution of the

same form but of a PV particle with a much larger mass. This subtraction will

cancel the leading large-momentum behavior of the integrand, making the integral

less singular. For example, an integrand of the form 1/(k2 + m2) would become

1/(k2 + m2) − 1/(k2 + m2
PV) = (m2

PV −m2)/[(k2 + m2)(k2 + m2
PV], which falls off as

1/k4 instead of 1/k2. To make an integral finite, more than one subtraction may be

necessary, due to subleading divergences. The masses of these PV particles are then

the regulators of the re-defined theory, and ideally one would take the limit of infinite

PV masses at the end of the calculation.
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The usefulness of PV regularization is in the preservation of symmetries of the

theory. Any regularization of a field theory should preserve as many symmetries as

possible; these include Lorenz symmetry, chiral symmetry, and gauge symmetry. Or-

dinary cutoffs break symmetries which then require counterterms for their restoration.

The determination of the counterterms can be difficult.

Simply adding more particles to the theory will not result in subtractions. There

would be only additions, since the pattern of interactions would be the same. Instead,

one must arrange for the square of the interaction to have the opposite sign for

a PV particle. In theories where all terms have no imaginary part, this can be

arranged by assigning an imaginary coupling to the PV particles. The square is then

obviously negative. However, the field-theoretic Hamiltonian is typically complex and

Hermitian rather than real and the imaginary coupling is not cleanly isolated.

The alternative is to assign the PV particles a negative “metric,” in the sense that

annihilation of such a particle produces a minus sign, relative to what would happen

with an ordinary particle. In this case, the square of an interaction involves first

creation of a PV particle and then its annihilation, for an extra net sign of minus.

This produces the desired subtractions.

Ordinarily, this method of regularization, being automatically relativistically co-

variant, preserves the original symmetries of the theory. However, it may happen

that the negative-metric PV particles over subtract, in the sense that some sym-

metry is broken by a finite amount. In such a case, a counterterm is needed, or a

positive-metric PV particle can be added to restore the symmetry.

It is interesting to note that the introduction of negative-metric partners has

recently been used to define extensions of the Standard Model that solve the hierarchy

problem [12]. The additional fields provide cancellations that reduce the ultraviolet

divergence of the bare Higgs mass to only logarithmic. This slowly varying dependence
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allows the remaining cancellations to occur without excessive fine tuning.

1.2.5. Light-Cone Coordinates

Another serious complication in the use of Fock-state expansions and coupled

equations is the presence of vacuum contributions to the eigenstate. The lack of

particle-number conservation in quantum field theory means that, in general, even the

vacuum can have contributions from non-empty Fock states with zero momentum and

zero charge. The basis for a massive eigenstate will include such vacuum Fock states in

products with non-vacuum Fock states, since the vacuum contributions do not change

the momentum or charge. These vacuum contributions destroy the interpretation of

the wave functions.

In order to have well-defined Fock-state expansions and a simple vacuum, we use

the light-cone coordinates of Dirac [13, 14]. In these coordinates, t + z/c plays the

role of time, with c the speed of light, and the orthogonal spatial coordinate, t− z/c,

lies along a lightlike path. Both coordinate axes are tangential to the light cone.

The trajectory of any massive particle is timelike and inside the forward light cone;

therefore, no massive particle can move backwards along the new spatial coordinate

x−. This means that the light-cone momentum p+ = E/c + pz, with E the energy

and pz the z-component of momentum, which is conjugate to the light-cone spatial

coordinate, cannot be negative and there are no vacuum contributions.

An exception to the lack of structure for the vacuum is the possibility of modes

with zero longitudinal momentum or, simply, zero modes [15, 14]. They represent an

accumulation point for the spectrum of individual light-cone energies p− = E/c− pz,

which are driven to infinity when p+ goes to zero. How they should be included is

not yet well understood, though it is expected that they are responsible for symme-

try breaking effects that occur when a broken-symmetry state becomes the lowest
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eigenstate of a theory, making it effectively the vacuum. Since this kind of physics is

of great interest for the description of fundamental particles, such as the symmetry

breaking by the Higgs particle in the Standard Model [16], some work has been done

in this direction [17], though in the work reported here zero modes and symmetry

breaking are not considered.

Light-cone coordinates also have the advantage of separating the internal and

external momenta of a system. The Fock-state wave functions depend only on the

internal momenta. The state can then be boosted to any frame without necessitating

the recalculation of the wave functions.

1.3. Quantum Electrodynamics

Calculations in QED are of interest in their own right. We will consider the

anomalous moment of the electron, for which Feynman made the following challenge

at the 12th Solvay Conference [18]: “Is there any method of computing the anomalous

moment of the electron which, on first approximation, gives a fair approximation to

the α term and a crude one to α2; and when improved, increases the accuracy of the

α2 term, yielding a rough estimate to α3 and beyond.” Here α is the fine-structure

constant, equal to e2/4π, with −e the charge of the electron. It sets the scale of

perturbative corrections in QED.

The nonperturbative calculations in a sequence of truncations in particle number

that we consider in the present work is an attempt to respond to this challenge. A pre-

vious try, using sidewise dispersion relations, was considered by Drell and Pagels [19]

but was not systematic. Another attempt, by Hiller and Brodsky [20], did use a

truncation in particle number, specifically to two photons, but was unsuccessful due

to the lack of a consistent regularization scheme. The theory was regulated by a

momentum cutoff; counterterms were constructed but without determination of fi-
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nite contributions. With our technique for regularization, a sequence of truncations

becomes a systematic procedure (though not necessarily successful). Of course, due

to limitations on numerical accuracy, we do not expect to be able to compute the

anomalous moment as accurately as high-order perturbative calculations [1, 21].

An explicit truncation in particle number, the light-cone equivalent of the Tamm–

Dancoff approximation [22], can be made. This truncation has significant conse-

quences for the renormalization of the theory [23, 24], in particular the uncancelled

divergences discussed below. It also impacts comparisons to Feynman perturbation

theory [25], where the truncation eliminates some of the time-ordered graphs that

are required to construct a complete Feynman graph. Fortunately, numerical tests in

Yukawa theory [4, 8] indicate that these difficulties can be overcome. The tests show

a rapid convergence with respect to particle number.

The standard approach to numerical solution of the eigenvalue problem is the

method originally suggested by Pauli and Brodsky [26], discrete light-cone quan-

tization (DLCQ). Periodic boundary conditions are applied in a light-cone box of

finite size, and the light-cone momenta are resolved to a discrete grid. Because this

method can be formulated at the second-quantized level, it provides for the system-

atic inclusion of higher Fock sectors. DLCQ has been particularly successful for two-

dimensional theories, including QCD [27] and supersymmetric Yang–Mills theory [28].

There was also a very early attempt by Hollenberg et al. [29] to solve four-dimensional

QCD.

Unfortunately, the kernels of the QED integral operators require a very fine DLCQ

grid if the contributions from heavy PV particles are to be accurately represented.

To keep the discrete matrix eigenvalue problem small enough, we use instead the

discretization developed for the analogous problem in Yukawa theory [8], suitably

adjusted for the singularities encountered in QED.
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To carry out our calculation in QED, three problems must be solved, as discussed

in [7]. We need to respect gauge invariance, interpret new singularities from energy

denominators, and handle uncancelled divergences. Although PV regularization nor-

mally preserves gauge invariance, the flavor-changing interactions chosen for the PV

couplings, where emission or absorption of a photon can change the flavor of the

fermion, do break the invariance at finite mass values for the PV fields; we assume

that an exact solution exists and has all symmetries and that a close approximation

can safely break symmetries. The new singularities occur because the bare mass of

the electron is less than the physical mass and energy denominators can be zero; a

principal-value prescription is used. These zeros have the appearance of a threshold

but do not correspond to any available decay. The uncancelled divergences are han-

dled (as in the case of Yukawa theory [8]), with the PV masses kept finite and the

finite-PV-mass error balanced against the truncation error.

In general, physical quantities, such as the anomalous magnetic moment, take the

form

lim
µPV→∞

a1g
2 [+a2g

4 lnµPV + · · · ]
1 + b1g2 + b2g2 lnµPV + · · · =







0, with truncation

finite, without truncation,
(1.1)

where µPV is a PV mass scale and the contents of the square brackets are absent

in the case of truncation. When the limit µPV → ∞ is taken, the result is either

zero or a finite value. In perturbation theory, the order-g2 terms in the denominator

are kept only if the order-g4 terms are kept in the numerator, and a finite result is

obtained. The truncated nonperturbative calculation includes the order-g2 terms in

the denominator but not the compensating order-g4 terms in the numerator.

This lack of cancellation is handled by not taking the limit of infinite PV masses.

For small PV masses, too much of the negatively normed states are included in the

eigenstate. For large PV masses, there are truncation errors: the exact eigenstate
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has large projections onto excluded Fock sectors. The strategy taken is to include as

many Fock sectors as possible and use finite PV mass values for which the two errors

are balanced.

For Yukawa theory, the usefulness of truncating Fock space was checked in a

DLCQ calculation that included many Fock sectors. The full DLCQ result was com-

pared with results for truncations to a few Fock sectors for weak to moderate coupling

strengths and found to agree quite well [4]. We can see in Table 1 of [4] that prob-

abilities for higher Fock states decrease rapidly. This was also checked at stronger

coupling by comparing the two-boson and one-boson truncations [8]. Figure 14 of

[8] shows that contributions to structure functions from the three-particle sector are

much smaller than those from the two-particle sector.

For QED, there has been no explicit demonstration that truncation in Fock space

is a good approximation; the two-photon truncation considered here gives the first

evidence. The usefulness of truncation is expected for general reasons, but a physical

argument comes from comparing perturbation theory with the Fock-space expansion.

Low-order truncations in particle number correspond to doing perturbation theory in

α to low order, plus keeping partial contributions for all orders in α. As long as the

theory is regulated so that the contributions are finite, the contributions of higher

Fock states are expected to be small because they are higher order in α.

1.4. Review of Previous Applications

In a series of papers, Brodsky, Hiller, and McCartor developed the light-front

PV approach and applied it to simple models with a heavy fermionic source which

can emit and absorb bosonic fields [2, 3] and to the dressed-fermion eigenproblem

of Yukawa theory [4, 6, 8], and extended it to a one-photon truncation of quantum

electrodynamics (QED) [7]. The problem of the dressed electron was considered for
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QED in both Feynman gauge and light-cone gauge. There was also some formal work

on exact solutions [5], which are possible when the PV particles are degenerate in

mass with the physical particles; this is an unphysical limit but has its uses. Many

useful lessons were learned as the complexity of the applications grew.

The first test of the method was to consider the one-loop fermion self-energy

in Yukawa theory [2]. The one-loop self-energy requires three PV scalars to subtract

quadratic and log divergences and to restore chiral symmetry [30]. The usual covariant

approach requires only one PV scalar and a symmetric-integration prescription. The

addition of PV fields increases the size of the basis in any numerical calculation.

Numerical tests of DLCQ calculations of the one-loop self-energy showed that the

number of basis states that include PV particles is approximately 60% of the total

basis size. Thus the increase in the basis size can be acceptable.

The next step was to consider a soluble model of a heavy source [2]. The model

generalized the static-source model of Greenberg and Schweber [31]. The effective

light-cone Hamiltonian includes one PV scalar with imaginary coupling. The solu-

tion to the eigenvalue problem for this Hamiltonian can be obtained analytically. The

Fock-state wave functions factorize into products of wave functions for the individ-

ual constituents, and the constituent wave functions are easily found. A numerical

solution of the full Hamiltonian eigenvalue problem based on DLCQ showed rapid

convergence to the analytic solution and a reasonable basis size, despite the basis

states added to include PV particles.

Following this success, the static source was made dynamical by the addition of the

correct longitudinal and transverse momentum dependence to its kinetic energy [3].

Again, one PV scalar with imaginary coupling was included. There is no longer an

analytic solution, but the numerical solution again shows rapid convergence. With

this model Brodsky et al. also studied the effects of truncation in particle number
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and found that severe truncations can provide good approximations.

The method was then applied to Yukawa theory without antifermions regulated

with three PV scalars, two of which are assigned a negative metric [4]. The couplings

were arranged to satisfy the constraints that regulate the fermion one-loop self-energy,

including preservation of chiral symmetry. An effective interaction to represent the Z

graph was also added, to cancel infrared divergences associated with the instantaneous

fermion four-point interactions. The numerical quadrature was based on discretized

light-cone quantization (DLCQ) [26]. The theory was solved for the dressed fermion

state. The Fock wave functions were used to compute various quantities, including

average constituent multiplicities, average momenta, structure functions, and a form

factor slope. One can also compute entire form factors, though this has not generally

been done. Truncations in particle number were again studied; it was found that a

truncation to two bosons was sufficient for the regime of moderate coupling strengths,

where the nonperturbative and low-order perturbative solutions showed significant

differences.

The calculations were significantly improved with the use of one PV scalar and

one PV fermion [6, 8], both with negative metric. The interaction term of the Yukawa

Lagrangian was generalized to couple zero-norm combinations of the physical and PV

fields. The regularization has the advantage that the instantaneous fermion terms

cancel in the new Hamiltonian. They arise from the elimination of nondynamical

degrees of freedom and are numerically much more expensive to compute than three-

point interactions. Fortunately, these terms are independent of mass and have the

opposite sign between physical and PV fermions, hence their cancellation. However,

chiral symmetry is broken explicitly.

The one-boson truncation admits an analytic solution [6] for the dressed fermion

state; this analytic solution and a numerical solution for the two-boson truncation
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have been studied closely [8]. The Fock-state expansion is explicitly an eigenstate of

Jz, making polar coordinates useful and efficient for the transverse plane. Each wave

function has a total Lz eigenvalue equal to 0 for a bare-fermion spin projection of

sz = +Jz and equal to 1 for sz = −Jz.

For the one-boson truncation, the coupled integral equations for the wave functions

reduce to algebraic equations in the bare-fermion sector. The solution is similar to

the leading-order perturbative solution, except that in light-cone energy denominators

the initial energy is determined by the physical mass rather than the bare mass. With

these solutions one can investigate the coupling and bare mass as functions of the PV

masses.

Two PV mass limits were studied, one where the masses were equal and another

where the PV fermion mass was taken to be much larger than the PV boson mass. In

the second case, there was found a solution that was much like perturbation theory;

however, the problem of uncancelled divergences was encountered.

For the truncation to two bosons, the renormalization must include fermion mass

renormalization, due to a divergent self-energy, and include charge renormalization,

due to a log divergence in the incomplete cancellation of wave function and vertex

renormalizations. The renormalization is done by imposing conditions on the dressed

mass M and the Dirac radius R =
√

−6F ′
1(0), and then computing the bare mass m0

and bare coupling g.

These theories admit exact solutions in the unphysical limit of PV masses being

equal to the physical masses [5]. The mass eigenvalue problem becomes triangular,

and even operator solutions can be found. It is, however, a very unphysical regime,

because negative-metric fields contribute substantially. There is some speculation that

a physical regime could be analyzed in terms of perturbations in the mass differences,

but the most practical use of these solutions is in providing a limiting case for testing
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numerical calculations.

For QED, the PV regularization method has been considered and applied to a

one-photon truncation of the dressed electron state [7]. In Feynman gauge, one PV

electron and one PV photon were sufficient, and their presence has the convenient

feature of not only cancelling the instantaneous fermion interactions but also mak-

ing the fermion constraint equation explicitly solvable. Ordinarily, in the light-cone

quantization of QED [32], light-cone gauge (A+ = 0) must be chosen to make the

constraint equation solvable; in Feynman gauge with one PV electron and one PV

photon the A+ terms cancel from the constraint equation. Light-cone gauge has been

considered in [7], but the naive choice of three PV electrons for regularization was

found insufficient; an additional photon and higher derivative counterterms were also

needed. The one-photon truncation yielded an anomalous moment within 14% of

the Schwinger term [33]. With two photons, to be considered here, the value for the

anomalous moment should be close to the value obtained perturbatively when the

Sommerfield–Petermann term [34] is included. However, numerical errors will make

this tiny correction undetectable, and we will focus on obtaining better agreement

with the leading Schwinger term of α/2π.

1.5. Prospects for Quantum Chromodynamics

An extension to a two-boson truncation is also very interesting as a precursor to

work on QCD. Unlike the one-boson truncation, where QED and QCD are effectively

indistinguishable, the two-boson truncation allows three and four-gluon vertices to en-

ter the calculation. A nonperturbative calculation, with these nonlinearities included,

could capture much of the low-energy physics of QCD, perhaps even confinement.

One way in which to apply the light-front PV method to QCD is the scheme

proposed by Paston et al. [35]. It involves the introduction of several PV fields as
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well as higher derivative regularization and several counterterms. The formulation

is specifically designed to be perturbatively equivalent to covariant Feynman the-

ory. One would then make the assumption that the regularization is sufficient for a

nonperturbative calculation and proceed as in the case of QED.

The number of fields and the number of renormalization conditions required by the

counterterms in the Paston formulation will make computations quite large. Present

computing technology is probably insufficient; however, the reliably steady improve-

ment in computing hardware could make enough resources available by the time a

computer code for QCD has been developed. Also, a preliminary step in the study of

QCD could be study of a meson model that includes a mechanism for chiral symmetry

breaking, proposed by Dalley and McCartor [36].

The approach depends critically on making a Tamm–Dancoff truncation to a fi-

nite number of constituents. For QCD this is thought to be reasonable because the

constituent quark model was so successful [37]. Wilson and collaborators [38, 24] even

argued that a light-cone Hamiltonian approach can provide an explanation for the

quark model’s success. The recent successes of the AdS/CFT correspondence [39] in

representing the light hadron spectrum of QCD also indicates the effectiveness of a

truncation; this description of hadrons is equivalent to keeping only the lowest valence

light-cone Fock state.

At the very least, the success of the constituent quark model shows that there

exists an effective description of the bound states of QCD in terms of a few degrees

of freedom. It is likely that the constituent quarks of the quark model correspond

to effective fields, the quarks of QCD dressed by gluons and quark-antiquark pairs.

From the exact solutions obtained using PV regularization [5], it is known that simple

Fock states in light-cone quantization correspond to very complicated states in equal-

time quantization, and this structure may aid in providing some correspondence to

16



the constituent quarks. However, the truncation of the QCD Fock space may need

to be large enough to include states that provide the dressing of the current quarks,

and perhaps a sufficiently relaxed truncation is impractical. As an alternative, the

light-front PV method could be applied to an effective QCD Lagrangian in terms

of the effective fields. Some work on developing a description of light-front QCD in

terms of effective fields has been done by G lazek et al. [40].

1.6. Other Nonperturbative Methods

A directly related Hamiltonian approach is that of sector-dependent renormaliza-

tion [23], where bare masses and couplings are allowed to depend on the Fock sector.

This alternative treatment was used by Hiller and Brodsky [20] and more recently by

Karmanov et al. [41]. In principle, this approach is roughly equivalent to the approach

used here; however, Karmanov et al. ignore the limitations on the PV masses that

come from having a finite, real bare coupling, as discussed in [20], and do not make

the projections necessary to have finite expectation values for particle numbers.

The most developed nonperturbative method is that of lattice gauge theory [42],

which has been studied for much longer than nonperturbative light-front methods

and has already achieved impressive successes in solving QCD. The lattice is a Eu-

clidean spacetime grid with fermion fields at the vertices and gauge fields on the links

between vertices. The continuum Euclidean action S =
∫

Ld4x for the Lagrangian

L is approximated by a lattice action Slat that approaches S when the grid spacing

goes to zero. An observable is calculated from the expectation value of a suitable

operator O, computed as a sum over field configurations U that is weighted by the

exponentiation of the action Slat(U)

〈O〉 =

∑

U O(U)e−Slat(U)

∑

U e
−Slat(U)

. (1.2)
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The sum is then approximated by random sampling of the possible field configura-

tions. The notion of a wave function does not appear in the lattice approach; to

extract a bound-state property from the field configurations requires selection of an

appropriate operator. This Euclidean approach has particular difficulty with quan-

tities such as timelike and spacelike form factors, that depend on the signature of

the Minkowski metric. In contrast, in a Hamiltonian approach with the original

Minkowski metric, a form factor is readily calculated as a convolution of wave func-

tions.

A related method is that of the transverse lattice [43], where light-cone methods

are used for the longitudinal direction and lattice methods for the transverse. It is,

however, a Hamiltonian approach which results in wave functions. The transverse

directions are discretized to a square grid. At each vertex there is a two-dimensional

theory, coupled to the theories at nearby vertices by gauge fields on the transverse

links. The link fields are replaced by collective variables that represent averages

over short-distance fluctuations in the gluon field, and the original gauge group is

recovered in the continuum limit. The two-dimensional theories are approximated

by DLCQ [14]. The parameters are fixed by requiring restoration of symmetries,

particularly Lorentz symmetry. Applications have been to large-N gauge theories

and mostly limited to consideration of meson and glueball structure.

Another approach is that of Dyson–Schwinger equations [44], which are coupled

equations for the n-point Euclidean Green’s functions of a theory, including the prop-

agators for the fundamental fields. Bound states of n constituents appear as poles in

the n-particle propagator; in the case of two-body systems, this propagator satisfies

the Bethe–Salpeter equation. Solution of the infinite system requires truncation and

a model for the highest n-point function. To date the truncation made is at n = 3.

The model for the 3-point vertex is used to calculate the dressed quark propagator,
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and this propagator is used in Bethe–Salpeter equations to study pseudoscalar and

vector mesons. Comparisons with lattice results for propagators can be made, to

validate the model used for the vertex. Again, as in the lattice approach, there is the

limitation to a Euclidean formulation.

The Bethe–Salpeter equation alone can, of course, be used for two-particle states.

The kernel is defined perturbatively to include all two-particle irreducible interactions.

The interactions that are two-particle reducible are contained implicitly and can be

made explicit through iteration of the equation. The perturbative expansion of the

kernel must be truncated for practical calculations, a truncation to a single exchange

of an intermediate particle, i.e. the ladder approximation, being the most common.

Any approximation beyond the ladder approximation is very difficult to solve. Also,

the interpretation of the solution is made difficult, even in the ladder approximation,

by the dependence on a relative time as well as the relative position of the two

constituents.

1.7. Outline of Remaining Chapters

In the chapters to follow, we describe the formalism needed to solve the dressed-

electron problem in Feynman-gauge QED and apply it to one and two-photon trun-

cations of the Fock space. Chapter 2 contains a discussion of QED quantized on

the light cone in Feynman gauge, with a PV electron and two PV photons providing

regularization. The eigenproblem for the dressed electron and the expressions to be

evaluated for its anomalous magnetic moment are described in Chap. 3.

The analytically soluble one-photon truncation of this eigenproblem is discussed

in Chap. 4. Although this one-photon problem was considered in [7], it was done

at infinite PV fermion mass. Here we need to be able to make comparisons with

the two-photon truncation for which the PV fermion mass must remain finite. Thus,
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Chap. 4 contains not only a summary of earlier work but new results for the finite

PV mass [45]. In particular, we find that a second PV photon flavor is needed for a

sensible calculation.

