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Abstract 

The Versatile Link project is developing a general purpose physical layer optical link with high bandwidth, 

radiation resistance and magnetic-field tolerance that meets the requirements of LHC upgrade experiments. This 

paper presents recent work on system specifications, front-end transceiver prototypes, passive components studies 

and commercial back-end transceiver evaluations.  

System optical power budgets are specified for single mode (1310nm) and multi-mode (850nm) links, with a 

target data rate of 4.8 Gbps and a transmission length of 150 meters. Noise and interference penalties are simulated 

using the 10GbE link model and verified by bit error ratio measurement on reference links. The power margin is 

particularly constrained by radiation degradation of the front-end receivers. We report the power budgets for all link 

variants where at least 1.8 dB safety margins are maintained. The Versatile Transceiver (VTRx) - the front-end 

module to be installed on-detector - is based on a commercial small form pluggable (SFP+) package, modified to 

optimize size and mass, assembled to host a qualified laser, PIN photodiode, custom-designed radiation tolerant laser 

driver and receiving amplifier. A set of VTRxs with validated components have been prototyped and compliance 

tested. We also present the radiation test results on front-end components and passive components. The total fluence 

tests for lasers and PINs have been carried out with pions and neutrons up to 4 x 1015/cm2. SEU tests have been 

performed on PIN photodiodes and the full receiver optical subassembly. Radiation induced absorption in a number 

of single mode and multi-mode fibers, at -25°C and up to 500 kGy, have been measured and high performance 

candidates identified. Commercial off-of-the-shelf parts have been examined for use as back-end transceivers. 

Compliance tests on SFP+, 4x4 parallel optical engines and SNAP 12 transmitter/receivers have been completed. 
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1. Introduction 

1.1. Overview of optical links in high energy physics (HEP) experiments 

Optical links are widely proposed in the design of data acquisition systems (DAQ) for the next 

generation of HEP experiments.  Huge amount of data generated by detectors are to be transferred from 

the front-end electronics to the remote processing stations. The read-out link design is a common task 

although faces various requirements set by the different experiments. 

While copper still offer design and integration flexibility at the short interconnect level, extended links 

at intermediate range and above are largely replaced by fiber optics, which offer higher bandwidth over 

greater distances.  The benefits of fiber links also include high electromagnetic field resistance, lower 

power consumption and lightweight cabling. Another important advantage of fiber links is the removal of 

grounding issues [1].  

Nowadays, the modularized electrical to optical converters commonly known as electro-optical 

transceivers are ubiquitously implemented for storage network