An analysis of the two-photon truncation is presented in Chaps. 5 and 6. In

Chap. 5, we consider only self-energy corrections to the one-photon truncation. This

limited form admits a semi-analytic solution and yields results for the anomalous

moment that are consistent with experiment to within numerical errors.

In Chap. 6, the full two-photon truncation is kept in the eigenproblem, and the

dressed-electron state is computed numerically. The integral equations for the wave

functions are discretized to become a matrix eigenvalue problem that is solved by

Lanczos iteration [9, 10] and other iterative methods. The results for the anomalous

moment are presented and discussed.

Chapter 7 contains a summary of the results and of progress made in developing

the light-front PV method, as well as suggestions for additional work on QED and

QCD. There are several appendices that contain important proofs, descriptions of

numerical methods, and supplemental information that would otherwise interrupt

the flow of the main narrative.
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Chapter 2

QUANTUM ELECTRODYNAMICS IN FEYNMAN GAUGE

As a starting point for the dressed-electron problem in light-front QED, we provide

our definition of light-cone coordinates and construct the light-front Hamiltonian from

the QED Lagrangian in Feynman gauge. We also discuss the way in which the gauge

condition can be implemented. All of the expressions use units where the speed of

light c and Planck’s constant h̄ are one.

2.1. Light-Cone Quantization

The calculations here are done in terms of light-cone coordinates [13], which are

defined by

x± ≡ x0 ± x3, ~x⊥ ≡ (x1, x2). (2.1)

The covariant four-vector is written xµ = (x+, x−, ~x⊥). This corresponds to a space-

time metric of

gµν =



















0 2 0 0

2 0 0 0

0 0 −1 0

0 0 0 −1



















. (2.2)

Dot products are then given by

x · y = gµνx
µyν =

1

2
(x+y− + x−y+) − ~x⊥ · ~y⊥. (2.3)

For light-cone three-vectors we use the underscore notation

x ≡ (x−, ~x⊥). (2.4)
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For momentum, the conjugate to x− is p+, and, therefore, we use

p ≡ (p+, ~p⊥) (2.5)

as the light-cone three-momentum. A frequently useful variable for a particle in a

system is the longitudinal momentum fraction x ≡ p+/P+, where P+ is the total plus

momentum for the system. The dot product of momentum and position three-vectors

is

p · x ≡ 1

2
p+x− − ~p⊥ · ~x⊥. (2.6)

The derivatives are

∂+ ≡ ∂

∂x+
, ∂− ≡ ∂

∂x−
, ∂i ≡

∂

∂xi
. (2.7)

The natural Lorentz boosts for light-cone momenta are [14] the longitudinal boost,

in the z direction, and a transverse boost, that leaves the plus component of momen-

tum unchanged. For the longitudinal boost, of relative velocity ~β = βẑ, we have

p′0 = γ(p0 + βpz), p′z = γ(pz + βp0), (2.8)

so that

p′+ = γ(1 + β)p+, p′− = γ(1 − β)p−, ~p ′
⊥ = ~p⊥, (2.9)

with γ = 1/
√

1 − β2. The light-cone transverse boost with relative velocity ~β⊥ is a

combination of an ordinary transverse boost and a rotation, such that

p′+ = p+, p′− = p− + 2~p⊥ · ~β⊥ + β2
⊥p

+, ~p ′
⊥ = ~p⊥ + p+~β⊥. (2.10)

For a system of particles with momenta pi, the longitudinal momentum fractions

xi = p+
i /P

+ and relative transverse momenta ~ki⊥ = ~pi⊥ − xi
~P⊥ are invariant with

respect to these boosts. This separates the internal momenta from the external

momentum of the system.
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The time variable is taken to be x+, and time evolution of a system is then

determined by P−, the operator associated with the momentum component conjugate

to x+. Usually one seeks stationary states obtained as eigenstates of P−. Frequently

the eigenvalue problem is expressed in terms of a light-cone Hamiltonian [26]

HLC = P+P− (2.11)

as

HLC|P 〉 = (M 2 + P 2
⊥)|P 〉, P|P 〉 = P |P 〉, (2.12)

where M is the mass of the state, and P+ and ~P⊥ are light-cone momentum operators.

Without loss of generality, we will limit the total transverse momentum ~P⊥ to zero.

The vacuum state is the zero-particle state |0〉. Fock states are created from the

vacuum by the application of creation operators b†is(p), d
†
is(p), and a†jµ(p) for electrons,

positrons, and photons, respectively, with light-cone momentum p. Here i and j are

“flavor” indices that indicate a physical or PV type, s is a spin index for the fermions,

and µ is a Lorentz index for the vector photon. The particles are said to be on the

mass shell, meaning that p2 = pµpµ = m2, the square of the rest mass. Therefore, we

have p− = (m2 + p2
⊥)/p+.

The conjugate operators, bis(p), dis(p), and ajµ(p), are the annihilation operators,

because they obey the (anti)commutation relations

{bis(k), b†i′s′(k
′} = (−1)iδii′δss′δ(k − k′), (2.13)

{dis(k), d†i′s′(k
′} = (−1)iδii′δss′δ(k − k′), (2.14)

[aiµ(k), a†i′ν(k′] = (−1)iδii′ε
µδµνδ(k − k′). (2.15)

Here εµ = (−1, 1, 1, 1) is the metric signature for the photon field components in

Gupta–Bleuler quantization [47, 48]. One of these operators acting on a Fock state
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removes a matching particle with the same momentum, flavor, and spin, or, if no

match is found, it acts directly on the vacuum state, yielding zero.

2.2. The Pauli–Villars-Regulated Hamiltonian

The Hamiltonian that defines the eigenvalue problem of interest comes from the

Feynman-gauge QED Lagrangian, regulated with two PV photons and a PV fermion.

This Lagrangian is

L =
2

∑

i=0

(−1)i

[

−1

4
F µν

i Fi,µν +
1

2
µ2

iA
µ
i Aiµ − 1

2
(∂µAiµ)2

]

(2.16)

+
1

∑

i=0

(−1)iψ̄i(iγ
µ∂µ −mi)ψi − eψ̄γµψAµ,

where

Aµ =
2

∑

i=0

√

ξiAiµ, ψ =
1

∑

i=0

ψi, Fiµν = ∂µAiν − ∂νAiµ. (2.17)

The subscript i = 0 denotes a physical field and i = 1 or 2 a PV field. Fields with

odd index i are chosen to have a negative norm. In our approach, we can keep the

mass µ0 of the physical photon equal to zero [7], unlike perturbation theory where

one would have infrared singularities.

The second PV photon A2µ was not needed in the earlier work [7] and is not needed

for ultraviolet regularization. It is, however, necessary for obtaining the correct chiral

symmetry in the limit of a massless electron. The earlier work is recovered in the

ξ2 → 0 limit. This limit corresponds to the limit µ2 → ∞.

As is usually the case for PV regularization, the constants ξi satisfy constraints.

In order that e be the charge of the physical electron, we must have ξ0 = 1. Another

constraint is to guarantee that summing over photon flavors, in an internal line of a

Feynman graph, cancels the leading divergence associated with integration over the
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momentum of that line. Since the ith flavor has norm (−1)i and couples to a charge
√
ξie at each end, the constraint is

2
∑

i=0

(−1)iξi = 0. (2.18)

This also guarantees that Aµ in (2.17) is a zero-norm field. A third constraint will be

imposed later; it will be chosen to obtain the correct chiral limit.

The dynamical fields are

ψi+ =
1√

16π3

∑

s

∫

dkχs

[

bis(k)e−ik·x + d†i,−s(k)eik·x
]

, (2.19)

Aiµ =
1√

16π3

∫

dk√
k+

[

aiµ(k)e−ik·x + a†iµ(k)eik·x
]

, (2.20)

with χs an eigenspinor of Λ+ = γ0γ+/2 [46]. The creation and annihilation operators

satisfy the (anti)commutation relations in (2.13). For the zero-norm photon field Aµ,

we have aµ =
∑

i

√
ξiaiµ and the commutator

[aµ(k), a†ν(k′)] =
∑

i

(−1)iξiε
µδµνδ(k − k′) = 0. (2.21)

An important consequence of the regularization method is that we are not limited

to light-cone gauge. The coupling of the two zero-norm fields Aµ and ψ as the

interaction term reduces the fermionic constraint equation to a solvable equation

without forcing the gauge field A− = A+ to zero. The nondynamical components of

the fermion fields satisfy the constraints (i = 0, 1)

i(−1)i∂−ψi− + eA−
∑

j

ψj− = (iγ0γ⊥)

[

(−1)i∂⊥ψi+ − ieA⊥
∑

j

ψj+

]

−(−1)imiγ
0ψi+. (2.22)
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This comes from the Dirac equation for the full field ψi projected by Λ− ≡ γ0γ−/2 =

1 − Λ+, with ψi± = Λ±ψi, and use of the identities [46]

Λ±β = βΛ∓, Λ±~α⊥ = ~α⊥Λ∓, (2.23)

where β = γ0 and ~α⊥ = γ0γ⊥.

It would appear that a nontrivial inversion of the covariant derivative is needed to

solve the constraints for ψ−, except when light-cone gauge (A+ = 0) is used; however,

for the null combination ψ0 + ψ1 that couples to A+, the constraint reduces to

i∂−(ψ0− + ψ1−) = (iγ0γ⊥)∂⊥(ψ0+ + ψ1+) − γ0(m0ψ0+ +m1ψ1+), (2.24)

which is the same as the constraint for a free fermion. This constraint is then solved

explicitly, and the nondynamical fermion fields are eliminated from the Lagrangian.

The full Fermi field can then be written as

ψi =
1√

16π3

∑

s

∫

dk√
k+

[

bis(k)e−ik·xuis(k) + d†i,−s(k)eik·xvis(k)
]

, (2.25)

with [46]

uis(k) =
1√
k+

(k+ + ~α⊥ · ~k⊥ + βmi)χs, (2.26)

vis(k) =
1√
k+

(k+ + ~α⊥ · ~k⊥ − βmi)χ−s, (2.27)

and the light-cone Hamiltonian P− can be constructed directly from the above La-

grangian.

The regularization scheme does have the disadvantage of breaking gauge invari-

ance, through the presence of “flavor” changing currents where a physical fermion

can be transformed to a PV fermion or vice-versa. However, the breaking effects dis-

appear in the limit of large PV fermion mass [7], because the physical fermion cannot
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make a transition to a state with infinite mass. At infinite PV fermion mass, gauge

invariance is restored. This was seen explicitly in [7] for the case of a one-photon

truncation; calculations done in Feynman gauge and light-cone gauge yielded consis-

tent results. Here we will consider the two-photon truncation where the infinite-mass

limit cannot be taken explicitly, but the PV fermion mass is kept large to minimize

the effects of the breaking of gauge invariance.

The construction of the Hamiltonian requires formulas for spinor matrix elements

that are more general than those given by Lepage and Brodsky [46], where the rules

for light-cone perturbative calculations in QCD are given. The presence of the PV

fields brings matrix elements that are off-diagonal in mass. These matrix elements are

readily computed from the light-cone spinors in (2.26) and the Dirac gamma matrices.

We obtain

ūis′(p)γ
+ujs(q) = 2

√

p+q+δs′s, (2.28)

ūis′(p)γ
−ujs(q) =











2√
p+q+

[~p⊥ · ~q⊥ ± i~p⊥ × ~q⊥ +mimj], s′ = s = ±

∓ 2√
p+q+

[mj(p
1 ± ip2) −mi(q

1 ± iq2)], s′ = −s = ∓,

ūis′(p)γ
l
⊥ujs(q) =











1√
p+q+

[p+(ql ± iεlk3qk) + q+(pl ∓ iεlk3pk)], s′ = s = ±

∓ 1√
p+q+

(miq
+ −mjp

+)(δl1 ± iδl2), s′ = −s = ∓.

Without antifermion terms, the result for the Hamiltonian is
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P− =
∑

i,s

∫

dp
m2

i + p2
⊥

p+
(−1)ib†i,s(p)bi,s(p) (2.29)

+
∑

l,µ

∫

dk
µ2

l + k2
⊥

k+
(−1)lεµa†lµ(k)alµ(k)

+
∑

i,j,l,s,µ

∫

dpdq
{

b†i,s(p)
[

bj,s(q)V
µ
ij,2s(p, q)

+ bj,−s(q)U
µ
ij,−2s(p, q)

]
√

ξla
†
lµ(q − p) +H.c.

}

,

which is a generalization to two PV photon flavors from the Hamiltonian in [7]. The

vertex functions are

V 0
ij±(p, q) =

e√
16π3

~p⊥ · ~q⊥ ± i~p⊥ × ~q⊥ +mimj + p+q+

p+q+
√
q+ − p+

, (2.30)

V 3
ij±(p, q) =

−e√
16π3

~p⊥ · ~q⊥ ± i~p⊥ × ~q⊥ +mimj − p+q+

p+q+
√
q+ − p+

,

V 1
ij±(p, q) =

e√
16π3

p+(q1 ± iq2) + q+(p1 ∓ ip2)

p+q+
√
q+ − p+

,

V 2
ij±(p, q) =

e√
16π3

p+(q2 ∓ iq1) + q+(p2 ± ip1)

p+q+
√
q+ − p+

,

U0
ij±(p, q) =

∓e√
16π3

mj(p
1 ± ip2) −mi(q

1 ± iq2)

p+q+
√
q+ − p+

,

U3
ij±(p, q) =

±e√
16π3

mj(p
1 ± ip2) −mi(q

1 ± iq2)

p+q+
√
q+ − p+

,

U1
ij±(p, q) =

±e√
16π3

miq
+ −mjp

+

p+q+
√
q+ − p+

,

U2
ij±(p, q) =

ie√
16π3

miq
+ −mjp

+

p+q+
√
q+ − p+

.

As in Yukawa theory, the four-point vertices known as instantaneous fermion

terms, which arise from eliminating the nondynamical Fermi field, do again cancel

between physical and PV fields. The terms are independent of the fermion mass,
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and the PV fermion terms have a sign opposite that of the physical fermion terms.

This is another advantage of the regularization scheme, in that it produces a simpler

Hamiltonian; matrix elements of four-point interactions require much more time to

calculate and make the resulting matrix eigenvalue problem much less sparse.

For calculations with more than one photon in the Fock space, an helicity basis is

convenient. The dependence of the vertex functions on azimuthal angle then becomes

simple. This will allow us to take advantage of cylindrical symmetry in the integral

equations, such that the azimuthal angle dependence can be handled analytically.

There is then no need to discretize the angle in making the numerical approximation.

To introduce the helicity basis, we define new annihilation operators for the photon

fields

al± =
1√
2

(al0 ± al3) , al(±) =
1√
2

(al1 ± ial2). (2.31)

The Hamiltonian can then be rearranged to the form

P− =
∑

i,s

∫

dp
m2

i + p2
⊥

p+
(−1)ib†i,s(p)bi,s(p) (2.32)

+
∑

l,λ

∫

dk
µ2

l + k2
⊥

k+
(−1)l

[

−a†lλ(k)al,−λ(k) + a†l(λ)(k)al(λ)(k)
]

+
∑

i,j,l,s,λ

∫

dpdq
√

ξl

{

b†i,s(p)bj,s(q)
[

V λ
ij,2s(p, q)a

†
lλ(q − p)

+V
(λ)
ij,2s(p, q)al(λ) † (q − p)

]

+ b†i,s(p)bj,−s(q)
[

Uλ
ij,−2s(p, q)a

†
lλ(q − p) + U

(λ)
ij,−2sa

†
l(λ)(q − p)

]

+H.c.
}

,

and the vertex functions become
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V +
ij±(p, q) =

e
√

8π3(q+ − p+)
, (2.33)

V −
ij±(p, q) =

e√
8π3

(p1 ∓ ip2)(q1 ± iq2) +mimj

p+q+
√
q+ − p+

,

V
(±)
ij± (p, q) =

e√
8π3

q1 ± iq2

q+
√
q+ − p+

,

V
(±)
ij∓ (p, q) =

e√
8π3

p1 ± ip2

p+
√
q+ − p+

,

U+
ij±(p, q) = 0,

U−
ij±(p, q) = ∓ e√

8π3

mj(p
1 ± ip2) −mi(q

1 ± iq2)

p+q+
√
q+ − p+

,

U
(±)
ij± (p, q) = 0,

U
(±)
ij∓ (p, q) = ∓ e√

8π3

miq
+ −mjp

+

p+q+
√
q+ − p+

.

The al± operators are null, in the sense that [al±(k), a†l′±(k′)] = 0; however, we do

have [al±(k), a†l′∓(k′)] = −δll′δ(k − k′).

2.3. Implementation of the Gauge Condition

Feynman gauge is a particular formulation of Lorentz gauge, for which the vector

potential satisfies the gauge condition ∂µAiµ = 0. In Gupta–Bleuler quantization [47,

48], this is implemented not as an operator condition but as a projection for the

positive frequency part ∂µA
(+)
iµ , with physical states |ψ〉 restricted by

∂µA
(+)
iµ |ψ〉 =

1√
16π3

∫

dk√
k+
kµaiµ(k)e−ik·x|ψ〉 = 0. (2.34)

This restricts Fock-state expansions to physical polarizations in the following

way [48, 45]. Let e
(λ)
µ (k), with λ = 0, 1, 2, 3, be polarization vectors for a photon

with four-momentum k, with the properties

e(λ)µe(λ
′)

µ = −ελδλλ′ , (2.35)
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and

kµe(λ)
µ = 0, nµe(λ)

µ = 0, λ = 1, 2. (2.36)

Here εµ = (−1, 1, 1, 1) is the metric signature, as above, and n is the timelike four-

vector that reduces to (1, 0, 0, 0) in the frame where ~k⊥ = 0. We express the annihi-

lation operator aiµ in terms of these polarizations as

aiµ =
∑

λ

e(λ)
µ a

(λ)
i . (2.37)

The polarizations λ = 1, 2 are the physical transverse polarizations. The scalar and

longitudinal polarizations may be chosen to be [48]

e(0) = n and e(3)(k) =
k − (k · n)n

k · n , (2.38)

which satisfy the conditions (2.35). The dot product k · n is most readily computed

in the ~k⊥ = 0 frame, where

k · n = k0 = k3 =
1

2
k+; (2.39)

this expression can still be used after a transverse boost (2.10) to non-zero ~k⊥, because

the plus component is unchanged by such a boost.

From the choices for e(0) and e(3), we have

kµe(0)µ = k · n, kµe(3)µ = −k · n, (2.40)

and

kµaiµ = k · n(a
(0)
i − a

(3)
i ). (2.41)

Given this last result, it is convenient to define the linear combinations1

a
(±)
i = (a

(0)
i ± a

(3)
i )/

√
2. (2.42)

1These linear combinations are distinct from those that appear in Eq. (2.31). They combine

different polarizations, rather than the different Lorentz components used in (2.31).
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They are both null and satisfy the commutation relations

[a
(±)
i (k), a

(±)†
i (k′)] = 0, [a

(±)
i (k), a

(∓)†
i (k′)] = −(−1)iδ(k − k′). (2.43)

The restriction (2.34) on physical states then reduces to

a
(−)
i |ψ〉 = 0. (2.44)

Because a
(−)
i commutes with all but a

(+)†
i , the restriction (2.44) can be satisfied by

removing from |ψ〉 all terms that contain a
(+)†
i . This is accomplished by replacing all

photon creation operators a†iµ with the projected operator

ã†iµ =
1√
2

(e(0)
µ − e(3)

µ )a
(−)†
i +

2
∑

λ=1

e(λ)
µ a

(λ)†
i . (2.45)

Since the a
(−)†
i are null, only the physical polarizations contribute to expectation

values of physical quantities.

The presence of photons created by a
(−)†
i corresponds to the residual gauge trans-

formations [48] that satisfy ∂µAiµ = 0, where Aiµ → Aiµ + ∂µΛi with 2Λi = 0. To

see this, consider the expectation value [48] 〈ψ|Aiµ|ψ〉, with |ψ〉 written as

|ψ〉 = C0|0〉 +

∫

dqC1(q)a
(−)†
i (q)|0〉 + · · · , (2.46)

and transverse polarizations absent. In the expectation value only the a
(+)
i and a

(+)†
i

terms of Aiµ can contribute, as follows from the commutators in Eq. (2.43), and these

terms give

〈ψ|Aiµ|ψ〉 = −(−1)iC∗
0

∫

dq
√

16π3q+
C1(q)e

−iq·x 1√
2

(e(0)
µ (q) + e(3)

µ (q)) + c.c. (2.47)

From (2.38) and (2.39), we have e
(0)
µ (q) + e

(3)
µ (q) = qµ/q · n = 2qµ/q

+. The factor qµ

can be replaced by a partial derivative, leaving

〈ψ|Aiµ|ψ〉 = ∂µΛi(x), (2.48)
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with

Λi(x) = −i(−1)iC∗
0

∫

dq

(2πq+)3/2
C1(q)e

−iq·x + c.c. (2.49)

Since q is null, 2Λi = 0. Thus, the contribution from the unphysical polarizations

is a pure gauge term consistent with the residual gauge symmetry. A choice of wave

function for the minus polarization corresponds to a choice for the residual gauge.

For the calculations reported here, we do not make the gauge projection, because

gauge invariance has been broken by both the truncation and the flavor-changing

currents. The remaining negative norm of a†j0 does not cause difficulties for our

calculations; in particular, our solutions have positive norm.
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Chapter 3

THE DRESSED-ELECTRON EIGENSTATE

We will study the state of the electron as an eigenstate of the light-cone Hamil-

tonian. It is dressed by photons and electron-positron pairs; however, we limit the

calculation to photons and truncate the number of photons to two, at most. The

eigenstate is then expanded in terms of Fock states, eigenstates of particle number

and momentum, with wave functions as the coefficients. In order that the Fock expan-

sion be an eigenstate of the light-cone Hamiltonian, the wave functions must satisfy

coupled integral equations. The wave functions are also constrained by normalization

of the state. The anomalous magnetic moment is then calculated from a spin-flip

matrix element. In this chapter we collect the fundamental expressions for the Fock-

state expansion, the coupled equations for the wave functions, the normalization of

the wave functions, and the anomalous moment.

3.1. Fock-State Expansion

It is convenient to work in a Fock basis where P+ and ~P⊥ are diagonal and the

total transverse momentum ~P⊥ is zero. We expand the eigenfunction for the dressed-

fermion state with total Jz = ±1
2

in such a Fock basis as

|ψ±(P )〉 =
∑

i

zib
†
i±(P )|0〉 +

∑

ijsµ

∫

dkCµ±
ijs (k)b†is(P − k)a†jµ(k)|0〉 (3.1)

+
∑

ijksµν

∫

dk1dk2C
µν±
ijks (k1, k2)

1
√

1 + δjkδµν

b†is(P − k1 − k2)a
†
jµ(k1)a

†
kν(k2)|0〉,
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where we have truncated the expansion to include at most two photons. The zi are

the amplitudes for the bare electron states, with i = 0 for the physical electron and

i = 1 for the PV electron. The Cµ±
ijs are the two-body wave functions for Fock states

with an electron of flavor i and spin component s and a photon of flavor j = 0, 1

or 2 and field component µ, expressed as functions of the photon momentum. The

upper index of ± refers to the Jz value of ±1
2

for the eigenstate. Similarly, the Cµν±
ijks

are the three-body wave functions for the states with one electron and two photons,

with flavors j and k and field components µ and ν.

Careful interpretation of the eigenstate is required to obtain physically meaning-

ful answers. In particular, there needs to be a physical state with positive norm.

We apply the same approach as was used in Yukawa theory [6]. A projection onto

the physical subspace is accomplished by expressing Fock states in terms of positively

normed creation operators a†0µ, a†2µ, and b†0s and the null combinations a†µ =
∑

i

√
ξia

†
iµ

and b†s = b†0s +b†1s. The b†s particles are annihilated by the generalized electromagnetic

current ψ̄γµψ; thus, b†s creates unphysical contributions to be dropped, and, by anal-

ogy, we also drop contributions created by a†µ. The projected dressed-fermion state

is

|ψ±(P )〉phys =
∑

i

(−1)izib
†
0±(P )|0〉 (3.2)

+
∑

sµ

∫

dk
1

∑

i=0

∑

j=0,2

√

ξj

j/2+1
∑

k=j/2

(−1)i+k

√
ξk

Cµ±
iks (k)b†0s(P − k)a†jµ(k)|0〉

+
∑

sµν

∫

dk1dk2

1
∑

i=0

∑

j,k=0,2

√

ξjξk

j/2+1
∑

l=j/2

k/2+1
∑

m=k/2

(−1)i+l+m

√
ξlξm

Cµν±
ilms(k1, k2)

√

1 + δlmδµν

× b†0s(P − k1 − k2)a
†
jµ(k1)a

†
kν(k2)|0〉.

This projection is to be used to compute the anomalous moment.
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Before using these states, it is important to consider the renormalization of the

external coupling to the charge [49, 45]. We exclude fermion-antifermion states, and,

therefore, there is no vacuum polarization. Thus, if the vertex and wave function

renormalizations cancel, there will be no renormalization of the external coupling. As

shown in [45] and Appendix A, this is what happens, but only for the plus component

of the current. Our calculations of the anomalous moment are therefore based on

matrix elements of the plus component and do not require additional renormalization.

3.2. Coupled Integral Equations

The bare amplitudes zi and wave functions Cµ±
ijs and Cµν±

ijks that define the eigen-

state must satisfy the coupled system of equations that results from the field-theoretic

mass-squared eigenvalue problem (2.12). We work in a frame where the total trans-

verse momentum is zero and require that this state be an eigenstate of P− with

eigenvalue M 2/P+. The form of P− is given in Eq. (2.32). The wave functions then

satisfy the following coupled integral equations:

[M2 −m2
i ]zi =

∫

dq
∑

j,l,µ

√

ξl(−1)j+lεµP+
[

V µ∗
ji±(P − q, P )Cµ±

jl±(q) (3.3)

+Uµ∗
ji±(P − q, P )Cµ±

jl∓(q)
]

,

[

M2 − m2
i + q2

⊥
(1 − y)

− µ2
l + q2

⊥
y

]

Cµ±
ils (q) (3.4)

=
√

ξl
∑

j

(−1)jzjP
+

[

δs,±1/2V
µ
ijs(P − q, P ) + δs,∓1/2U

µ
ij,−s(P − q, P )

]

+
∑

abν

(−1)a+bεν
∫

dq′
2
√
ξb√

1 + δblδµν

[

V ν∗
ais(P − q′ − q, P − q′)Cνµ±

abls (q′, q)

+U ν∗
ais(P − q′ − q, P − q′)Cνµ±

abl,−s(q
′, q)

]

,
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[

M2 − m2
i + (~q1⊥ + ~q2⊥)2

(1 − y1 − y2)
−
µ2

j + q2
1⊥

y1

− µ2
l + q2

2⊥
y2

]

Cµν±
ijls (q

1
, q

2
) (3.5)

=

√

1 + δjlδµν

2

∑

a

(−1)a
{

√

ξj

[

V µ
ias(P − q

1
− q

2
, P − q

2
)Cν±

als (q
2
)

+Uµ
ia,−s(P − q

1
− q

2
, P − q

2
)Cν±

al,−s(q2
)
]

+
√

ξl

[

V ν
ias(P − q

1
− q

2
, P − q

1
)Cµ±

ajs(q1
)

+ U ν
ia,−s(P − q

1
− q

2
, P − q

1
)Cµ±

aj,−s(q1
)
]}

.

A diagrammatic representation is given in Fig. 3.1. The first of these equations

×

×

×

+ = M
2

×

×

+ + = M
2

×
+ = M

2

1

Figure 3.1. Diagrammatic representation of the coupled equations (3.3), (3.4), and

(3.5) of the text. The filled circles and ovals represent wave functions for Fock states;

the solid lines represent fermions; and the dashed lines represent photons. The crosses

on lines represent the light-cone kinetic energy contributions, which are summed over

all particles in the Fock state.
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couples the bare amplitudes zi to the two-body wave functions, Cµ±
ijs . The second

couples the Cµ±
ijs to the zi and to the three-body wave functions, Cµν±

ijks . The third is

truncated, with no four-body terms, and simply couples Cµν±
ijks to Cµ±

ijs algebraically.

From the structure of the equations, one can show that the two-body wave functions

for the Jz = −1/2 eigenstate are related to the Jz = +1/2 wave functions by

Cµ−
ij+ = −Cµ+∗

ij− , Cµ−
ij− = Cµ+∗

ij+ . (3.6)

This will be useful in computing the spin-flip matrix element needed for the anomalous

moment.

3.3. Normalization and Anomalous Moment

The projected Fock expansion (3.2) is normalized according to

〈ψσ′

(P ′)|ψσ(P )〉phys = δ(P ′ − P )δσ′σ. (3.7)

In terms of the wave functions, this becomes

1 = |
∑

i

(−1)izi|2 +
∑

sµ

∫

dkεµ
∑

j=0,2

ξj

∣

∣

∣

∣

∣

∣

1
∑

i=0

j/2+1
∑

k=j/2

(−1)i+k

√
ξk

Cµ+
iks (k)

∣

∣

∣

∣

∣

∣

2

(3.8)

+
∑

sµν

∫

dk1dk2

∑

j,k=0,2

ξjξk

∣

∣

∣

∣

∣

∣

1
∑

i=0

j/2+1
∑

l=j/2

k/2+1
∑

m=k/2

(−1)i+l+m

√
ξlξm

√
2Cµν±

ilms(k1, k2)
√

1 + δlmδµν

∣

∣

∣

∣

∣

∣

2

.

Using the coupled equations, we can express all the wave functions Cµ±
ijs and Cµν±

ijks

and the amplitude z1 through the bare-electron amplitude z0. The normalization

condition then determines z0. For the two-photon truncation, where the wave func-

tions are computed numerically, the integrals for the normalization must also be done

numerically, using quadrature schemes discussed in Appendix D.
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The anomalous moment ae can be computed from the spin-flip matrix element of

the electromagnetic current J+ [50]

−
(

Qx − iQy

2M

)

F2(Q
2) = ±1

2
〈ψ±(P +Q)|J

+(0)

P+
|ψ∓(P )〉phys, (3.9)

where Q is the momentum of the absorbed photon, F2 is the Pauli form factor, and we

work in a frame where Q+ is zero. At zero momentum transfer, we have ae = F2(0)

and

ae = me

∑

sµ

∫

dkεµ
∑

j=0,2

ξj





1
∑

i′=0

j/2+1
∑

k′=j/2

(−1)i′+k′

√
ξk′

Cµ+
i′k′s(k)





∗

(3.10)

×y
(

∂

∂kx

+ i
∂

∂ky

)





1
∑

i=0

j/2+1
∑

k=j/2

(−1)i+k

√
ξk

Cµ−
iks (k)





+me

∑

sµν

∫

dk1dk2

∑

j,k=0,2

ξjξk

×





1
∑

i′=0

j/2+1
∑

l′=j/2

k/2+1
∑

m′=k/2

(−1)i′+l′+m′

√
ξl′ξm′

√
2Cµν+

i′l′m′s(k1, k2)
√

1 + δl′m′δµν





∗

×
∑

a

[

ya

(

∂

∂kax

+ i
∂

∂kay

)]





1
∑

i=0

j/2+1
∑

l=j/2

k/2+1
∑

m=k/2

(−1)i+l+m

√
ξlξm

√
2Cµν−

ilms(k1, k2)
√

1 + δlmδµν



 .

In general, these integrals must also be computed numerically.

The terms that depend on the three-body wave functions Cµν±
ilms are higher order

in α than the leading two-body terms. This is because (3.5) determines Cµν±
ilms as

being of order
√
α or e times the two-body wave functions, the vertex functions being

proportional to the coupling, e. Given the numerical errors in the leading terms, these

three-body contributions are not significant and are not evaluated. The important

three-body contributions come from the couplings of the three-body wave functions

that will enter the calculation of the two-body wave functions.
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Chapter 4

ONE-PHOTON TRUNCATION

The dressed-electron problem in QED has been solved analytically for a one-

photon/one-electron truncation [7] in the limit of an infinite PV electron mass. Our

goal is to be able to calculate an approximation to the anomalous moment in the

two-photon truncation. In this truncation we cannot take the infinite-mass limit for

the PV electron, but must instead work at large but finite values. For purposes of

comparison, we then need results for the one-photon truncation at finite PV electron

mass.

What we discover in doing so is that a single PV photon flavor is not enough for

an accurate calculation [45]. Without a second flavor, the chiral symmetry of the

massless-electron limit is broken, and the calculation displays a strong dependence

on the PV masses.

One other check of the formalism is to show that the one-loop electron self-energy

agrees with the standard result from covariant Feynman theory. This is done in [45]

and Appendix B.

4.1. Analytic Reduction

The Fock-state expansion (3.1) for the Jz = ±1
2

eigenstate is truncated at one

photon, which leaves

|ψ±(P )〉 =
∑

i

zib
†
i,±(P )|0〉 +

∑

i,l,s,µ

∫

dkCµ±
ils (k)b†is(P − k)a†lµ(k)|0〉, (4.1)
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with the total transverse momentum of the state set to zero. The amplitudes satisfy

the coupled equations (3.3) and (3.4), with the three-body terms removed. The second

equation then becomes

[

M2 − m2
i + k2

⊥
(1 − y)

− µ2
l + k2

⊥
y

]

Cµ±
il±(k) =

√

ξl
∑

j

(−1)jzjP
+V µ

ij±(P − k, P ),(4.2)

[

M2 − m2
i + k2

⊥
(1 − y)

− µ2
l + k2

⊥
y

]

Cµ±
il∓(k) =

√

ξl
∑

j

(−1)jzjP
+Uµ

ij±(P − k, P ).(4.3)

The wave functions Cµ±
ils are obtained directly as

Cµ±
il±(k) =

√

ξl

∑

j(−1)jzjP
+V µ

ij±(P − k, P )

M2 − m2
i +k2

⊥

1−y
− µ2

l
+k2

⊥

y

, (4.4)

Cµ±
il∓(k) =

√

ξl

∑

j(−1)jzjP
+Uµ

ij±(P − k, P )

M2 − m2
i +k2

⊥

1−y
− µ2

l
+k2

⊥

y

. (4.5)

These can be eliminated from the first of the coupled equations to yield a 2 × 2

eigenvalue problem for the amplitudes zi,

(M2 −m2
i )zi =

∫

dy d2k⊥
∑

µ,i′,j,l

(−1)i′+j+lξlzj(P
+)3εµ (4.6)

×
V µ∗

i′i±(P − k, P )V µ
i′j±(P − k, P ) + Uµ∗

i′i±(P − k, P )Uµ
i′j±(P − k, P )

M2 − m2
i′

+k2
⊥

1−y
− µ2

l
+k2

⊥

y

,

which, on use of the definitions (2.30) of the vertex functions, can be written more

usefully as

(M2 −m2
i )zi = 2e2

∑

j

(−1)jzj

[

mimj Ī0 − 2(mi +mj)Ī1 + J̄
]

, (4.7)
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in terms of the following important integrals:

Īn(M2) =

∫

dydk2
⊥

16π2

∑

jl

(−1)j+lξl

M2 − m2
j+k2

⊥

1−y
− µ2

l
+k2

⊥

y

mn
j

y(1 − y)n
, (4.8)

J̄(M2) =

∫

dydk2
⊥

16π2

∑

jl

(−1)j+lξl

M2 − m2
j+k2

⊥

1−y
− µ2

l
+k2

⊥

y

m2
j + k2

⊥

y(1 − y)2
. (4.9)

The singular behavior of the integrands is characteristic of the integral equations in

general and provides a useful testing ground for quadratures and discretizations. The

integrals Ī0 and J̄ satisfy the identity J̄(M2) = M 2Ī0(M
2). A proof is given in [45]

and in Appendix C.

4.2. Solution of the Eigenvalue Problem

The form of the eigenvalue equation (4.7) matches that of the equivalent eigenvalue

problem in Yukawa theory [6], with the replacements g2 → 2e2, µ0I1 → −2Ī1, and

µ2
0J → J̄ . Therefore, the solution can be taken directly from [6] with these minor

substitutions; it is

α± =
(M ±m0)(M ±m1)

8π(m1 −m0)(2Ī1 ±MĪ0)
, z1 =

M ±m0

M ±m1

z0, (4.10)

with z0 determined by normalization. The simplicity of this result is due in part to

the algebraic simplification of (4.7) that comes from the identity J̄ = M2Ī0.

The value of m0 is determined by requiring α± to be equal to the physical value

of α = e2/4π when the eigenmass M is equal to the physical mass of the electron

me. For small values of the PV masses there may be no such solution; however, for

reasonable values we do find at least one solution for each branch.

The plot in Fig. 4.1 shows α±/α as functions of m0. The α− branch is the physical

choice, because the no-interaction limit (α− = 0) corresponds to the bare mass m0
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Figure 4.1. The two solutions of the one-photon eigenvalue problem, for PV masses

m1 = 1000me, µ1 = 10me, and µ2 = ∞. The horizontal line shows where α± = α;

the inset shows the detail near the intersection with α−, with horizontal lines at zero

and one and a vertical line at m0 = me. The α− branch corresponds to the physical

choice, but with m0 less than me.

becoming equal to the physical electron mass. If the PV electron has a sufficiently

large mass, as used in Fig. 4.1, the value of m0 that yields α− = α is less than me.

In this case, the integrals Īn and J̄ contain poles for j = l = 0 and are defined by a

principal-value prescription [7].

The presence of the poles can then admit an additional delta-function term to the

two-body wave function:

Cµσ
00s(k) → Cµσ

00s(k) + cµσ
s δ(k − k0), (4.11)
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where k0 is such that M 2 =
m2

0+k2
0⊥

1−y0
+

µ2
0+k2

0⊥

y0
. This remains a solution to (4.2), but

there will be additional terms in (4.7) proportional to cµσ
s . We do not explore this

possibility, because we have found that when we include self-energy corrections from

a two-photon truncation, the poles in these wave functions disappear.

4.3. Normalization

The normalization of the wave functions is determined by Eq. (3.8) with no more

than the two-body terms kept. For the given wave functions, after some tedious

calculations, this becomes

1

z2
0

= (1 − ζ1)
2 (4.12)

+
α

2π

∫

ydydk2
⊥

∑

l,l′

(−1)l+l′ζlζl′
∑

i′i

(−1)i′+i
∑

j=0,2

ξj

j/2+1
∑

k′=j/2

j/2+1
∑

k=j/2

(−1)k′+k

× mi′mi − (mi +mi′)(ml +ml′)(1 − y) +mlml′(1 − y)2 + k2
⊥

[ym2
i′ + (1 − y)µ2

k′ + k2
⊥ −m2

ey(1 − y)][ym2
i + (1 − y)µ2

k + k2
⊥ −m2

ey(1 − y)]
,

where ζl = zl/z0.

For terms with i = k = 0 or i′ = k′ = 0, there are simple poles defined by a

principal-value prescription. For the terms where all four of these indices are zero,

there is a double pole, defined by the prescription [7]
∫

dx
f(x)

(x− a)2
≡ lim

η→0

1

2η

[

P
∫

dx
f(x)

x− a− η
− P

∫

dx
f(x)

x− a+ η

]

. (4.13)

One could instead compute the norm by taking the zero-momentum limit of the Dirac

form factor, F1; however, this would correspond to a more complicated point splitting.

Our prescription splits only with respect to the magnitude of the momentum, rather

than the magnitude and angle. With the prescription (4.13) for double poles, the

transverse integrals that appear in the normalization integrals are
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∫ ∞

0

dx

(x± a)2
= ±1

a
, (4.14)

∫ ∞

0

dx

(x± a)(x+ b)
=

ln(b/a)

b± a
, (4.15)

∫ ∞

0

xdx

(x± a)2
=







−1 − ln(a), upper sign

−1, lower sign,
(4.16)

∫ ∞

0

xdx

(x± a)(x+ b)
=

ln(b/a)

1 ± b/a
− ln(b), (4.17)

with a and b positive. These same integrals appear in the expression below for the

anomalous moment.

4.4. Anomalous Moment

From the normalized wave functions, we can compute the anomalous magnetic

moment. We consider both one and two PV photon flavors and, in the second case,

derive a constraint on the second PV photon flavor that restores the correct chiral

limit.

4.4.1. Basic Expressions

We evaluate the expression given in Eq. (3.10), keeping only the two-body con-

tributions. The presence of the derivative of the wave functions, given in Eqs. (4.4)

and (4.5), implies that we may face a triple pole; however, these terms cancel, and

the expression for the anomalous moment simplifies to
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ae =
α

π
me

∫

y2(1 − y)dydk2
⊥

∑

l,l′

(−1)l+l′zlzl′ml

∑

j=0,2

ξj (4.18)

×





1
∑

i=0

j/2+1
∑

k=j/2

(−1)i+k

ym2
i + (1 − y)µ2

k + k2
⊥ −m2

ey(1 − y)





2

.

The double pole is handled in the same way as for the normalization integrals, dis-

cussed in Sec. 4.3. The integrals can be done analytically.

In the limit where the PV electron mass m1 is infinite, the bare-electron amplitude

ratio z1/z0 is zero but the limit of the product m1z1/z0 is m0 −me. Thus, the limit

of the expression for the anomalous moment is

ae =
α

π
m2

ez
2
0

∫

y2(1−y)dydk2
⊥

∑

j=0,2

ξj





j/2+1
∑

k=j/2

(−1)k

ym2
0 + (1 − y)µ2

k + k2
⊥ −m2

ey(1 − y)





2

.

(4.19)

This differs slightly from the expression given in Eq. (70) of [7], where only one PV

photon was included, the projection onto physical states was not taken, and m1z1

was assumed to be zero; however, the difference in values is negligible when µ1 and

µ2 are sufficiently large.

4.4.2. One PV Photon Flavor

If the second PV photon is not included, the results for the anomalous moment

have a very strong dependence on the PV masses m1 and µ1 [45], as can be seen

in Fig. 4.2. A slowly varying behavior with respect to the PV photon mass µ1 is

obtained only if the PV electron mass m1 is (nearly) infinite. The PV electron mass

needs to be quite large, on the order of 107me, before results for the one-photon

truncation approach the infinite-mass limit. Thus, we would estimate that the PV

electron mass must be at least this large for the two-photon truncation, if only one
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Figure 4.2. The anomalous moment of the electron in units of the Schwinger term

(α/2π) plotted versus the PV photon mass, µ1, for a few values of the PV electron

mass, m1. The second PV photon is absent, and the chiral symmetry of the massless

limit is broken.

PV photon flavor is included. Unfortunately, such large mass values make numerical

calculations difficult, because of contributions to integrals at momentum fractions of

order (me/m1)
2 ' 10−14, which are then subject to large round-off errors.

The strong variation with µ1 occurs because the anomalous moment is very sen-

sitive to the masses of the constituents [20]. The mass m0 of the bare electron is

determined by the eigenvalue solution (4.10), which contains the integral Ī1, and

this integral has a strong dependence on PV masses, much stronger than a (µ1/m1)
2
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dependence that one might naively expect. Relative to the integral’s value Ī1∞ at

infinite m1, we have, with M = me,

Ī1 = Ī1∞ +

∫

dydk2
⊥

16π2

∑

j

(−1)jξjm1

k2
⊥ + ym2

1 + (1 − y)µ2
j −m2

ey(1 − y)
. (4.20)

When me is neglected compared to m1, the second term becomes equal to Ī1(0), and

this introduces a correction to the bare-electron mass of the form
µ2

1 ln(µ1/m1)

8π2mem1(1−µ2/m2
1)

.

This correction injects a very strong dependence on µ1 and m1 into the behavior of

the bare mass m0 and thus into the behavior of the anomalous moment.

4.4.3. Two PV Photon Flavors

What is the origin of this strong dependence on PV mass? It is in the breaking of

chiral symmetry in the limit of a massless electron. The expression (B.1) for the one-

loop electron self-energy, given in Appendix B, does not have the correct massless limit

of zero, and chiral symmetry is broken [45]. From (B.1) and the identity J̄ = M2Ī0,

we have

δm = 16π2 α

2π

[

m0Ī0(m
2
0) − 2Ī1(m

2
0)

]

. (4.21)

In the chiral limit, m0 → 0, we obtain

δm = −32π2 α

2π
Ī1(0), (4.22)

with

Ī1(0) =
m1

16π2

∑

l

(−1)lξl

∫

dyd2k⊥
1

k2
⊥ +m2

1y + µ2
l (1 − y)

. (4.23)

The integrals in Ī1(0) can be easily done, to find

δm = −α
π
m1

∑

l

(−1)lξl
µ2

l /m
2
1

1 − µ2
l /m

2
1

ln(µ2
l /m

2
1). (4.24)

Clearly, this is zero only if m1 is infinite or the ξl and masses µl satisfy the constraint

∑

l

(−1)lξl
µ2

l /m
2
1

1 − µ2
l /m

2
1

ln(µ2
l /m

2
1) = 0. (4.25)
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This cannot be satisfied without the introduction of a second PV photon. With

the constraint satisfied, the leading correction to the eigenvalue problem, which was

shown in the previous subsection to be also proportional to Ī1(0), will disappear.

µ1/me
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(2
π/

α)
 a

e

0.8

0.9

1.0

1.1

1.2

m1= infinity

m1=2*104 me

m1=5*104 me

m1=105 me

Figure 4.3. Same as Fig. 4.2, but with the second PV photon included, with a mass

µ2 =
√

2µ1, and the chiral symmetry restored. The mass ratio is held fixed as µ1 and

µ2 are varied.

When the PV electron mass is sufficiently large, the chiral-limit constraint can be

approximated by
∑

l

(−1)lξlµ
2
l ln(µl/m1) = 0. (4.26)

This constraint is of the same general form as the constraint obtained earlier for

Yukawa theory with three PV bosons [30, 2]. The solution to the set of constraints,
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Figure 4.4. Same as Fig. 4.3, but for µ2 = 4µ1.

Eq. (2.18) and (4.26) along with ξ0 = 1 and µ0 = 0, is

ξ1 = 1 + ξ2 and ξ2 =
µ2

1 ln(µ1/m1)

µ2
2 ln(µ2/m1) − µ2

1 ln(µ1/m1)
. (4.27)

Without loss of generality, we require µ2 > µ1, so that ξ2 is positive.

For less severe truncations, where more photons are allowed in Fock states, the

number of PV photon flavors does not need to increase [35]. However, the chiral

constraint will be more complicated. We might expect that, since the corrections

are higher order in α, they will be small enough to be neglected. As will be seen in

Chap. 6, this is not the case.
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With the second PV photon flavor included, the dependence on PV masses is

much reduced, as can be seen in Figs. 4.3 and 4.4. In Fig. 4.4, the strong variation

with µ1 that occurs for m1 = 2·104me is the result of µ2(= 4µ1) becoming comparable

in magnitude to m1.

From the plots in Figs. 4.3 and 4.4, we can conclude that useful calculations can be

done with m1 = 2 ·104me and µ2 =
√

2µ1, and we will use these values for comparison

with the two-photon truncation in later chapters.

The value obtained for the anomalous moment differs from the leading-order

Schwinger result α/2π [33], and thus from the physical value, by 17%. It will be

much improved by the inclusion of the two-photon self-energy contributions.
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Chapter 5

SELF-ENERGY CONTRIBUTION

Before solving the full two-photon truncation problem, we consider the effects of

the electron self-energy contribution alone. This yields an eigenvalue problem that is

similar to the one-photon truncation problem and can be solved almost analytically;

only some integrals require numerical treatment. The effect of including the self-

energy is to bring the anomalous moment into complete agreement with experiment,

to within numerical error.

5.1. The Eigenvalue Problem

The Fock-state expansion for the Jz = ±1
2

eigenstate is given in (3.1). The wave

functions satisfy the coupled integral equations (3.3), (3.4), and (3.5). The third

equation can be solved for the one-electron/two-photon wave functions, in terms of

the one-electron/one-photon wave functions, as

Cµν±
ijls (q

1
, q

2
) =

1

M2 − m2
i +(~q1⊥+~q2⊥)2

(1−y1−y2)
− µ2

j+q2
1⊥

y1
− µ2

l
+q2

2⊥

y2

√

1 + δjlδµν

2
(5.1)

×
∑

a

(−1)a
{

√

ξj

[

V µ
ias(P − q

1
− q

2
, P − q

2
)Cν±

als (q
2
)

+Uµ
ia,−s(P − q

1
− q

2
, P − q

2
)Cν±

al,−s(q2
)
]

+
√

ξl

[

V ν
ias(P − q

1
− q

2
, P − q

1
)Cµ±

ajs(q1
)

+U ν
ia,−s(P − q

1
− q

2
, P − q

1
)Cµ±

aj,−s(q1
)
]}

.
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Substitution of this solution into the second coupled equation eliminates the three-

body wave functions from the problem. For our present purpose, we retain only the

self-energy contributions, where the emitted photon is immediately reabsorbed by

the electron, and omit the remaining two-photon contributions, where one photon is

emitted and the other absorbed. The second equation (3.4) then becomes

[

M2 − m2
i + q2

⊥
(1 − y)

− µ2
l + q2

⊥
y

]

Cµ±
ils (q) (5.2)

=
√

ξl
∑

j

(−1)jzjP
+

[

δs,±1/2V
µ
ijs(P − q, P ) + δs,∓1/2U

µ
ij,−s(P − q, P )

]

+
∑

abi′ν

∫

(−1)a+b+i′ξbε
νdq′

M2 − m2
a+(~q ′

⊥
+~q⊥)2

(1−y−y′)
− µ2

b
+q′2

⊥

y′ − µ2
l
+q2

⊥

y

×
[

V ν∗
ais(P − q′ − q, P − q′)V ν

ai′s(P − q′ − q, P − q)

+U ν∗
ais(P − q′ − q, P − q′)U ν

ai′s(P − q′ − q, P − q)
]

Cµ±
i′ls(q).

The second term on the right-hand side is the self-energy contribution. Notice that

it includes a flavor changing self-energy, where the index i′ need not be the same as

the index i; this is a result of the flavor changing currents used in the interaction

Lagrangian (2.16). A diagrammatic representation is given in Fig. 5.1.

To simplify the expressions, we define

Sµ±
ils =

√

ξl
∑

j

(−1)jzjP
+[δs,±1/2V

µ
ijs(P − q, P ) + δs,∓1/2U

µ
ij,−s(P − q, P )], (5.3)

and

Iili′(y, q⊥) = (1 − y)
2π

α

∑

abν

∫

(−1)a+b+i′ξbε
νdq′

M2 − m2
a+(~q ′

⊥
+~q⊥)2

(1−y−y′)
− µ2

b
+q′2

⊥

y′ − µ2
l
+q2

⊥

y

(5.4)

×
[

V ν∗
ais(P − q′ − q, P − q′)V ν

ai′s(P − q′ − q, P − q)

+U ν∗
ais(P − q′ − q, P − q′)U ν

ai′s(P − q′ − q, P − q)
]

.
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Figure 5.1. Diagrammatic representation of the coupled equations (3.3) and (5.2) of

the text. The conventions for the diagrams are the same as in Fig. 3.1.

The integral equations for the two-body wave functions then take the form

[

M2 − m2
i + q2

⊥
1 − y

−
µ2

j + q2
⊥

y

]

Cµ±
ijs (y, q⊥) = Sµ±

ijs +
α

2π

∑

i′

Iiji′(y, q⊥)

1 − y
Cµ±

i′js(y, q⊥), (5.5)

with i = 0, 1 and j = 0, 1, 2. This, combined with the coupled equation (3.3) for the

one-body amplitude, constitutes the eigenvalue problem when only the self-energy

contributions of the two-photon states are included.

5.2. Two-Body Wave Functions

The self-energy term contributes to the denominators of the wave functions. Define

Aij =
m2

i + q2
⊥

1 − y
+
µ2

j + q2
⊥

y
+

α

2π

Iiji
1 − y

−M2, (5.6)

and

Bj =
α

2π

I1j0

1 − y
= − α

2π

I0j1

1 − y
. (5.7)

The eigenvalue problem can then be expressed compactly as
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A0jC
µ±
0js −BjC

µ±
1js = −Sµ±

0js (5.8)

BjC
µ±
0js + A1jC

µ±
1js = −Sµ±

1js.

We solve this 2×2 system for the two-body wave functions

Cµ±
ijs = −

A1−i,jS
µ±
ijs + (−1)iBjS

µ±
1−i,js

A0jA1j +B2
j

. (5.9)

The denominators now contain self-energy contributions.

On use of the form of the vertex functions (2.30), the expression (5.4) for the

self-energy contribution reduces to

Iiji′(y, q⊥) =
∑

a,b

(−1)i′+a+bξb(1 − y)

∫ 1−y

0

dy′

y′
dφ′

2π
dq′2⊥

−1

Dajb + F cosφ′ (5.10)

×
[

m2
a

(1 − y − y′)2
− 2

(mi +mi′)ma

(1 − y)(1 − y − y′)
+

mimi′

(1 − y)2

+
1

(1 − y − y′)2

(

y′2q2
⊥

(1 − y)2
+ q′2⊥ +

2y′q⊥q
′
⊥ cosφ′

(1 − y)

)]

,

with

Dajb(q⊥, q
′
⊥) =

m2
a + q2

⊥ + q′2⊥
1 − y − y′

+
µ2

j + q2
⊥

y
+
µ2

b + q′2⊥
y′

−M2, (5.11)

F (q⊥, q
′
⊥) =

2q⊥q
′
⊥

1 − y − y′
.

The self-energy contribution can be evaluated analytically, in the same way as for

Yukawa theory [8]. The change of variables x = q′+/q+ = y′/(1−y) and ~k⊥ = ~q ′
⊥+x~q⊥

yields
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Iiji′(y, q⊥) =
∑

a,b

(−1)i′+a+bξb

∫ 1

0

dx

x

d2k⊥
π

mimi′ − 2
mi+mi′

1−x
ma +

m2
a+k2

⊥

(1−x)2

Λj − m2
a+k2

⊥

1−x
− µ2

b
+k2

⊥

x

(5.12)

= 16π2(−1)i′
[

mimi′ Ī0(Λj) − 2(mi +mi′)Ī1(Λj) + J̄(Λj)
]

,

with

Λj ≡ µ2
j + (1 − y)M 2 −

µ2
j + q2

⊥

y
, (5.13)

and Ī0, Ī1, and J̄ defined in Eqs. (4.8) and (4.9). For J̄ we still have the identity

J̄(Λj) = Λj Ī0(Λj). However, unlike the case for Yukawa theory, Λj can be positive.

For either sign of Λj the integrals can be evaluated analytically, but, for extreme values

of the momentum, such as momentum fractions on the order of (m0/m1)
2 ∼ 10−10,

evaluation of the analytic form suffers from round-off error due to the finite precision

available in floating-point calculations. The self-energy is then best computed by

numerical evaluation of the longitudinal integrals, as discussed in Appendix D.

Without the self-energy contributions, we have Bj = 0, and the wave functions

reduce to the forms given in (4.4) and (4.5), with their line of poles whenever m0 <

me, as discussed in Sec. 4.2. Here, however, the self-energy contributions make the

denominators more complicated. For values of m0 that are smaller than me by an

amount of order α, there need not be a line of poles. In fact, we find that, for the

solution with self-energy contributions, there is no pole in this two-body Fock sector.

5.3. Semi-Analytic Solution

To solve the eigenvalue problem, we substitute the expressions (5.9) for the two-

body wave functions into the one-body equation, Eq. (3.3). On use of the expressions
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(2.30) for the vertex functions, this yields

[M2 −m2
i ]zi = 2e2

∑

l

(−1)lzl[mimlĨ0 − 2(mi +ml)Ĩ1 + J̃ ], (5.14)

where

Ĩ0 =

∫

dydq2
⊥

16π2

∑

j

(−1)jξj
A0j − A1j − 2Bj

y[A0jA1j +B2
j ]
, (5.15)

Ĩ1 =

∫

dydq2
⊥

16π2

∑

j

(−1)jξj
m1A0j −m0A1j − (m0 +m1)Bj

y(1 − y)[A0jA1j +B2
j ]

,

J̃ =

∫

dydq2
⊥

16π2

∑

j

(−1)jξj
(m2

1 + q2
⊥)A0j − (m2

0 + q2
⊥)A1j − 2(m0m1 + q2

⊥)Bj

y(1 − y)2[A0jA1j +B2
j ]

.

When the self-energy contributions are neglected, these return to the previous ex-

pressions Eq. (4.8) and (4.9) for Ī0, Ī1, and J̄ in the one-photon truncation. What

is more, the eigenvalue equation for zi has nearly the same form as the eigenvalue

equation (4.7) in the one-photon case. The only difference in finding the analytic

solution is that Ĩ0 and J̃ are not connected by any known identity.

Therefore, we proceed by simply solving the 2×2 matrix problem that (5.14)

represents. First, write it in standard matrix form

G~z =
1

2e2
~z, (5.16)

with

~z =





z0

z1



 , G =





G00 G01

G10 G11



 , (5.17)

and

Gil =
(−1)l

M2 −m2
i

[mimlĨ0 − 2(mi +ml)Ĩ1 + J̃ ]. (5.18)

Then use the standard solution to obtain
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α± =
G00 +G11 ±

√

(G00 −G11)2 − 4G10G01

16π[G00G11 −G10G01]
, (5.19)

z1

z0

=
[G11 −G00]/2 ∓

√

(G00 −G11)2 − 4G10G01

G01

. (5.20)

µ1/me
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Figure 5.2. The anomalous moment of the electron in units of the Schwinger term

(α/2π) plotted versus the PV photon mass, µ1, with the second PV photon mass,

µ2, set to
√

2µ1 and the PV electron mass m1 equal to 2 · 104me. The plot compares

results with and without the two-photon self-energy corrections.

As before, this yields α as a function of m0 and the PV masses. We then find m0

such that α takes the standard physical value. The search for the correct value of

m0 is done numerically, by an iteration algorithm due to Müller [51] and described
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in Appendix E. Although the form of the solution for α is analytic, the integrals

involved, the Ĩn and J̃ , must be computed numerically, using quadratures described

in Appendix D.

The wave functions Cµ±
ijs are constructed from (5.9) and used in the one-photon

truncation of (3.10) to compute the anomalous moment. The results for the anoma-

lous moment are shown in Fig. 5.2. As discussed in Chap. 4, the value of the PV

electron mass m1 is chosen to be 2 · 104me, which was found in the case of the one-

photon truncation to be sufficiently large. The ratio of PV photon masses µ2/µ1 is

held fixed at
√

2, and µ1 is varied. The results are consistent with perturbative QED,

showing only variations expected from numerical errors of order 1% in calculating the

underlying integrals Ĩn and J̃ .

That the self-energy contribution brings the result so close to the leading Schwinger

contribution can be understood. The dominant contribution to the expression (3.10)

for the anomalous moment is the j = 0, i = i′ = 0, and k = k′ = 0 contribution

to the first term; the other terms are suppressed by the large PV masses that ap-

pear in the denominators of the wave functions Cµ±
iks (k). For the dominant term, the

denominator, as determined by (5.9) and (5.6), is essentially the square of

A00 =
m2

0 + α
2π
I000 + q2

⊥
1 − y

+
µ2

0 + q2
⊥

y
−m2

e, (5.21)

with

I000 = 16π2[(m2
0 + Λ0)Ī0(Λ0) − 4m0Ī1(Λ0)] (5.22)

and

Λ0 = µ2
0 + (1 − y)m2

e −
µ2

0 + q2
⊥

y
(5.23)

from the expressions in (5.12) and (5.13). For the physical photon, µ0 = 0 and the

two-body wave function is peaked at q⊥ = 0 and y = 0, so that we can approximate
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Λ0 as m2
e. We then have

A00 '
m2

0 + 8πα[(m2
0 +m2

e)Ī0(m
2
e) − 4m0Ī1(m

2
e)] + q2

⊥
1 − y

+
q2
⊥
y

−m2
e (5.24)

From the mass shift given in (B.1), we also have, to leading order in α,

m2
0 = m2

e − 8πα[(m2
0 +m2

e)Ī0(m
2
e) − 4m0Ī1(m

2
e)]. (5.25)

Therefore, the denominator reduces to the square of

A00 =
m2

e + q2
⊥

1 − y
+
q2
⊥
y

−m2
e + O(α2), (5.26)

which matches the denominator of the integral that yields the Schwinger contribution,

written as [50]

ae =
α

π
m2

e

∫

dydq2
⊥/(1 − y)

[

m2
e+q2

⊥

1−y
+

q2
⊥

y
−m2

e

]2 . (5.27)

Thus, the dominant contribution with the self-energy included is very close in form

to the integral that yields the Schwinger result.
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Chapter 6

TWO-PHOTON TRUNCATION

We now construct the dressed-electron problem in the two-photon truncation.

This will define an eigenvalue problem in the form of an integral equation for the

one-electron/one-photon wave function. From these wave functions the bare-electron

amplitudes and the one-electron/two-photon wave functions can be computed. We

then compute the overall normalization and the anomalous moment. As in the case

of the one-photon truncation, these matrix elements are computed from a physical

projection of the eigenstate that maintains positivity of probability distributions.

Solution of this problem and computation of the matrix elements require numerical

techniques, which are discussed in Appendices D through G.

6.1. Integral Equations for Two-Body Wave Functions

The Fock-state expansion for the Jz = ±1
2

eigenstate is given in (3.1). The coupled

integral equations for the wave functions are given in Eqs. (3.3), (3.4), and (3.5). The

first and third equations can be solved for the bare-electron amplitudes and one-

electron/two-photon wave functions, respectively, in terms of the one-electron/one-

photon wave functions. From (3.3), we have

zi =
1

M2 −m2
i

∫

dq
∑

j,l,µ

√

ξl(−1)j+lεµ
[

P+V µ∗
ji±(P − q, P )Cµ±

jl±(q) (6.1)

+ P+Uµ∗
ji±(P − q, P )Cµ±

jl∓(q)
]

.

The three-body wave functions are already obtained, in (5.1).
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Substitution of these solutions into the second integral equation (3.4) yields a

reduced integral eigenvalue problem in the one-electron/one-photon sector. To isolate

the dependence on the azimuthal angles, we use q1
i ± iq2

i = qi⊥e
±iφi and q+

i = yiP
+,

and write the vertex functions (2.33) as

V +
ia±(P − q

1
− q

2
, P − q

2
) =

1

(P+)1/2

e
√

8π3y2

, (6.2)

V −
ia±(P − q

1
− q

2
, P − q

2
) =

1

(P+)5/2

e
√

8π3y2

(q1⊥e
∓i(φ1−φ2) + q2⊥)q2⊥ +mima

(1 − y2)(1 − y1 − y2)
,

V
(±)
ia± (P − q

1
− q

2
, P − q

2
) = − e±iφ2

(P+)3/2

e
√

8π3y2

q2⊥
1 − y2

,

V
(±)
ia∓ (P − q

1
− q

2
, P − q

2
) = − e±iφ2

(P+)3/2

e
√

8π3y2

q1⊥e
±i(φ1−φ2) + q2⊥
1 − y1 − y2

,

U+
ia±(P − q

1
− q

2
, P − q

2
) = 0,

U−
ia±(P − q

1
− q

2
, P − q

2
) = ± e±iφ2

(P+)5/2

e
√

8π3y2

ma(q1⊥e
±i(φ1−φ2) + q2⊥) −miq2⊥

(1 − y2)(1 − y1 − y2)
,

U
(±)
ia±(P − q

1
− q

2
, P − q

2
) = 0,

U
(±)
ia∓(P − q

1
− q

2
, P − q

2
) = ∓ 1

(P+)3/2

e
√

8π3y2

mi(1 − y2) −ma(1 − y1 − y2)

(1 − y2)(1 − y1 − y2)
.

The angular dependence of the wave functions is determined by the sum of Jz contri-

butions for each Fock state. For example, in the case of C
(+)+
ij− , the photon is created

by a†j(+) = 1√
2
(a†j1− ia†j2), which contributes Jz = −1 to the state, and the constituent

electron contributes Jz = −1
2
; therefore, to have a total Jz of +1

2
, the wave function

must contribute Jz = 2, which corresponds to a factor of e2iφ. For the full set of

Jz = +1
2

wave functions, we find
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C++
ij+(q) =

√
P+C++

ij+(y, q⊥), C−+
ij+(q) =

1

P+3/2
C−+

ij+(y, q⊥), (6.3)

C
(±)+
ij+ (q) =

e±iφ

√
P+

C
(±)+
ij+ (y, q⊥),

C++
ij−(q) =

√
P+eiφC++

ij−(y, q⊥), C−+
ij−(q) =

eiφ

P+3/2
C−+

ij−(y, q⊥), (6.4)

C
(+)+
ij− (q) =

e2iφ

√
P+

C
(+)+
ij− (y, q⊥), C

(−)+
ij− (q) =

1√
P+

C
(−)+
ij− (y, q⊥).

The factors of total light-cone momentum P+ are introduced to cancel corresponding

factors in subsequent expressions. The energy denominator of the three-body wave

function can be written as

M2 − m2
i + (~q1⊥ + ~q2⊥)2

(1 − y1 − y2)
−
µ2

j + q2
1⊥

y1

− µ2
l + q2

2⊥
y2

(6.5)

= M2 − m2
i + q2

1⊥ + q2
2⊥ + 2q1⊥q2⊥ cos(φ1 − φ2)

(1 − y1 − y2)
−
µ2

j + q2
1⊥

y1

− µ2
l + q2

2⊥
y2

.

The light-cone volume element dq′ becomes 1
2
P+dy′dφ′dq′2⊥. All the angular depen-

dence can then be gathered into integrals of the form

In =

∫ 2π

0

dφ′

2π

ein(φ−φ′)

Dajb(q1⊥, q2⊥) + F (q1⊥, q2⊥) cos(φ− φ′)
, (6.6)

with |n| = 0, 1, 2, 3 and Dajb and F defined in (5.11). The integral equations for the

two-body wave functions then take the form

[

M2 − m2
i + q2

⊥
1 − y

−
µ2

j + q2
⊥

y

]

Cµ±
ijs (y, q⊥) =

α

2π

∑

i′

Iiji′(y, q⊥)

1 − y
Cµ±

i′js(y, q⊥) (6.7)

+
α

2π

∑

i′j′s′ν

εν
∫ 1

0

dy′dq′2⊥J
(0)µν
ijs,i′j′s′(y, q⊥; y′, q′⊥)Cν±

i′j′s′(y
′, q′⊥)

+
α

2π

∑

i′j′s′ν

εν
∫ 1−y

0

dy′dq′2⊥J
(2)µν
ijs,i′j′s′(y, q⊥; y′, q′⊥)Cν±

i′j′s′(y
′, q′⊥).
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There is a total of 48 coupled equations, with i = 0, 1; j = 0, 1, 2; s = ± 1
2
; and

µ = ±, (±). A diagrammatic representation is given in Fig. 6.1.

×

×

+ +

+

= M
2

2

Figure 6.1. Diagrammatic representation of Eq. (6.7) of the text. The conventions

for the diagrams are the same as in Fig. 3.1.

The first term on the right-hand side of (6.7) is the self-energy contribution, al-

ready discussed in Chap. 5. The kernels J (0) and J (2) in the second and third terms

correspond to interactions with zero or two photons in intermediate states. The

zero-photon kernel factorizes as

J
(0)µν
ijs,i′j′s′(y, q⊥; y′, q′⊥) =

∑

a

V
(0)µ
ijas (y, q⊥)

(−1)a

M2 −m2
a

V
(0)ν∗
i′j′as′(y

′, q′⊥), (6.8)

with

V
(0)+
ija+ =

√

ξj
1√
y
, V

(0)−
ija+ =

√

ξj
mima

(1 − y)
√
y
, V

(0)(+)
ija+ = 0, V

(0)(−)
ija+ =

√

ξj
q⊥

(1 − y)
√
y
,

(6.9)
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and

V
(0)+
ija− = 0, V

(0)−
ija− =

√

ξj
maq⊥

(1 − y)
√
y
, V

(0)(+)
ija− = 0, V

(0)(−)
ija− =

√

ξj
ma(1 − y) −mi

(1 − y)
√
y

.

(6.10)

The two-photon kernels are considerably more involved and are therefore listed in

Appendix H. The angular integrals In are worked out in detail in Appendix I.

6.2. Fermion Flavor Mixing

The presence of the flavor changing self-energies leads naturally to a fermion flavor

mixing of the two-body wave functions. The integral equations for these functions

have the structure

A0jC
µ±
0js −BjC

µ±
1js = − α

2π
Jµ±

0js , (6.11)

BjC
µ±
0js + A1jC

µ±
1js = − α

2π
Jµ±

1js ,

where Aij and Bj are defined in (5.6) and (5.7), and Jµ±
ijs is given by

Jµ±
ijs =

∑

i′j′s′ν

εν
∫ 1

0

dy′dq′2⊥J
(0)µν
ijs,i′j′s′(y, q⊥; y′, q′⊥)Cν±

i′j′s′(y
′, q′⊥) (6.12)

+
∑

i′j′s′ν

εν
∫ 1−y

0

dy′dq′2⊥J
(2)µν
ijs,i′j′s′(y, q⊥; y′, q′⊥)Cν±

i′j′s′(y
′, q′⊥).

The structure of (6.11) is similar to that of (5.8); however, in the case of (6.11),

the one-body amplitudes have been eliminated from the right-hand side and all the

two-photon terms have been kept.
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The wave functions that diagonalize the left-hand side of (6.11), and mix the

physical (i = 0) and PV (i = 1) fermion flavors, are

f̃µ±
ijs = AijC

µ±
ijs + (−1)iBjC

µ±
1−i,js. (6.13)

In terms of these functions, the eigenvalue problem (6.11) can be written as

Jµ±
ijs [f̃ ] = −2π

α
f̃µ±

ijs . (6.14)

Here Jµ±
ijs , the contribution of the zero-photon and two-photon kernels, is implicitly

a functional of these new wave functions. The factors of α that appear in Aij and

Bj are assigned the physical value and not treated as eigenvalues. The original wave

functions are recovered as

Cµ±
ijs =

A1−i,jsf̃
µ±
ijs + (−1)iBj f̃

µ±
1−i,js

A0jA1j +B2
j

. (6.15)

As in Chap. 5, self-energy contributions appear in the denominators of the wave

functions.

To express the eigenvalue problem explicitly in terms of the f̃µ±
ijs , we first write

the definition (6.12) of Jµ±
ijs in a simpler form

Jµ±
ijs =

∫

dy′dq′2⊥
∑

i′j′s′ν

(−1)i′+j′ενJµν
ijs,i′j′s′(y, q⊥; y′, q′⊥)Cν±

i′j′s′(y
′, q′⊥), (6.16)

where Jµν
ijs,i′j′s′ = J

(0)µν
ijs,i′j′s′ + J

(2)µν
ijs,i′j′s′ . Substitution of (6.15) then yields, in matrix

form,





Jµ±
0js

Jµ±
1js



 =

∫

dy′dq′2⊥
∑

j′s′ν

(−1)j′εν





Jµν
0js,0j′s′ Jµν

0js,1j′s′

Jµν
1js,0j′s′ Jµν

1js,1j′s′



 (6.17)

×





A1j′ Bj′

Bj′ −A0j′









f̃ ν±
0j′s′

f̃ ν±
1j′s′
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The sum over ν can also be written in matrix form for the helicity components

ν = ±, (±) by the introduction of

λ =



















0 −1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1



















, (6.18)

so that
∑

ν

ενJµν f̃ ν± =
∑

α,β

Jµαλαβ f̃
β±. (6.19)

Finally, we define

ηj′,αβ = (−1)j′λαβ





A1j′ Bj′

Bj′ −A0j′



 (6.20)

as a tensor product of simpler matrices. The eigenvalue problem then becomes

∫

dy′dq′2⊥
∑

i′j′s′αβi′′

Jµα
ijs,i′j′s′(y, q⊥; y′, q′⊥)ηj′,αβ,i′i′′ f̃

β±
i′′j′s′ = −2π

α
f̃µ±

ijs . (6.21)

Once again, this yields α as a function of m0 and the PV masses. We then find

m0 such that, for chosen values of the PV masses, α takes the standard physical value

e2/4π. The eigenproblem solution also yields the functions f̃µ±
ijs which determine the

wave functions Cµ±
ijs . From these wave functions we can compute physical quantities

as expectation values with respect to the projection (3.2) of the eigenstate onto the

physical subspace.

6.3. Solution of the Eigenvalue Problem

Before presenting the results for the two-photon truncation in Sec. 6.3.3, we dis-

cuss the numerical methods used and the convergence properties of the calculations.

Additional detail for the numerical methods can be found in the Appendices.
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6.3.1. Numerical Methods

The integral equations (6.21) for the wave functions of the electron require numer-

ical techniques for their solution. They are converted to a matrix eigenvalue problem

by a discrete approximation to the integrals, as discussed in Appendix D. These ap-

proximations involve variable transformations and Gauss–Legendre quadrature; the

transformations are done to minimize the number of quadrature points required, in

order to keep the matrix problem from becoming too large, and to reduce the infinite

transverse momentum range to a finite interval. The resolution of the numerical ap-

proximation is measured by two parameters, K and N⊥, that control the number of

quadrature points in the longitudinal and transverse directions.

The integrals for the normalization and anomalous moment, (3.8) and (3.10) re-

spectively, are also done numerically, but are summed over different quadrature points.

These points take into account the different shape of the integrand that comes from

the square of the wave functions. The values of the wave functions at these other

points are found by cubic-spline interpolation, described in Appendix G. Regions

of integration near the line of poles associated with the energy denominator require

special treatment, if the poles exist, through quadrature formulas that take the poles

into account explicitly.

The matrix eigenvalue problem is solved for the lowest physical state via the Lanc-

zos diagonalization algorithm [9, 10]. The matrix is too large for standard methods;

it is typically of order 80,000×80,000 and not sparse, requiring approximately 55 gi-

gabytes of storage for the matrix alone and 95 gigabytes total for the computer code.

The Lanczos algorithm is an iterative method, summarized in Appendix F, that uses

only matrix multiplication and dot products to generate a tridiagonal approximation

to the original matrix. After a sufficient number of Lanczos iterations, the extreme

eigenvalues of the tridiagonal matrix are good approximations to those of the original
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matrix; the associated eigenvectors can also be constructed. The usual Lanczos algo-

rithm does require a Hermitian matrix, which is not available here due to the negative

metric of the PV fields. However, the Lanczos algorithm developed for PV-regulated

Yukawa theory [4] can be generalized to the present case.

The renormalization requires finding the value of the bare mass that corresponds

to the physical value of the coupling. This defines a nonlinear equation for the bare

mass, which is solved with use of the Müller algorithm [51]. Finding the poles in the

two-body wave function also requires solution of nonlinear equations, and again the

Müller algorithm is used. The algorithm is described in Appendix E.

The calculation of the anomalous moment requires computation of a transverse

derivative of the wave functions. Because the quadrature points used for integra-

tion are not uniformly spaced, they are not convenient for estimating the derivative

directly. Instead, the wave functions are first approximated by cubic splines; the

derivatives are then obtained from the splines, as discussed in Appendix G. For the

largest matrices considered by the Lanczos method, the total time required, for a cal-

culation of the anomalous moment at a fixed set of PV mass values, is four to eight

cpu-days on a Sun Fire X4600; most of this time is spent on the Lanczos iterations,

which are a part of finding the value of the bare mass m0 that yields the physical

value for α.

The computing facilities immediately available limit the Lanczos-based calcula-

tion to resolutions no more than K = 26 and N⊥ = 20. At such resolutions, the

Lanczos approach was found to be unstable with respect to extraction of the desired

eigenstate from among states with negative norm. This is at least partly due to the

small magnitude of the two-photon contribution relative to the numerical error in

the discrete representation of the integral equations. The successful Yukawa-theory

calculations [8] were done at stronger coupling, where the two-boson contribution was
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not so small.

To isolate the two-photon contributions, we treat them explicitly, but still non-

perturbatively, as corrections to the one-photon truncation with self-energy, solved in

the previous chapter. We solve the coupled system

(M2 −m2
a)za/z0 =

√

α

2

∑

i′j′s′αβi′′

∫

dy′dq′2⊥V
(0)α∗
i′j′as′ηj′,αβ,i′i′′ f̃

β±
i′′j′s′/z0, (6.22)

f̃µ±
ijs /z0 = −

√

α

2π2

∑

a

(−1)aV
(0)µ
ijas za/z0 (6.23)

− α

2π

∫

dy′dq′2⊥
∑

i′j′s′αβi′′

J
(2)µα
ijs,i′j′s′ηj′,αβ,i′i′′ f̃

β±
i′′j′s′/z0,

which can be obtained from (6.1) and (6.21), with use of the factorization (6.8) for

J (0) and the connection (6.15) between the original and flavor-mixed two-body wave

functions.

The solution is obtained by iteration. When the index a in (6.22) is equal to zero,

we obtain an equation for m0,

m0 = +

√

√

√

√M2 −
√

α

2

∑

i′j′s′αβi′′

∫

dy′dq′2⊥V
(0)α∗
i′j′0s′ηj′,αβ,i′i′′ f̃

β±
i′′j′s′/z0, (6.24)

and when a is equal to 1, we obtain an equation for z1,

z1/z0 =
1

M2 −m2
1

√

α

2

∑

i′j′s′αβi′′

∫

dy′dq′2⊥V
(0)α∗
i′j′1s′ηj′,αβ,i′i′′ f̃

β±
i′′j′s′/z0. (6.25)

These provide the updates ofm0 and z1/z0, and (6.23) is solved by Jacobi iteration [51]

of the linear system that comes from the discretization of the rearrangement

f̃µ±
ijs /z0 +

α

2π

∫

dy′dq′2⊥
∑

i′j′s′αβi′′

J
(2)µα
ijs,i′j′s′ηj′,αβ,i′i′′ f̃

β±
i′′j′s′/z0 (6.26)

= −
√

α

2π2

∑

a

(−1)aV
(0)µ
ijas za/z0.
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Only a few Jacobi iterations are performed per update of m0 and z1/z0; further inner

iteration is unnecessary, due to the subsequent changes in m0 and z1/z0. The outer

iterations of the full system of equations is terminated when the changes in m0, z1/z0,

and the two-body wave function are all of order 10−6 or less. The bare amplitude z0

is obtained at the end by normalization. The coupling α is held fixed at the physical

value; hence, this iterative method yields not only the two-body wave functions and

one-body amplitudes but also the bare mass, m0. The anomalous moment can then

be calculated as before.

The number of wave-function updates is small enough that the matrix represent-

ing the discretization of the integral equations can be computed at each iteration

without making the time for calculation too large. Thus, the matrix need not be

stored, which allows much larger resolutions. We find that reasonable results are

not obtained until the longitudinal resolution K is at least 50 and that there is still

considerable sensitivity to the longitudinal resolution. There is much less sensitivity

to the transverse resolution, for which N⊥ = 20 is found sufficient. The dependence

on longitudinal resolution is discussed at the end of the next subsection.

6.3.2. Numerical Convergence

The primary constraint on numerical accuracy is the error in the estimation of the

integrals in the integral equations for the wave functions and in the expressions for the

normalization and the anomalous moment. This accuracy is determined by the choice

of quadrature scheme, discussed in Appendix D, and the resolution, controlled by the

longitudinal parameter K and transverse parameter N⊥. The other numerical parts of

the calculation, the Lanczos diagonalization and the solution of nonlinear equations,

are iterated to what is effectively exact convergence, with remaining uncertainties

much smaller than the errors in the numerical quadratures.
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Table 6.1. Dependence on longitudinal resolution K of the integrals Ī0, Ī1, and

J̄ , defined in (4.8) and (4.9) of the text and computed according to the quadrature

scheme described in Appendix D. The bare-electron mass is m0 = 0.98me. The PV

masses are m1 = 2 · 104me, µ1 = 200me, and µ2 =
√

2µ1. The transverse resolution

is N⊥ = 40.

K Ī0(m
2
e) Ī1(m

2
e)/me J̄(m2

e)/m2
e

5 -7.113 -13.530 -11606.

10 -6.2586 -10.6182 932.3

15 -6.2641 -10.7354 -26.487

20 -6.2645 -10.7327 -6.7126

25 -6.2645 -10.7328 -6.3982

30 -6.2645 -10.7328 -6.4401

exact -6.2645 -10.7328 -6.2645

For the one-photon truncation, discussed in Chap. 4, all the integrals can be

done analytically. This makes the one-photon problem a convenient first test for

numerical convergence. The key integrals are Ī0, Ī1, and J̄ , defined in (4.8) and (4.9).

Tables 6.1 and 6.2 and Figs. 6.2 and 6.3 summarize results for numerical calculation

of these integrals. They show that Ī0 and Ī1 are well approximated for a wide range

of resolutions, but J̄ is particularly sensitive to the longitudinal resolution K and

requires that both K and N⊥ be on the order of 20 or larger. At these resolutions,

J̄ is approximated with an accuracy of about 4%, and this then becomes a minimal

estimate of the accuracy of any of the results.

As expected, the results for the one-photon truncation, if computed numerically,

converge to better than 1% at the same resolution, of K = 20 and N⊥ = 20, as can

be seen in Tables 6.3 and 6.4 and Figs. 6.4 and 6.5. However, the results with the

self-energy contribution, shown in the same tables and figures, require K ' 25 before

nearing convergence. Although the exact answer is not known in this case, K = 20 is
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Figure 6.2. Dependence on longitudinal resolution K of the integrals I0, I1, and

J , defined in (4.8) and (4.9) of the text and computed according to the quadrature

scheme described in Appendix D. The values plotted are ratios to the exact values,

listed in Table 6.1. The bare-electron mass is m0 = 0.98me. The PV masses are

m1 = 2 · 104me, µ1 = 200me, and µ2 =
√

2µ1. The transverse resolution is N⊥ = 40.

clearly insufficient, but K � 25 yields a reasonable result with an error on the order

of 1%.

The two-photon truncation incorporates numerical approximations to the integrals

Ī0, Ī1, and J̄ through the action of the zero-photon kernel J (0), in Eq. (6.7), and

approximations to the self-energy contribution, also in Eq. (6.7). Thus, the minimum

resolution for the two-photon calculation would appear to be approximately K = 25

and N⊥ = 20. We extrapolate from the one-photon and self-energy calculations to

estimate an error of 5-10% for the two-photon truncation.
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Table 6.2. Same as Table 6.1, but for the dependence on transverse resolution N⊥.

The longitudinal resolution is K = 30.

N⊥ Ī0(m
2
e) Ī1(m

2
e)/me J̄(m2

e)/m2
e

10 -6.2646 -10.7324 -2.9845

15 -6.2645 -10.7327 -7.5428

20 -6.2645 -10.7327 -6.9137

25 -6.2645 -10.7328 -6.6961

30 -6.2645 -10.7328 -6.5712

35 -6.2645 -10.7328 -6.4922

40 -6.2645 -10.7328 -6.4401

exact -6.2645 -10.7328 -6.2645

For the two-photon truncation, there is a significant dependence on longitudinal

resolution at the reasonably attainable resolutions. This is shown in Fig. 6.6 for three

different values of the PV mass µ1. Each case is extrapolated to infinite resolution

in a quadratic fit. A linear fit changes the extrapolation only slightly, relative to the

error estimate of 10%. Values of the bare mass are extrapolated in the same way.
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Figure 6.3. Same as Fig. 6.2, but for the dependence on transverse resolution N⊥.

The longitudinal resolution is K = 30. For these resolutions, the values for Ī0 and Ī1
are nearly exact, and the plotted points for the ratios to the exact values are at the

same places; only J shows variation.
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Table 6.3. Dependence on longitudinal resolution K of the bare mass m0 and anoma-

lous moment ae of the electron in units of the physical mass me and the Schwinger

term (α/2π), respectively, for both the one-photon truncation, when solved numer-

ically, and the case with the self-energy included. The value of the bare mass is

obtained as the value that yields a physical value of the coupling constant α; for

K = 15, two solutions are found. The PV masses are m1 = 2 · 104me, µ1 = 200me,

and µ2 =
√

2µ1. The transverse resolution is N⊥ = 40.

one-photon with self-energy

K m0/me 2πae/α m0/me 2πae/α

5 4.4849 0.09921 4.4845 0.09444

10 1.7445 0.22992 1.7106 0.22620

15 1.07487 0.64482 1.07481 0.59092

15 0.98906 1.12763 0.97537 1.07444

20 0.98223 1.15430 0.99028 0.90337

25 0.98240 1.15382 0.98295 0.99242

30 0.98241 1.15567 0.98245 1.00612

Table 6.4. Same as Table 6.3, but for the dependence on transverse resolution N⊥.

The longitudinal resolution is K = 30.

one-photon with self-energy

N⊥ m0/me 2πae/α m0/me 2πae/α

10 0.98023 1.16121 0.97918 —

15 0.98297 1.15317 0.98307 0.99071

20 0.98268 1.15380 0.98275 0.99776

25 0.98256 1.15484 0.98261 1.00130

30 0.98248 1.15399 0.98253 1.00348

35 0.98244 1.15404 0.98248 1.00501

40 0.98241 1.15567 0.98245 1.00612
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Figure 6.4. Dependence on longitudinal resolution K of the anomalous moment ae

of the electron in units of the the Schwinger term (α/2π) for both the one-photon

truncation, when solved numerically, and the case with the self-energy included. The

PV masses are m1 = 2·104me, µ1 = 200me, and µ2 =
√

2µ1. The transverse resolution

is N⊥ = 40.
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Figure 6.5. Same as Fig. 6.4, but for the dependence on transverse resolution N⊥.

The longitudinal resolution is K = 30.
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Figure 6.6. Dependence on longitudinal resolution K of the anomalous moment ae of

the electron in units of the the Schwinger term (α/2π) for the two-photon truncation.

The PV masses are m1 = 2 · 104me; µ1 = 100me, 200me, and 400me; and µ2 =
√

2µ1.

The transverse resolution is N⊥ = 20.
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6.3.3. Results

A summary of the results is given in Table 6.5 and Fig. 6.7. The variation in

the results for the one-photon truncation plus self-energy contributions gives another

measure of the numerical error and is consistent with an estimate of < 5%. The results

for the two-photon truncation are shown with error bars that reflect a conservative

estimate of a 10% error.

Table 6.5. The bare mass m0 and anomalous moment ae of the electron in units of

the physical mass me and the Schwinger term (α/2π), respectively, as functions of

the PV photon mass, µ1, with the second PV photon mass, µ2, set to
√

2µ1 and the

PV electron mass m1 equal to 2 · 104me. The resolutions used for the two-photon

results are K = 50 to 100, combined with extrapolation to K = ∞, and N⊥ = 20.

one-photon with self-energy two-photon

µ1/me m0/me 2πae/α m0/me 2πae/α m0/me 2πae/α

100 0.98469 1.1437 0.98516 0.996 1.01 0.81±0.08

200 0.98240 1.1536 0.98295 0.992 1.06 0.61±0.06

400 0.98004 1.1625 0.98031 0.997 1.22 0.47±0.05

600 0.97826 1.1687 0.97804 1.010

800 0.97624 1.1745 0.97617 1.007

1000 0.97329 1.1817 0.97282 1.002

The results for the two-photon truncation show a very strong dependence on

the PV photon mass µ1. This is a pattern already seen in Fig. 4.2 for the one-

photon truncation, where a similar decrease occurred until the correct chiral limit

was restored, as discussed in Sec. 4.4.3. In the present case, it is therefore likely

that the correct chiral limit has again been lost. The constraint used in determining

the parameters of the second PV photon flavor was determined only to one-loop

order, with the two-loop and higher contributions being of higher powers in α/2π

and therefore expected to be small. However, estimates of the two-loop contribution,
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Figure 6.7. The anomalous moment of the electron in units of the Schwinger term

(α/2π) plotted versus the PV photon mass, µ1, with the second PV photon mass,

µ2, set to
√

2µ1 and the PV electron mass m1 equal to 2 · 104me. The plot compares

results with and without the two-photon contributions. The resolutions used for the

two-photon results are K = 50 to 100, combined with extrapolation to K = ∞, and

N⊥ = 20.

extracted from the iteration of the coupled system (6.22) and (6.23), show that the

contribution is actually comparable to the one-loop contribution. Thus, for a better

calculation of the anomalous moment, the chiral constraint (4.26) should be modified

to include higher-order contributions. The parameter ξ2 will need to be recalculated

to include two-loop contributions to the shift in the electron mass, such that the shift

will be zero when the bare mass is zero. This will be a numerical calculation because,

unlike the derivation of (4.26), the integrals involved cannot be done analytically.

An alternative is to increase the value of the PV electron mass m1, but this causes
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difficulties for the numerical integrations.

Once the two-loop chiral constraint is implemented, the values calculated for the

anomalous moment in the two-photon truncation may still be shifted away from

the experimental value, in analogy to the 17% shift found in the case of the one-

photon truncation, until self-energy contributions are included. One might expect

the shift in the two-photon case to be small because the two-loop contribution higher

order in α/2π, but again the two-loop contributions may be comparable to the one-

loop contribution. The cure should be the analog of what happened for the one-

photon result, that the two-photon truncation will require a three-photon self-energy

contribution before coming into agreement with experiment.
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Chapter 7

SUMMARY AND CONCLUSIONS

The quantitative results of this work are summarized in Fig. 6.7 and Table 6.5.

The calculated anomalous magnetic moment of the electron is given for the particu-

lar approximations considered, that is, the one-photon truncation, without and with

two-photon self-energy contributions, and the full two-photon truncation. The cal-

culations of each case are described in Chaps. 4, 5, and 6. The two-photon results

should include enough physics to bring the calculated value of the anomalous moment

into agreement with the experimental result to within the numerical errors of the cal-

culation. However, the correct chiral limit has not been maintained, as a consequence

of unexpectedly large two-loop contributions to the bare mass, and the anomalous

moment has developed a strong dependence on the PV masses. The one-photon re-

sults with the two-photon self-energy contributions are in complete agreement with

experiment.

To obtain these results required several new developments, some already pub-

lished [45], as well as incorporation of what was already known from previous work [7,

8]. The new developments include extension of the light-front QED Hamiltonian P−

(2.29) to include a second PV photon flavor; derivation of the helicity form of the light-

front Hamiltonian (2.32) and the associated vertex functions (2.33); a new proof of the

integral identity J̄ = M2Ī0, in Appendix C; construction of the kernels J (0) and J (2) of

the integral equations for the two-body wave functions, in (6.8) and Appendix H; and

evaluation of the angular integrals In (6.6), in Appendix I. The numerical solution

of the eigenvalue problem and the numerical calculation of the anomalous moment
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from the wave functions required new discretizations and quadrature schemes (Ap-

pendix D), particularly those that take into account the simple and double poles in

energy denominators; extension of the Lanczos diagonalization algorithm to a non-

diagonal indefinite metric (Appendix F); a new iterative algorithm, described at the

end of Sec. 6.3.1, to allow higher resolutions; and alternate forms of the two-photon

kernels, to minimize round-off error in their evaluation (Appendix H).

In addition to the progress made with respect to solving a nonperturbative light-

front problem, there was also significant progress in understanding the regularization

method itself in the context of a gauge theory [45]. The restoration of the correct

chiral limit, by including a second PV photon flavor as discussed in Sec. 4.4.3, was

critical to the success of the numerical calculation as well as an important funda-

mental correction to the regularization. The checks of charge renormalization, in

Appendix A, and of the one-loop equivalence with covariant theory, in Appendix B,

provide nontrivial confirmation that the method is consistent.

Despite the progress made, open questions for light-front QED certainly remain.

In the analysis of the dressed-electron state, the extension of the chiral constraint to

include two-loop effects is needed to control the PV mass dependence. More generally,

the inclusion of Fock states with an electron-positron pair would be very interesting;

the renormalization of the electron charge would need to be re-examined, both because

of vacuum polarization contributions and because covariance of the current may be

restored, at least partially. True bound states, such as positronium [52], would also

be interesting as further tests of the method. Of course, in none of these cases

is the nonperturbative analysis likely to produce results competitive with high-order

perturbation theory; the numerical errors are large compared to the tiny perturbative

corrections in a weakly coupled theory such as QED.
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In a strongly coupled theory, such as QCD, the method may be more quantitative.

For QCD, the PV-regulated formulation by Paston et al. [35] could be a starting

point. The analog of the dressed-electron problem does not exist, of course, and

the minimum truncation that would include non-Abelian effects would be to include

at least two gluons. The smallest calculation would then be in the glueball sector.

In the meson sector, the minimum truncation would be a quark-antiquark pair plus

two gluons, which as a four-body problem would require discretization techniques

beyond what are discussed here, since the coupled integral equations for the wave

functions cannot be analytically reduced to a single Fock sector. Instead, one would

discretize the coupled integral equations directly, in analogy with the original method

of DLCQ [14], and diagonalize a very large but very sparse matrix. As an intermediate

step, one can select a less ambitious yet very interesting challenge of modeling the

meson sector with effective interactions, particularly with an interaction to break

chiral symmetry [36].
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Appendix A

CHARGE RENORMALIZATION

That the wave function renormalization constant Z2 is equal to the vertex renor-

malization Z1, order by order in covariant perturbation theory, is a consequence of the

Ward identity [53]. As discussed in [49] and [45], this equality holds true more gener-

ally for nonperturbative bound-state calculations. However, a Fock-space truncation

can have the effect of destroying covariance of the electromagnetic current, so that

some components of the current require renormalization despite the absence of vac-

uum polarization. In the particular case here, only couplings to the plus component

are not renormalized. The lack of fermion-antifermion vertices destroys covariance.

To show that Z1 = Z2 holds for the plus component, we repeat the discussion in

[45]. Define a bare state |ψ〉bare of the electron as a Fock-state expansion in which the

one-electron state has amplitude 1. It is then related to the physical electron state

by

|ψ〉phys =
√

Z2|ψ〉bare. (A.1)

The normalization of the physical state 〈ψ(p′)|ψ(p)〉phys = δ(p′ − p) implies

〈ψ(p′)|ψ(p)〉bare = Z−1
2 δ(p′ − p). (A.2)

Matrix elements of the current Jµ define Z1 by

〈ψ(p)|Jµ(0)|ψ(p)〉bare = Z−1
1 ū(p)γµu(p). (A.3)

For the plus component, this matrix element can also be calculated as [50]

〈ψ(p′)|J+(0)|ψ(p)〉bare = 2p+F1bare(−(p′ − p)2). (A.4)
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Because [46] ū(p)γ+u(p) = 2p+ and F1bare(0) = Z−1
2 , we find that the matrix element

〈ψ(p)|J+(0)|ψ(p)〉bare is equal to both 2p+Z−1
2 and 2p+Z−1

1 , and therefore we have

Z1 = Z2.
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Appendix B

PERTURBATIVE EQUIVALENCE WITH COVARIANT THEORY

As a check, we discuss the comparison [45] of the result for the one-loop electron

self-energy with the standard result from covariant Feynman theory. This is done

indirectly, by first comparing with the infinite-momentum-frame result of Brodsky,

Roskies, and Suaya [49], which they show to be consistent with Feynman theory.

In our formulation, the perturbative one-loop electron self-energy can be read from

Eq. (4.7) for i = 0, with z1 = 0, M 2 = m2
0 + δm2 on the left, and M 2 = m2

0 on the

right. This yields

δm2 = 2e2
[

m2
0Ī0(m

2
0) − 4m0Ī1(m

2
0) + J̄(m2

0)
]

. (B.1)

When δm = δm2/2m0 is written explicitly in terms of α = e2/4π and the integrals

(4.8) and (4.9), we have

δm =
α

4π

∑

jl

(−1)j+l ξl
m0

∫

dy

y

d2k⊥
π

m2
0 −

4m0mj

1−y
+

m2
j+k2

⊥

(1−y)2

m2
0 −

m2
0+k2

⊥

1−y
− µ2

l
+k2

⊥

y

. (B.2)

To compare with [49], where the self-energy is regulated with only one PV photon,

we restrict the sum over l to two terms, l = 0 and l = 1. In this case, the j = 0 term

matches the form of δma in Eq. (3.40) of [49], which we quote here

δma =
e2

16π2m0

∫

d2k⊥

∫

dx

1 − x

[

m2
0(2 − 2x− x2) − k2

⊥
λ2(1 − x) + k2

⊥ +m2
0x

2
(B.3)

− m2
0(2 − 2x− x2) − k2

⊥
Λ2(1 − x) + k2

⊥ +m2
0x

2

]

.
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The j = 0 term of (B.2) takes this form after setting y = 1 − x, µ0 = λ, and µ1 = Λ,

and making some algebraic rearrangements.

Also, the j = 1 term reduces to δmb in Eq. (3.41) of [49] in the limit m1 → ∞.

In general, it is in this limit that the instantaneous fermion contributions return to

the theory, and the source of δmb is just this type of graph. Here we do not take

this limit, and the j = 1 term remains as written and yields a different form for δmb.

However, if Brodsky et al. [49] had used our regularization, they would also obtain

this different form.

Thus, our regularization produces a one-loop self-energy correction which is con-

sistent with [49] when the same regularization is used, namely one PV electron and

two PV photons, since the subtractions of contributions from the PV particles have

exactly the same forms. This, in turn, is consistent with the Feynman result.
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Appendix C

PROOF OF AN INTEGRAL IDENTITY

The integrals Ī0 and J̄ satisfy the identity J̄(M2) = M 2Ī0(M
2). This can be

shown [45] in the following steps.

We write the integrals in terms of their individual Fock-sector contributions as

Ī0 = − 1

16π2

∑

jl

(−1)j+lξlI0jl, (C.1)

J̄ = − 1

16π2

∑

jl

(−1)j+lξlJjl,

with

I0jl ≡
∫

dydk2
⊥

y

1
m2

j+k2
⊥

1−y
+

µ2
l
+k2

⊥

y
−M2

, (C.2)

Jjl ≡
∫

dydk2
⊥

y(1 − y)2

m2
j + k2

⊥
m2

j+k2
⊥

1−y
+

µ2
l
+k2

⊥

y
−M2

.

For the J integral, we replace y with a new variable x defined by

x = (1 − y)
µ2

l + k2
⊥

m2
jy + µ2

l (1 − y) + k2
⊥
. (C.3)

It also ranges between 0 and 1, though in the reverse order, and has the remarkable

property that
m2

j + k2
⊥

1 − y
+
µ2

l + k2
⊥

y
=
m2

j + k2
⊥

1 − x
+
µ2

l + k2
⊥

x
, (C.4)
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even though x and y are clearly not equal and are not even linearly related. With

this change of variable, the J integral becomes

Jjl =

∫

dxdk2
⊥

x

m2
jx+ µ2

l (1 − x) + k2
⊥

x(1 − x)

1
m2

j+k2
⊥

1−x
+

µ2
l
+k2

⊥

x
−M2

. (C.5)

The middle factor can be written as

m2
jx+ µ2

l (1 − x) + k2
⊥

x(1 − x)
=
m2

j + k2
⊥

1 − x
+
µ2

l + k2
⊥

x
−M2 +M2, (C.6)

so that the J integral becomes

Jjl =

∫

dxdk2
⊥

x
+

∫

dxdk2
⊥

x

M2

m2
j+k2

⊥

1−x
+

µ2
l
+k2

⊥

x
−M2

. (C.7)

This result shows that Jjl is just M 2I0jl plus an (infinite) constant. Since the

constant cancels in the sum over PV particles, we have the desired identity of J̄ =

M2Ī0.
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Appendix D

DISCRETIZATIONS AND QUADRATURES

The integral equations involve integration over the longitudinal momentum frac-

tion and the square of the transverse momentum. The normalization, anomalous

moment, and self-energy contributions also require integrals of this form. In each

case there can be a line of poles q2
pole in the integrand for a range of values of the

longitudinal momentum fraction y. The location of the line is determined by the

energy denominator that appears in each integrand. For simple poles, the transverse

momentum integral is defined as the principal value. For those values of longitudinal

momentum y for which the pole exists, the q2
⊥ integration is subdivided into two parts,

one from zero to 2q2
pole and the other from there to infinity. If the pole does not exist,

transverse integration is not subdivided. When self-energy effects are included, the

location of the pole, if it still exists, must be found by solving a nonlinear equation

numerically, as discussed in Appendix E.

For the interval that contains a simple pole, the integral is approximated by an

open Newton–Cotes formula that uses a few equally-spaced points placed symmet-

rically about the pole at q2
i = (2i − 1)q2

pole/N with i = 1, . . . , N and N even. This

particular Newton–Cotes formula uses a rectangular approximation to the integrand,

with the height equal to the integrand value at the midpoint of an interval of width

2q2
pole/N . An integral is then approximated by

∫ 2q2
pole

0

dq2
⊥f(q2

⊥) '
2q2

pole

N

N
∑

i=1

f(q2
i ). (D.1)

The equally spaced points provide an approximation to the principal value.

92



This form avoids use of q2
⊥ = 0 as a quadrature point. Such a choice is important

for evaluating terms with two-photon kernels, where there is another pole associated

with the three-particle energy denominator. By keeping q2
⊥ nonzero, this pole can be

handled analytically as a principal value in the angular integration.

For the infinite intervals, q2
⊥ is mapped to a new variable v by the transformation

q2
⊥ = a2 1 − (b2/a2)

v

(b2/a2)v−1 − 1
, (D.2)

with v in the range 0 to 1. (If the pole exists, this transformation is shifted by 2q2
pole.)

The PV contributions make the integrals finite; therefore, no transverse cutoff is

needed. Only the positive Gauss–Legendre quadrature points of an even order 2N⊥

are used for v between -1 and 1, so that v = 0, and therefore q ′⊥ = 0 (or 2q2
pole), is never

a quadrature point. The points in the negative half of the range, which would be used

for representing q2
⊥ ∈ [−∞, 0], are discarded. One could map q2

⊥ ∈ [0,∞] to [−1, 1]

and not discard any part of the Gauss–Legendre range; however, the quadrature

would then place points focused on some finite q2
⊥ value, rather than on the natural

integrand peak at q2
⊥ = 0. The total number of quadrature points in the transverse

direction is N⊥ +N , with N = 0 when there is no pole and N⊥ typically of order 20.

This transformation was used in [8] and was selected to obtain an exact result for

the integral
∫

[1/(a2 + q2) − 1/(b2 + q2)]dq2. In the present work, the scales a2 and

b2 are chosen to be the smallest and largest scales in the problem, i.e. a2 = |q2
pole|

and b2 = m2
1y + µ2

1(1 − y) −M 2y(1 − y). Here q2
pole is the location of the root of the

nonlinear equation for the pole. If q2
pole is negative, a pole does not exist; however,

|q2
pole| is still a natural scale for the integrand.
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For the normalization and anomalous moment integrals, the transverse quadrature

scheme is based on a different transformation

q2
⊥ = a2 v

1 − v
, (D.3)

where, again, if the pole exists, the transformation is shifted by 2q2
pole. Cubic-spline

interpolation, discussed in Appendix G, is then used to compute the values of the

wave functions at the new quadrature points. This transformation is selected to yield

an exact result for the integral of 1/(a2 + q2)2, which is the form of the dominant

contribution to the normalization and anomalous moment.

The longitudinal integration is subdivided into three parts when the line of poles

is present. Two parts are symmetrically placed about the logarithmic singularity at

ypole that arises where the line of poles reaches q2
⊥ = 0. When self-energy effects are

not included in the energy denominator, this occurs at ypole = 1−m2
0/M

2; when self-

energy effects are present, the location must be found by solving a nonlinear equation.

The third part of the integration covers the remainder of the unit interval. Specifically,

these intervals are [0, ypole], [ypole, 2ypole], and [2ypole, 1]. This structure is designed to

maintain a left-right symmetry around the logarithmic singularity, because in the

normalization and anomalous moment integrals (which use the same longitudinal

quadrature points) the singularity becomes a simple pole defined by a principal-value

prescription. The left-right symmetry then assures the necessary cancellations from

opposite sides of the pole. When no pole is present, the longitudinal integration is

not subdivided.

The intervals are each mapped linearly to ỹ ∈ [0, 1] and then altered by the

transformations [8]

ỹ(t) = t3(1 + dt)/[1 + d− (3 + 4d)t+ (3 + 6d)t2 − 4dt3 + 2dt4] (D.4)

94



and

t(u) = (u+ 1)/2. (D.5)

The new variable u ranges between -1 and 1, and standard Gauss–Legendre quadra-

ture is applied. The transformation from ỹ to t is constructed to concentrate many

points near the end-points of each interval, where integrands are rapidly varying. The

parameter d is chosen such that ỹ ' 0.01t3 for small t. The transformation was found

empirically [8], beginning with a transformation constructed to compute the integral
∫ 1

0
[ln(y+ ε0)− ln(y+ ε1)]dy exactly, with ε0 and ε1 small. The symmetry with respect

to the replacements t→ (1 − t) and ỹ → (1 − ỹ) is not necessary but is the simplest

choice for restricting the coefficients in the denominator of (D.4).

The need for a concentration of longitudinal quadrature points near 0 and 1 is

particularly true for the integral J̄ , defined in (4.9). Although this integral can be

done analytically for the case of the one-photon truncation discussed in Chap. 4, the

integral is only implicit in the integral equations for the two-body wave functions

discussed in Chap. 6 and must therefore be well represented by any discretization of

the integral equations. After the transverse integration is performed, the integrand

is sharply peaked near y = 0 and y = 1, at distances of order m0/m1 ∼ 10−10 from

these end-points, and needs to be sampled on both sides of the peaks.

The number of points in each of the three intervals is denoted by K, which becomes

the measure of the resolution analogous to the harmonic resolution of DLCQ [26].

Thus the total number of quadrature points in the longitudinal direction is 3K, with

K typically of order 20.

For those longitudinal integrals with an upper limit less than 1, the integrand is

transformed as above and given a value of zero for the points beyond the original

integration range.
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For the normalization and anomalous moment integrals, the pole in the transverse

integral (when it exists) is a double pole, defined by the limit [7]

∫

dy dq2
⊥

f(y, q2
⊥)

[m2y + µ2
0(1 − y) −M 2y(1 − y) + q2

⊥]2

≡ lim
ε→0

1

2
ε

∫

dy

∫

dq2
⊥f(y, k2

⊥)

[

1

[m2y + µ2
0(1 − y) −M 2y(1 − y) + q2

⊥ − ε]

− 1

[m2y + µ2
0(1 − y) −M 2y(1 − y) + q2

⊥ + ε]

]

. (D.6)

The simple poles that remain are prescribed as principal values. Of course, the limit

must be taken after the integral is performed.

This limiting process is taken into account numerically by using a quadrature for-

mula that is specific to this double-pole form. On the interval [0, 2q2
pole], the quadra-

ture points are chosen to be the same as those used for the integral equations, which

are q2
i = (2i−1)q2

pole/N with i = 1, . . . , N , as given above. The interval is divided into

N/2 subintervals [ 4m
N
q2
pole,

4(m+1)
N

q2
pole], with m = 0, 1, . . . , (N − 2)/2, each containing

two of the quadrature points. The quadrature formula for such a subinterval is taken

to be

∫
4(m+1)

N
q2
pole

4m
N

q2
pole

dq2
⊥

f(q2
⊥)

(q2
⊥ − q2

pole)
2
' w2m+1f(

(4m+ 1)

N
q2
pole) + w2m+2f(

(4m+ 3)

N
q2
pole),

(D.7)

where the integral on the left is defined by the limit formula in (D.6) when the

pole is in the subinterval. The weights wi are chosen to make the formula exact

for f = 1 and f = q2
⊥ on each individual q2

⊥ subinterval. For these numerator

functions, the limit in (D.6) can be taken explicitly. The weights are then found to

be wN/2 = wN/2+1 = −N/2q2
pole, for the quadrature points on either side of the pole.

For all other points, the weights are given by
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w2m+1 = − N

2q2
pole

[

ln

∣

∣

∣

∣

4m+ 4 −N

4m−N

∣

∣

∣

∣

+
4(N − 4m− 3)

(4m−N)(4m+ 4 −N)

]

, (D.8)

w2m+2 =
N

2q2
pole

[

ln

∣

∣

∣

∣

4m+ 4 −N

4m−N

∣

∣

∣

∣

+
4(N − 4m− 1)

(4m−N)(4m+ 4 −N)

]

.

The integral from 0 to 2q2
pole is obtained by summing over the individual subintervals.

For the self-energy contribution (5.12), which is expressed in terms of the integrals

Ī0, Ī1, and J̄ = M2Ī0 given in (4.8) and (4.9), the transverse integral is done ana-

lytically. Only the longitudinal integral is done numerically, by the scheme discussed

above with resolution K = 30.
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Appendix E

SOLUTION OF NONLINEAR EQUATIONS

The renormalization condition that determines the bare mass m0 is the require-

ment that the eigenvalue of the matrix be consistent with the physical value of α. This

can be stated as a nonlinear equation of the form g(m0) = 0. Of course, calculation of

the function g is quite complicated, since it involves construction of the Hamiltonian

matrix for the given value of m0 and many iterations of the Lanczos algorithm to

determine the eigenvalue. Nevertheless, the process does define a function for which

the root can be sought.

Another nonlinear problem that also requires solution is location of the poles

in the two-body wave function when the self-energy contribution is included. The

corresponding functions g are simpler to compute in this case, but the idea is the

same. The nonlinear problem is formulated as g(x) = 0, and we need to find a root

of g.

The algorithm used for this root finding is the iterative Müller algorithm [51].

The iterations begin with two guesses for the solution, x0 and x1; the root need not

be between them. The function values gi = g(xi) are computed at these points, and

a third guess x2 is computed from the interpolation

x2 = x1 − g1(x1 − x0)/(g1 − g0). (E.1)

With the function value g2 = g(x2) computed also for this guess, the iteration can

begin.

The next guess is computed from a quadratic fit of ax2 + bx+ c to the three most

recent points. The coefficients of the fit are
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a =
(xn−1 − xn)(gn−2 − gn) − (xn−2 − xn)(gn−1 − gn)

(xn−2 − xn−1)(xn−2 − xn)(xn−1 − xn)
, (E.2)

b =
(gn−1 − gn)(xn−2 − xn)2 − (gn−2 − gn)(xn−1 − xn)2

(xn−2 − xn−1)(xn−2 − xn)(xn−1 − xn)
,

c = gn,

and the next guess is given by

xn+1 = xn + ∆x, (E.3)

where

∆x = −2sgn(b)c

|b| +
√
d

(E.4)

and

d = max(b2 − 4ac, 0). (E.5)

The function value gn+1 = g(xn+1) is then computed, to be ready for the next itera-

tion. The iterations are terminated when gn+1 and ∆x are less than chosen tolerances.
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Appendix F

MATRIX DIAGONALIZATION

The quadrature schemes discussed in Appendix D convert the integral equations

into a large matrix eigenvalue problem. Because the original coupled integral equa-

tions have been reduced to the two-particle Fock sector, the matrix is not particu-

larly sparse. However, the size of the matrix makes ordinary diagonalization methods

impractical; there can also be stability issues, as found in recent work on Yukawa

theory [8].

The alternative to more standard methods is an iterative method, such as the

Lanczos algorithm [9, 10], which requires only matrix multiplication rather than ex-

tensive transformation of the matrix. The basic Lanczos algorithm does not apply

here, because the negative metric of the PV fields cause the matrix to be not Hermi-

tian, but a modified form of the algorithm, developed for Yukawa theory [4], can be

extended to the present case.

The matrix is self-adjoint with respect to an indefinite norm [54]. Let η be the

matrix that represents the structure of the norm, so that numerical dot products

are written ~φ ′∗ · η~φ. In [4] η was a diagonal matrix determined by the metric signa-

tures; here it again depends on the metric signatures but also has off-diagonal terms

that take into account the mixing of the longitudinal helicity components and of the

fermion flavors. It is symmetric, real, and block diagonal, with the blocks determined

by the definition of ηj′,αβ in (6.20) and by the quadrature weights associated with

the integrals in (6.21). The matrix H = Jη that defines the discrete form of the

eigenvalue problem (6.21) is constructed to be self-adjoint with respect to this norm:
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η−1H†η = η−1(Jη)†η = η−1ηJη = Jη = H. (F.1)

Given such a self-adjoint matrix, a Lanczos algorithm for its diagonalization is [4]

αj = νj~q
∗
j · ηH~qj , ~rj = H~qj − γj−1~qj−1 − αj~qj , βj = +

√

|~r ∗
j · η~rj| , (F.2)

~qj+1 = ~rj/βj , νj+1 = sgn(~r ∗
j · η~rj) , ν1 = sgn(~q ∗

1 · η~q1) , γj = νj+1νjβj.

The vector ~q1 is the (normalized) initial guess and γ0 is defined to be zero. This

algorithm produces a real tridiagonal matrix

H → T ≡































α1 β1 0 0 0 . . .

γ1 α2 β2 0 0 . . .

0 γ2 α3 β3 0 . . .

0 0 γ3 . . . . .

0 0 0 . . . . .

. . . . . . . .































. (F.3)

It represents H with respect to the basis {~qj} and can be easily diagonalized by

standard means; the Lapack routine DGEEV is used.

This new matrix is self-adjoint with respect to an induced metric ν, which is

a diagonal matrix with elements ν1, ν2, . . .. The extreme eigenvalues are good ap-

proximations to those of H, and the approximate associated eigenvectors of H are

constructed from the right eigenvectors ~ci of T as ~φi =
∑

k(ci)k~qk, with (ci)k the kth

component of ~ci.

Some of the eigenvalues of T can be spurious, due to round-off error. These can be

detected [10] by comparing the eigenvalues of the matrix obtained from T by deleting

the first row and first column. Any eigenvalue that appears in both lists is spurious.
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The desired eigenvalue is chosen from the eigenvalues of T as the largest real

negative eigenvalue that is not spurious. The value of α is proportional to the negative

reciprocal of this eigenvalue and is then the smallest such, so that the eigenstate is

the lowest state associated with this value of the coupling.

Convergence is monitored by measuring directly the convergence of the desired

eigenvalue and by checking an estimate of the error in the eigenvalue, given by [10]

|βn(ci)n|, where n is the number of Lanczos iterations and i is the index of the desired

eigenvalue of T . If the error estimate begins to grow, the iterations are restarted from

the last best approximation to the eigenvector.

The initial vector is chosen to be the solution to the problem with only self-energy

effects included. The Lanczos algorithm is then run twice; once for the eigenvalue

without saving the intermediate vectors and a second time for the eigenvector, accu-

mulating this vector as the iterations proceed. This double iteration approach elim-

inates the need to store the intermediate Lanczos vectors, which saves considerable

space and disk access time.
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Appendix G

INTERPOLATION AND DIFFERENTIATION

The computation of the anomalous moment requires differentiation of the wave

functions with respect to transverse momentum. Since the wave functions are known

only at the discrete quadrature points, the differentiation must be done numerically.

Standard finite difference approximations for the derivative work best with equally

spaced points, which is not the case here. Instead, we use cubic-spline interpola-

tion [51] to obtain a smooth approximation to the wave function, and then differenti-

ate the spline. The spline is also used to interpolate the wave functions themselves, in

order to use quadrature points in the transverse direction for the anomalous moment

calculation that are different from the points used to solve the integral equations.

To optimize the interpolation, the spline is fit to functions obtained from the wave

functions rather than to the wave functions directly. The primary dependence on the

transverse momentum q⊥ is through the standard denominator factor A0jA1j + B2
j ,

with Aij and Bj defined in (5.6) and (5.7). Therefore, we multiply by this factor to

remove this nonpolynomial dependence. In addition, if the wave function is for a Fock-

state component where the constituent fermion has a spin opposite that of the dressed

electron, the wave function is divided by q⊥. This is to remove a factor (qx ± iqy) =

q⊥e
±iφ associated with orbital angular momentum. The remaining functions depend

on q2
⊥ and are readily fit by polynomials in q2

⊥. For the one-photon truncation, the

new functions are independent of q2
⊥; in general, there will be some q2

⊥ dependence,

of order α.
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On the interval [q2
j , q

2
j+1], a cubic spline sj takes the form sj = aj + bj(q

2 − q2
j ) +

cj(q
2 − q2

j )2 + dj(q
2 − q2

j )3. The coefficients are determined by requiring continuity of

the sj and their first two derivatives at the endpoints of the intervals. For the first

and last points we assume that the second derivative is zero. One can then solve for

the coefficients in terms of the values of the approximated function f(q2)

aj = f(q2
j ), (G.1)

bj =
aj+1 − aj

hj

− hj

3
(2cj + cj+1),

dj = (cj+1 − cj)/(3hj),

with hj ≡ q2
j+1 − q2

j and cj determined by a tridiagonal linear system

hj−1cj−1 + 2(hj + hj+1)cj + hjcj+1 =
3

hj

(aj+1 − aj) −
3

hj−l

(aj − aj−1). (G.2)

Here c0 = 0, cn = 0, and j = 1, . . . , n− 1.

The tridiagonal system is efficiently solved by Crout reduction [51], which involves

factorization of the original matrix into a product of lower and upper triangular

matrices. Since the matrix depends only on the spacing of the quadrature points, the

factorization can be done once and then used several times for approximating different

functions; the values of the approximated functions appear only on the right-hand

side of the system.

104



For a matrix of the form






























α1 β1 0 0 0 . . .

γ2 α2 β2 0 0 . . .

0 γ3 α3 β3 0 . . .

0 0 . . . . . .

0 0 0 . . . . .

. . . . . . . .































(G.3)

the factorization is

l1 = α1, ui = βi/li, li+1 = ai+1 − ci+1ui. (G.4)

Write the right-hand side of the linear system as (δ1, δ2, ..., δn−1)T , where the super-

script T denotes the transpose. Then the solution (c1, c2, . . . , cn−1)
T of the system is

obtained from

z1 = δ1/l1; zi = (δi − γizi−1)/li, i = 2, . . . , n− 1 (G.5)

cn−1 = zn−1; ci = zi − uici+1, i = n− 2, . . . , 1.

The derivative of the function f at the point q2
j is then approximated by s′j(q

2
j ) = bj.
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Appendix H

TWO-PHOTON KERNELS

The two-photon contributions to the integral equation (6.7) for the two-particle

wave function are represented by kernels that arise from the elimination of interme-

diate states with two photons. To keep the expressions compact, we write the kernel

functions as

J
(2)µν
ijs,i′j′s′(y, q⊥; y′, q′⊥) = −

∑

a

(−1)i′+j′+a

√

ξjξj′√
yy′

θ(1 − y − y′)J2(µ, ν; s, s′), (H.1)

with the momentum arguments and most indices suppressed. The kernels are then

determined by the following expressions, where the angular integrals In are defined in

Eq. (6.6). As discussed in Appendix I, the integrals In are independent of the sign of

n and only nonnegative values appear here. For some kernels, where there is division

by (1 − y − y′)2, some care is needed in the evaluation, and alternate forms to take

this into account are listed at the end of this Appendix, beginning with Eq. (H.69).

The basic expressions for the kernel functions are

J2(+,+,+
1

2
,+

1

2
) = I0, (H.2)

J2(+,−,+
1

2
,+

1

2
) =

(q2
⊥ +mami)I0 + q⊥q

′
⊥I1

(1 − y)(1 − y − y′)
, (H.3)

J2(+, (+),+
1

2
,+

1

2
) = − q⊥I1

1 − y
, (H.4)

J2(+, (−),+
1

2
,+

1

2
) = −q

′
⊥I0 + q⊥I1

1 − y − y′
, (H.5)
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J2(−,+,+
1

2
,+

1

2
) =

(q′2⊥ +mami′)I0 + q⊥q
′
⊥I1

(1 − y′)(1 − y − y′)
, (H.6)

J2(−,−,+
1

2
,+

1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.7)

×
[

(q2
⊥q

′2
⊥ +m2

amimi′ + q2
⊥mimi′ + q′2⊥mimi′)I0

+(q3
⊥q

′
⊥ + q⊥q

′3
⊥ + q⊥q

′
⊥m

2
a + 2q⊥q

′
⊥mimi′)I1 + q2

⊥q
′2
⊥I2

]

,

J2(−, (+),+
1

2
,+

1

2
) = −(q⊥q

′2
⊥ + q⊥mami′)I1 + q2

⊥q
′
⊥I2

(1 − y′)(1 − y)(1 − y − y′)
, (H.8)

J2(−, (−),+
1

2
,+

1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.9)

×
[

(q2
⊥q

′
⊥y + q′3⊥y − q2

⊥q
′
⊥ − q′3⊥ − q′⊥m

2
a + q′⊥ym

2
a + q′⊥mami − q′⊥ymami

− q′⊥y
′mami − q′⊥mimi′ + q′⊥ymimi′ + q′⊥y

′mimi′)I0

+(2q⊥q
′2
⊥y − 2q⊥q

′2
⊥ − q⊥mimi′ + +q⊥ymimi′ + q⊥y

′mimi′)I1

]

,

J2((+),+,+
1

2
,+

1

2
) = − q′⊥I1

1 − y′
, (H.10)

J2((+),−,+1

2
,+

1

2
) = −(q2

⊥q
′
⊥ + q′⊥mami)I1 + q⊥q

′2
⊥I2

(1 − y′)(1 − y)(1 − y − y′)
, (H.11)

J2((+), (+),+
1

2
,+

1

2
) =

q⊥q
′
⊥I2

(1 − y)(1 − y′)
, (H.12)

J2((+), (−),+
1

2
,+

1

2
) =

q⊥q
′
⊥I0 + q′2⊥I1

(1 − y′)(1 − y − y′)
, (H.13)

107



J2((−),+,+
1

2
,+

1

2
) = −q⊥I0 + q′⊥I1

1 − y − y′
, (H.14)

J2((−),−,+1

2
,+

1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.15)

×
[

(q3
⊥y

′ + q⊥q
′2
⊥y

′ − q3
⊥ − q⊥q

′2
⊥ − q⊥m

2
a + q⊥y

′m2
a + q⊥mami′ − q⊥ymami′

− q⊥y
′mami′ − q⊥mimi′ + q⊥ymimi′ + q⊥y

′mimi′)I0

+(2q2
⊥q

′
⊥y

′ − 2q2
⊥q

′
⊥ − q′⊥mimi′ + q′⊥ymimi′ + q′⊥y

′mimi′)I1

]

,

J2((−), (+),+
1

2
,+

1

2
) =

q⊥q
′
⊥I0 + q2

⊥I1

(1 − y)(1 − y − y′)
, (H.16)

J2((−), (−),+
1

2
,+

1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.17)

× [(q⊥q
′
⊥ − q⊥q

′
⊥y − q⊥q

′
⊥y

′q⊥q
′
⊥yy

′)I0

+(q2
⊥ + q′2⊥ − q2

⊥y − q′2⊥y − q2
⊥y

′ − q′2⊥y
′ + q2

⊥yy
′ + q′2⊥yy

′

+m2
a − ym2

a − y′m2
a + yy′m2

a −mami + ymami + 2y′mami

−yy′mami − y′2mami −mami′ + 2ymami′ − y2mami′ + y′mami′ − yy′mami′

+mimi′ − 2ymimi′ + y2mimi′ − 2y′mimi′ + 2yy′mimi′ + y′2mimi′)I1

+(q⊥q
′
⊥ + q⊥q

′
⊥yy

′ − q⊥q
′
⊥y − q⊥q

′
⊥y

′)I2] ,

J2(+,+,−
1

2
,−1

2
) = I1, (H.18)

J2(+,−,−
1

2
,−1

2
) =

q⊥q
′
⊥I0 + (q2

⊥ +mami)I1

(1 − y)(1 − y − y′)
, (H.19)
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J2(+, (+),−1

2
,−1

2
) = −q

′
⊥I1 + q⊥I2

1 − y − y′
, (H.20)

J2(+, (−),−1

2
,−1

2
) = − q⊥I0

1 − y
, (H.21)

J2(−,+,−
1

2
,−1

2
) =

q⊥q
′
⊥I0 + (q′2⊥ +mami′)I1

(1 − y′)(1 − y − y′)
, (H.22)

J2(−,−,−
1

2
,−1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.23)

×
[

(q3
⊥q

′
⊥ + q⊥q

′3
⊥ + q⊥q

′
⊥m

2
a + q⊥q

′
⊥mimi′)I0

+(2q2
⊥q

′2
⊥ + q2

⊥mimi′ + q′2⊥mimi′ +m2
amimi′)I1

+q⊥q
′
⊥mimi′I2] ,

J2(−, (+),−1

2
,−1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.24)

×
[

(q⊥q
′2
⊥y − q⊥q

′2
⊥)I0

+(q2
⊥q

′
⊥y + q′3⊥y − q2

⊥q
′
⊥ − q′3⊥ − q′⊥m

2
a + q′⊥ym

2
a + q′⊥mami

−q′⊥ymami − q′⊥y
′mami − q′⊥mimi′ + q′⊥y

′mimi′ + q′⊥ymimi′)I1

+(q⊥q
′2
⊥y − q⊥q

′2
⊥ + q⊥ymimi′ + q⊥y

′mimi′ − q⊥mimi′)I2

]

,

J2(−, (−),−1

2
,−1

2
) = −(q⊥q

′2
⊥ + q⊥mami′)I0 + q2

⊥q
′
⊥I1

(1 − y′)(1 − y)(1 − y − y′)
, (H.25)

J2((+),+,−1

2
,−1

2
) = −q⊥I1 + q′⊥I2

1 − y − y′
, (H.26)
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J2((+),−,−1

2
,−1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.27)

×
[

(q2
⊥q

′
⊥y

′ − q2
⊥q

′
⊥)I0

+(q3
⊥y

′ + q⊥q
′2
⊥y

′ − q3
⊥ − q⊥q

′2
⊥ − q⊥m

2
a + q⊥y

′m2
a + q⊥mami′ − q⊥ymami′

−q⊥y′mami′ − q⊥mimi′ + q⊥ymimi′ + q⊥y
′mimi′)I1

+(q2
⊥q

′
⊥y

′ − q2
⊥q

′
⊥ − q′⊥mimi′ + q′⊥ymimi′ + q′⊥y

′mimi′)I2

]

,

J2((+), (+),−1

2
,−1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.28)

× [(q⊥q
′
⊥ − q⊥q

′
⊥y − q⊥q

′
⊥y

′ + q⊥q
′
⊥yy

′)I1

+(q2
⊥ + q′2⊥ − q2

⊥y − q′2⊥y − q2
⊥y

′ − q′2⊥y
′ + q2

⊥yy
′ + q′2⊥yy

′

+m2
a − ym2

a − y′m2
a + yy′m2

a −mami + ymami + 2y′mami − yy′mami

−y′2mami −mami′ + 2ymami′ − y2mami′ + y′mami′ − yy′mami′

+mimi′ − 2ymimi′ + y2mimi′ − 2y′mimi′ + 2yy′mimi′ + y′2mimi′)I2

+q⊥q
′
⊥(1 − y)(1 − y′)I3] ,

J2((+), (−),−1

2
,−1

2
) =

q2
⊥I0 + q⊥q

′
⊥I1

(1 − y)(1 − y − y′)
, (H.29)

J2((−),+,−1

2
,−1

2
) = − q′⊥I0

1 − y′
, (H.30)

J2((−),−,−1

2
,−1

2
) = −(q2

⊥q
′
⊥ + q′⊥mami)I0 + q⊥q

′2
⊥I1

(1 − y′)(1 − y)(1 − y − y′)
, (H.31)
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J2((−), (+),−1

2
,−1

2
) =

q′2⊥I0 + q⊥q
′
⊥I1

(1 − y′)(1 − y − y′)
, (H.32)

J2((−), (−),−1

2
,−1

2
) =

q⊥q
′
⊥I1

(1 − y)(1 − y′)
, (H.33)

J2(+,+,+
1

2
,−1

2
) = 0, (H.34)

J2(+,−,+
1

2
,−1

2
) =

q′⊥miI0 + (q⊥mi − q⊥ma)I1

(1 − y)(1 − y − y′)
, (H.35)

J2(+, (+),+
1

2
,−1

2
) = 0, (H.36)

J2(+, (−),+
1

2
,−1

2
) = −(−ma + yma +mi − ymi − y′mi)I0

(1 − y)(1 − y − y′)
, (H.37)

J2(−,+,+
1

2
,−1

2
) =

(q′⊥ma − q′⊥mi′)I0 − q⊥mi′I1

(1 − y′)(1 − y − y′)
, (H.38)

J2(−,−,+
1

2
,−1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.39)

×
[

(q2
⊥q

′
⊥mi + q′3⊥mi + q′⊥m

2
ami − q2

⊥q
′
⊥mi′)I0

+(2q⊥q
′2
⊥mi − q3

⊥mi′ − q⊥q
′2
⊥mi′ − q⊥m

2
ami′)I1

−q2
⊥q

′
⊥I2mi′

]

,

J2(−, (+),+
1

2
,−1

2
) = −(q⊥q

′
⊥ma − q⊥q

′
⊥mi′)I1 − q2

⊥mi′I2

(1 − y′)(1 − y)(1 − y − y′)
, (H.40)
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J2(−, (−),+
1

2
,−1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.41)

×
[

(q′2⊥ymi − (q′2⊥mi) + q′2⊥y
′mi + q2

⊥mi′ + q′2⊥mi′ − q2
⊥ymi′ − q′2⊥ymi′

+m2
ami′ − ym2

ami′ −mamimi′ + ymamimi′ + y′mamimi′)I0

+(q⊥q
′
⊥ymi − q⊥q

′
⊥mi + q⊥q

′
⊥y

′mi + 2q⊥q
′
⊥mi′ − 2q⊥q

′
⊥ymi′)I1] ,

J2((+),+,+
1

2
,−1

2
) =

(−ma + y′ma +mi′ − ymi′ − y′mi′)I1

(1 − y′)(1 − y − y′)
, (H.42)

J2((+),−,+1

2
,−1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.43)

× [(q⊥q
′
⊥y

′mi − q⊥q
′
⊥mi)I0

+(q2
⊥y

′mi + q′2⊥y
′mi − q2

⊥mi − q′2⊥mi −m2
ami + y′m2

ami + q2
⊥mi′ − q2

⊥ymi′

−q2
⊥y

′mi′ +mamimi′ − ymamimi′ − y′mamimi′)I1

+(q⊥q
′
⊥y

′mi − q⊥q
′
⊥mi + q⊥q

′
⊥mi′ − q⊥q

′
⊥ymi′ − q⊥q

′
⊥y

′mi′)I2] ,

J2((+), (+),+
1

2
,−1

2
) = −q⊥(−ma + y′ma +mi′ − ymi′ − y′mi′)I2

(1 − y)(1 − y′)(1 − y − y′)
, (H.44)

J2((+), (−),+
1

2
,−1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)]−1 (H.45)

× [(q⊥y
′mi − q⊥mi + q⊥mi′ − q⊥ymi′)I0

+(q′⊥y
′mi − q′⊥mi + q′⊥mi′ − q′⊥ymi′)I1] ,

J2((−),+,+
1

2
,−1

2
) = 0, (H.46)
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J2((−),−,+1

2
,−1

2
) = −(q⊥q

′
⊥mi − q⊥q

′
⊥ma)I0 + q′2⊥miI1

(1 − y′)(1 − y)(1 − y − y′)
, (H.47)

J2((−), (+),+
1

2
,−1

2
) = 0, (H.48)

J2((−), (−),+
1

2
,−1

2
) = −q

′
⊥(ma − yma −mi + ymi + y′mi)I1

(1 − y)(1 − y′)(1 − y − y′)
, (H.49)

J2(+,+,−
1

2
,+

1

2
) = 0, (H.50)

J2(+,−,−
1

2
,+

1

2
) =

(q⊥ma − q⊥mi)I0 − q′⊥miI1

(1 − y)(1 − y − y′)
, (H.51)

J2(+, (+),−1

2
,+

1

2
) =

(−ma + yma +mi − ymi − y′mi)I1

(1 − y)(1 − y − y′)
, (H.52)

J2(+, (−),−1

2
,+

1

2
) = 0, (H.53)

J2(−,+,−
1

2
,+

1

2
) =

q⊥mi′I0 + (q′⊥mi′ − q′⊥ma)I1

(1 − y′)(1 − y − y′)
, (H.54)

J2(−,−,−
1

2
,+

1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.55)

×
[

(q3
⊥mi′ + q⊥q

′2
⊥mi′ − q⊥q

′2
⊥mi + q⊥m

2
ami′)I0

+(2q2
⊥q

′
⊥mi′ − q2

⊥q
′
⊥mi − q′3⊥mi − q′⊥m

2
ami)I1

−q⊥q′2⊥miI2

]

,
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J2(−, (+),−1

2
,+

1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.56)

× [(q⊥q
′
⊥ymi′ − q⊥q

′
⊥mi′)I0

+(q′2⊥mi + −q′2⊥ymi − q′2⊥y
′mi − q2

⊥mi′ − q′2⊥mi′ + q2
⊥ymi′ + q′2⊥ymi′

−m2
ami′ + ym2

ami′ +mamimi′ − ymamimi′ − y′mamimi′)I1

+(q⊥q
′
⊥mi − q⊥q

′
⊥ymi − q⊥q

′
⊥y

′mi − q⊥q
′
⊥mi′ + q⊥q

′
⊥ymi′)I2] ,

J2(−, (−),−1

2
,+

1

2
) = −(q⊥q

′
⊥mi′ − q⊥q

′
⊥ma)I0 + q2

⊥mi′I1

(1 − y′)(1 − y)(1 − y − y′)
, (H.57)

J2((+),+,−1

2
,+

1

2
) = 0, (H.58)

J2((+),−,−1

2
,+

1

2
) = −(q⊥q

′
⊥ma − q⊥q

′
⊥mi)I1 − q′2⊥miI2

(1 − y′)(1 − y)(1 − y − y′)
, (H.59)

J2((+), (+),−1

2
,+

1

2
) =

(q′⊥(ma − yma −mi + ymi + y′mi)I2

(1 − y)(1 − y′)(1 − y − y′))
, (H.60)

J2((+), (−),−1

2
,+

1

2
) = 0, (H.61)

J2((−),+,−1

2
,+

1

2
) =

(ma − y′ma −mi′ + ymi′ + y′mi′)I0

(1 − y′)(1 − y − y′)
, (H.62)

J2((−),−,−1

2
,+

1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)2]−1 (H.63)

×
[

(q2
⊥mi + q′2⊥mi − q2

⊥y
′mi − q′2⊥y

′mi +m2
ami − y′m2

ami − q2
⊥mi′

+q2
⊥ymi′ + q2

⊥y
′mi′ −mamimi′ + ymamimi′ + y′mamimi′)I0

+(2q⊥q
′
⊥mi − 2q⊥q

′
⊥y

′mi − q⊥q
′
⊥mi′ + q⊥q

′
⊥ymi′ + q⊥q

′
⊥y

′mi′)I1] ,
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J2((−), (+),−1

2
,+

1

2
) = −[(1 − y)(1 − y′)(1 − y − y′)]−1 (H.64)

× [(q′⊥mi − q′⊥y
′mi − q′⊥mi′ + q′⊥ymi′)I0

+(q⊥mi − q⊥y
′mi − q⊥mi′ + q⊥ymi′)I1] ,

J2((−), (−),−1

2
,+

1

2
) =

q⊥(−ma + y′ma +mi′ − ymi′ − y′mi′)I1

(1 − y)(1 − y′)(1 − y − y′))
. (H.65)

Most matrix elements contain division by one or two powers of 1−y−y ′; however,

all are finite in the limit that 1 − y − y′ becomes zero. The first power is cancelled

by a factor of 1 − y − y′ that is implicit in all In, through the dependence on F

and Dajb, defined in Eq. (5.11). The second power can also be cancelled by a suitable

rearrangement of the numerators, and this becomes necessary when (1−y−y ′) is very

small, as can happen for y near 0 and y′ near 1 or vice-versa, and there can be large

round-off errors in the evaluation of such matrix elements. Alternate expressions,

where the extra divisor of (1 − y − y′) is cancelled explicitly, then need to be used.

These are obtained by using the recursion relation (I.4) for the integrals to reduce all

terms to include only I0, writing D ≡ Dajb and F as

D = (m2
a + q2

⊥ + q′2⊥)/(1 − y − y′) +D′, F = 2q⊥q
′
⊥/(1 − y − y′), (H.66)

with

D′ =
µ2

j + q2
⊥

y
+
µ2

b + q′2⊥
y′

−M2, (H.67)

and, where necessary, defining a new function of momenta, J0, related to the angular

integral I0 by

I0 =
1

D

[

1 +
F 2

2D2
J0

]

. (H.68)

This yields
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J2(−,−,+
1

2
,+

1

2
) = [2(1 − y)(1 − y′)(1 − y − y′)]−1 (H.69)

×
[

−2mi′mi +m2
a + q2

⊥ + q′2⊥ +D′(1 − y − y′)
]

D′I0,

J2(−, (−),+
1

2
,+

1

2
) = [(1 − y − y′)3D3(1 − y)(1 − y′)]−1 (H.70)

×
[

D′m4
aq

′
⊥ −mi′mim

4
aq

′
⊥ +mim

5
aq

′
⊥ + 2D′m2

aq
2
⊥q

′
⊥ − 2mi′mim

2
aq

2
⊥q

′
⊥

+J0mi′mim
2
aq

2
⊥q

′
⊥ + 2mim

3
aq

2
⊥q

′
⊥ +D′q4

⊥q
′
⊥ −mi′miq

4
⊥q

′
⊥

+J0mi′miq
4
⊥q

′
⊥ +mimaq

4
⊥q

′
⊥ + 2D′m2

aq
′3
⊥ − 2mi′mim

2
aq

′3
⊥

+2mim
3
aq

′3
⊥ + 2D′q2

⊥q
′3
⊥ + 2D′J0q

2
⊥q

′3
⊥ − 2mi′miq

2
⊥q

′3
⊥

−J0mi′miq
2
⊥q

′3
⊥ + 2mimaq

2
⊥q

′3
⊥ + 2J0mimaq

2
⊥q

′3
⊥ +D′q′5⊥ −mi′miq

′5
⊥

+mimaq
′5
⊥ + 2D′2m2

aq
′
⊥(1 − y − y′) − 2D′mi′mim

2
aq

′
⊥(1 − y − y′)

+2D′mim
3
aq

′
⊥(1 − y − y′) + 2D′2q2

⊥q
′
⊥(1 − y − y′)

−2D′mi′miq
2
⊥q

′
⊥(1 − y − y′) +D′J0mi′miq

2
⊥q

′
⊥(1 − y − y′)

+2D′mimaq
2
⊥q

′
⊥(1 − y − y′) + 2D′2q′3⊥(1 − y − y′)

−2D′mi′miq
′3
⊥(1 − y − y′) + 2D′mimaq

′3
⊥(1 − y − y′)

+D′3q′⊥(1 − y − y′)2 −D′2mi′miq
′
⊥(1 − y − y′)2

+D′2mimaq
′
⊥(1 − y − y′)2 −D′m4

aq
′
⊥y − 2D′m2

aq
2
⊥q

′
⊥y −D′q4

⊥q
′
⊥y

−2D′m2
aq

′3
⊥y − 2D′q2

⊥q
′3
⊥y − 2D′J0q

2
⊥q

′3
⊥y −D′q′5⊥y − 2D′2m2

aq
′
⊥(1 − y − y′)y

−2D′2q2
⊥q

′
⊥(1 − y − y′)y − 2D′2q′3⊥(1 − y − y′)y −D′3q′⊥(1 − y − y′)2y

]

,
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J2((−),−,+1

2
,+

1

2
) = [(1 − y − y′)3D3(1 − y)(1 − y′)]−1 (H.71)

×
[

D′m4
aq⊥ −mi′mim

4
aq⊥ +mi′m

5
aq⊥ + 2D′m2

aq
3
⊥ − 2mi′mim

2
aq

3
⊥

+2mi′m
3
aq

3
⊥ +D′q5

⊥ −mi′miq
5
⊥ +mi′maq

5
⊥

+2D′m2
aq⊥q

′2
⊥ − 2mi′mim

2
aq⊥q

′2
⊥ + J0mi′mim

2
aq⊥q

′2
⊥ + 2mi′m

3
aq⊥q

′2
⊥

+2D′q3
⊥q

′2
⊥ + 2D′J0q

3
⊥q

′2
⊥ − 2mi′miq

3
⊥q

′2
⊥ − J0mi′miq

3
⊥q

′2
⊥

+2mi′maq
3
⊥q

′2
⊥ + 2J0mi′maq

3
⊥q

′2
⊥ +D′q⊥q

′4
⊥ −mi′miq⊥q

′4
⊥ + J0mi′miq⊥q

′4
⊥

+mi′maq⊥q
′4
⊥ + 2D′2m2

aq⊥(1 − y − y′)

−2D′mi′mim
2
aq⊥(1 − y − y′) + 2D′mi′m

3
aq⊥(1 − y − y′)

+2D′2q3
⊥(1 − y − y′) − 2D′mi′miq

3
⊥(1 − y − y′)

+2D′mi′maq
3
⊥(1 − y − y′) + 2D′2q⊥q

′2
⊥(1 − y − y′)

−2D′mi′miq⊥q
′2
⊥(1 − y − y′) +D′J0mi′miq⊥q

′2
⊥(1 − y − y′)

+2D′mi′maq⊥q
′2
⊥(1 − y − y′) +D′3q⊥(1 − y − y′)2

−D′2mi′miq⊥(1 − y − y′)2 +D′2mi′maq⊥(1 − y − y′)2

−D′m4
aq⊥y

′ − 2D′m2
aq

3
⊥y

′ −D′q5
⊥y

′ − 2D′m2
aq⊥q

′2
⊥y

′ − 2D′q3
⊥q

′2
⊥y

′

−2D′J0q
3
⊥q

′2
⊥y

′ −D′q⊥q
′4
⊥y

′ − 2D′2m2
aq⊥(1 − y − y′)y′

−2D′2q3
⊥(1 − y − y′)y′ − 2D′2q⊥q

′2
⊥(1 − y − y′)y′ −D′3q⊥(1 − y − y′)2y′

]

,

J2((−), (−),+
1

2
,+

1

2
) = [(1 − y − y′)2D2(1 − y)(1 − y′)]−1 (H.72)

× [J0q⊥q
′
⊥(mi′ma +D′(1 − y − y′) −mi′mi(1 − y − y′)

+mima(1 − y − y′) +D′y −mi′may

+mimay −D′(1 − y − y′)y −D′y2)
]

,
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J2(−,−,−
1

2
,−1

2
) = −[(1 − y − y′)3D3(1 − y)(1 − y′)]−1 (H.73)

×
[

D′(−(J0mi′mim
2
aq⊥q

′
⊥ +m4

aq⊥q
′
⊥ − J0mi′miq

3
⊥q

′
⊥ + 2m2

aq
3
⊥q

′
⊥ + q5

⊥q
′
⊥

−J0mi′miq⊥q
′3
⊥ + 2m2

aq⊥q
′3
⊥ + 2q3

⊥q
′3
⊥ + 2J0q

3
⊥q

′3
⊥

+q⊥q
′5
⊥ −D′J0mi′miq⊥q

′
⊥(1 − y − y′) + 2D′m2

aq⊥q
′
⊥(1 − y − y′)

+2D′q3
⊥q

′
⊥(1 − y − y′) + 2D′q⊥q

′3
⊥(1 − y − y′) +D′2q⊥q

′
⊥(1 − y − y′)2

]

,

J2(−, (+),−1

2
,−1

2
) = −[(1 − y − y′)3D3(1 − y)(1 − y′)]−1 (H.74)

×
[

q⊥(−(mi′mim
4
a) + J0mi′mim

4
a − 2mi′mim

2
aq

2
⊥ + 2J0mi′mim

2
aq

2
⊥

−mi′miq
4
⊥ + J0mi′miq

4
⊥ +D′J0m

2
aq

′2
⊥ − 2mi′mim

2
aq

′2
⊥

+ + J0mi′mim
2
aq

′2
⊥ + J0mim

3
aq

′2
⊥D

′J0q
2
⊥q

′2
⊥ − 2mi′miq

2
⊥q

′2
⊥

+ − J0mi′miq
2
⊥q

′2
⊥ + J0mimaq

2
⊥q

′2
⊥ +D′J0q

′4
⊥ −mi′miq

′4
⊥

+J0mimaq
′4
⊥ − 2D′mi′mim

2
a(1 − y − y′) + 2D′J0mi′mim

2
a(1 − y − y′)

−2D′mi′miq
2
⊥(1 − y − y′) + 2D′J0mi′miq

2
⊥(1 − y − y′)

+D′2J0q
′2
⊥(1 − y − y′) − 2D′mi′miq

′2
⊥(1 − y − y′)

+D′J0mi′miq
′2
⊥(1 − y − y′) +D′J0mimaq

′2
⊥(1 − y − y′)

−D′2mi′mi(1 − y − y′)2 +D′2J0mi′mi(1 − y − y′)2

−D′J0m
2
aq

′2
⊥y −D′J0q

2
⊥q

′2
⊥y −D′J0q

′4
⊥y −D′2J0q

′2
⊥(1 − y − y′)y

]

,
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J2((+),−,−1

2
,−1

2
) = −[(1 − y − y′)3D3(1 − y)(1 − y′)]−1 (H.75)

×
[

q′⊥(−(mi′mim
4
a) + J0mi′mim

4
a − 2mi′mim

2
aq

2
⊥ + J0mi′mim

2
aq

2
⊥

+J0mi′m
3
aq

2
⊥ −mi′miq

4
⊥ + J0mi′maq

4
⊥ − 2mi′mim

2
aq

′2
⊥

+2J0mi′mim
2
aq

′2
⊥ − 2mi′miq

2
⊥q

′2
⊥ − J0mi′miq

2
⊥q

′2
⊥ + J0mi′maq

2
⊥q

′2
⊥

−mi′miq
′4
⊥ + J0mi′miq

′4
⊥ − 2D′mi′mim

2
a(1 − y − y′)

+2D′J0mi′mim
2
a(1 − y − y′) − 2D′mi′miq

2
⊥(1 − y − y′)

+D′J0mi′miq
2
⊥(1 − y − y′) +D′J0mi′maq

2
⊥(1 − y − y′)

+D′J0m
2
aq

2
⊥(1 − y − y′) +D′J0q

4
⊥(1 − y − y′)

−2D′mi′miq
′2
⊥(1 − y − y′) + 2D′J0mi′miq

′2
⊥(1 − y − y′)

+D′J0q
2
⊥q

′2
⊥(1 − y − y′) −D′2mi′mi(1 − y − y′)2

+D′2J0mi′mi(1 − y − y′)2 +D′2J0q
2
⊥(1 − y − y′)2 +D′J0m

2
aq

2
⊥y

+D′J0q
4
⊥y +D′J0q

2
⊥q

′2
⊥y +D′2J0q

2
⊥(1 − y − y′)y

]

,

J2((+), (+),−1

2
,−1

2
) = −[(1 − y − y′)3D3(1 − y)(1 − y′)]−1 (H.76)

×
[

(−m4
a + J0m

4
a − 2m2

aq
2
⊥ + 2J0m

2
aq

2
⊥ − q4

⊥ + J0q
4
⊥ − 2m2

aq
′2
⊥

+2J0m
2
aq

′2
⊥ − 2q2

⊥q
′2
⊥ − q′4⊥ + J0q

′4
⊥ − 2D′m2

a(1 − y − y′)

+2D′J0m
2
a(1 − y − y′) − 2D′q2

⊥(1 − y − y′) + 2D′J0q
2
⊥(1 − y − y′)

−2D′q′2⊥(1 − y − y′) + 2D′J0q
′2
⊥(1 − y − y′) −D′2(1 − y − y′)2

+D′2J0(1 − y − y′)2)(mi′ma +D′(1 − y − y′) −mi′mi(1 − y − y′)

+mima(1 − y − y′) +D′y −mi′may

+mimay −D′(1 − y − y′)y −D′y2
]

,
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J2(−,−,+
1

2
,−1

2
) = [(1 − y − y′)3D3(1 − y)(1 − y′)]−1 (H.77)

×
[

−(D′mim
4
aq

′
⊥ −D′J0mi′m

2
aq

2
⊥q

′
⊥ − 2D′mim

2
aq

2
⊥q

′
⊥ −D′J0mi′q

4
⊥q

′
⊥

−D′miq
4
⊥q

′
⊥ − 2D′mim

2
aq

′3
⊥ −D′J0mi′q

2
⊥q

′3
⊥ − 2D′miq

2
⊥q

′3
⊥

−2D′J0miq
2
⊥q

′3
⊥ −D′miq

′5
⊥ − 2D′2mim

2
aq

′
⊥(1 − y − y′)

−D′2J0mi′q
2
⊥q

′
⊥(1 − y − y′) − 2D′2miq

2
⊥q

′
⊥(1 − y − y′)

−2D′2miq
′3
⊥(1 − y − y′) −D′3miq

′
⊥(1 − y − y′)2

]

,

J2(−, (−),+
1

2
,−1

2
) = [2(1 − y)(1 − y′)(1 − y − y′)]−1 (H.78)

×
[

−2D′mi′ − 2mi′mima +mim
2
a +miq

2
⊥ −miq

′2
⊥

+D′mi(1 − y − y′) + 2D′mi′y] I0,
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J2((+),−,+1

2
,−1

2
) = −[(1 − y − y′)3D3(1 − y)(1 − y′)]−1 (H.79)

×
[

(q⊥q
′
⊥(J0mi′mim

3
a +mi′m

4
a − J0mi′m

4
a + J0mi′mimaq

2
⊥

+2mi′m
2
aq

2
⊥ − J0mi′m

2
aq

2
⊥ +mi′q

4
⊥ + J0mi′mimaq

′2
⊥

+2mi′m
2
aq

′2
⊥ − 2J0mi′m

2
aq

′2
⊥ + 2mi′q

2
⊥q

′2
⊥ + J0mi′q

2
⊥q

′2
⊥

+mi′q
′4
⊥ − J0mi′q

′4
⊥ +D′J0mi′mima(1 − y − y′)

+2D′mi′m
2
a(1 − y − y′) − 2D′J0mi′m

2
a(1 − y − y′)

+D′J0mim
2
a(1 − y − y′) + 2D′mi′q

2
⊥(1 − y − y′)

−D′J0mi′q
2
⊥(1 − y − y′) +D′J0miq

2
⊥(1 − y − y′)

+2D′mi′q
′2
⊥(1 − y − y′) − 2D′J0mi′q

′2
⊥(1 − y − y′)

+D′J0miq
′2
⊥(1 − y − y′) +D′2mi′(1 − y − y′)2

−D′2J0mi′(1 − y − y′)2 +D′2J0mi(1 − y − y′)2

+D′J0mim
2
ay +D′J0miq

2
⊥y

+D′J0miq
′2
⊥y +D′2J0mi(1 − y − y′)y)

]

,

J2(−,−,−
1

2
,+

1

2
) = −[(1 − y − y′)3D3(1 − y)(1 − y′)]−1 (H.80)

×
[

−D′mi′m
4
aq⊥ − 2D′mi′m

2
aq

3
⊥ −D′mi′q

5
⊥ − 2D′mi′m

2
aq⊥q

′2
⊥

−D′J0mim
2
aq⊥q

′2
⊥ − 2D′mi′q

3
⊥q

′2
⊥ − 2D′J0mi′q

3
⊥q

′2
⊥ −D′J0miq

3
⊥q

′2
⊥

−D′mi′q⊥q
′4
⊥ −D′J0miq⊥q

′4
⊥ − 2D′2mi′m

2
aq⊥(1 − y − y′)

−2D′2mi′q
3
⊥(1 − y − y′) − 2D′2mi′q⊥q

′2
⊥(1 − y − y′)

−D′2J0miq⊥q
′2
⊥(1 − y − y′) −D′3mi′q⊥(1 − y − y′)2

]

,
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J2(−, (+),−1

2
,+

1

2
) = −[(1 − y − y′)3D3(1 − y)(1 − y′)]−1 (H.81)

×
[

q⊥q
′
⊥(−D′J0mi′m

2
a − J0mi′mim

3
a −mim

4
a + J0mim

4
a

−D′J0mi′q
2
⊥ − J0mi′mimaq

2
⊥ − 2mim

2
aq

2
⊥ + 2J0mim

2
aq

2
⊥

−miq
4
⊥ + J0miq

4
⊥ −D′J0mi′q

′2
⊥ − J0mi′mimaq

′2
⊥

−2mim
2
aq

′2
⊥ + J0mim

2
aq

′2
⊥ − 2miq

2
⊥q

′2
⊥ − J0miq

2
⊥q

′2
⊥

−miq
′4
⊥ −D′2J0mi′(1 − y − y′) −D′J0mi′mima(1 − y − y′)

−2D′mim
2
a(1 − y − y′) + 2D′J0mim

2
a(1 − y − y′)

−2D′miq
2
⊥(1 − y − y′) + 2D′J0miq

2
⊥(1 − y − y′)

−2D′miq
′2
⊥(1 − y − y′) +D′J0miq

′2
⊥(1 − y − y′)

−D′2mi(1 − y − y′)2 +D′2J0mi(1 − y − y′)2

+D′J0mi′m
2
ay +D′J0mi′q

2
⊥y

+D′J0mi′q
′2
⊥y +D′2J0mi′(1 − y − y′)y)

]

,

J2((−),−,−1

2
,+

1

2
) = −[2(1 − y)(1 − y′)(1 − y − y′)]−1 (H.82)

×
[

2mi′mima −mi′m
2
a +mi′q

2
⊥ −mi′q

′2
⊥ −D′mi′(1 − y − y′)

+2D′mi(1 − y − y′) + 2D′miy] I0.

The remaining divisors of 1 − y − y′ are cancelled by factors contained within D and

I0.
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Appendix I

ANGULAR INTEGRALS

Calculation of the two-photon kernels requires the integrals

In =

∫ 2π

0

dφ

2π

e−inφ

D + F cosφ
, (I.1)

first defined in Eq. (6.6). Here the original integration variable φ′ has been shifted

by the independent angle φ and the prime then dropped for simplicity of notation in

this Appendix. The factor F is always positive, but D can be negative. If the bare

fermion mass m0 is less than the physical mass me, we can have |D| < F ; in this

case, In is defined by a principal value, as in the one-photon sector. If either photon

has zero transverse momentum, F will be zero, and any pole due to a zero in D will

not involve the angular integration. The numerical quadrature is chosen to never use

grid points where a photon transverse momentum is zero, so that the principal-value

prescription can always be invoked for the angular integral, where it is easily handled

analytically.

The imaginary part of In is zero. This follows from the even parity of the denom-

inator and the odd parity of sinnφ. As a consequence, I−n = In, and we evaluate

(I.1) for only nonnegative n.

The real part is nonzero and most easily calculated from combinations of the

related integrals

Īn =

∫ 2π

0

dφ

2π

cosn φ

D + F cosφ
. (I.2)

Of course, for n = 0 and 1, the two integrals are identical. For n = 2 and 3 we

have cos 2φ = 2 cos2 φ − 1 and cos 3φ = 4 cos3 φ − 3 cosφ. Therefore, the integral
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combinations are

I0 = Ī0, I1 = Ī1, I2 = 2Ī2 − Ī0, I3 = 4Ī3 − 3Ī1. (I.3)

Larger values of n do not appear in the two-photon kernels.

The integrals Īn are connected by a simple recursion for n > 0:

Īn =

∫ 2π

0

dφ

2π

cosn−1 φ

F

(D + F cosφ−D)

D + F cosφ
=

1

F

∫ 2π

0

dφ

2π
cosn−1 φ− D

F
Īn−1. (I.4)

The first term is zero when n is even. For n = 1, it is 1/F , and for n = 3, this term

is 1/2F . The only other integral that must be evaluated directly is Ī0 = I0.

The determination of I0, with or without the presence of poles, is conveniently

done by contour integration around the unit circle in terms of a complex variable

z = eiφ. We then have

I0 =
1

iπF

∮

dz

z2 + 2D
F
z + 1

=
1

iπF

∮

dz

(z − z+)(z − z−)
. (I.5)

There are simple poles at

z± = −D
F

±
√

D2

F 2
− 1 = −D

F
± i

√

1 − D2

F 2
= −e∓i cos−1(D/F ) (I.6)

When D is greater than F , one pole, z+, is inside the contour and the other outside,

as illustrated in Fig. I.1. Evaluation of 2πi times the residue yields

I0 =
1√

D2 − F 2
for D > F. (I.7)

Similarly, when D is less than −F , the pole at z− is inside the contour, and we have

I0 = − 1√
D2 − F 2

for D < −F. (I.8)

When |D| is less than F , the poles move to the contour, and the integral is defined by

the principal value. This is evaluated by distorting the contour to include semicircles
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6

s

s

s s

y

x

Figure I.1. Integration contour for evaluation of I0. The locations of the poles at

z± depend upon the magnitude and sign of D/F . The semicircles are used when

|D|/F < 1 and the poles are on the contour.

of radius ε around each pole, as shown in Fig. I.1, and subtracting the contributions

from the semicircles after taking the ε → 0 limit. The choice of inward semicircles

makes the integral around the closed contour simply zero. For the semicircle around

z±, we have z = z± + εeiθ and a contribution, as ε goes to zero, of

2

iF

∫

εieiθdθ

εeiθ(εeiθ ∓ 2i
√

1 −D2/F 2)
−→ ±

∫

dθ

F
√

1 −D2/F 2
. (I.9)

Thus the contributions from the two semicircles are of opposite sign and cancel, so

that the net result is also zero. Therefore, we have

I0 =



















1√
D2−F 2 , D > F

0, |D| < F

− 1√
D2−F 2 , D < −F.

(I.10)
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The case where D equals F represents an integrable singularity for the transverse

momentum integrations and can be ignored. When F is zero, we have simply

In =

∫ 2π

0

dφ

2πD
e−inφ =

1

D
δn0. (I.11)

When F/D is small, the expressions for the integrals In are best evaluated from

expansions in powers of F/D, to avoid round-off errors due to cancellations between

large contributions. The expansions used are

I0 ' 1

128D

[

128 + 64

(

F

D

)2

+ 48

(

F

D

)4

+ 40

(

F

D

)6

+ 35

(

F

D

)8
]

, (I.12)

I1 ' − 1

128D

(

F

D

)

[

64 + 48

(

F

D

)2

+ 40

(

F

D

)4

+ 35

(

F

D

)6
]

, (I.13)

I2 ' 1

128D

(

F

D

)2
[

32 + 32

(

F

D

)2

+ 30

(

F

D

)4
]

, (I.14)

I3 ' − 1

128D

(

F

D

)3
[

16 + 20

(

F

D

)2
]

. (I.15)
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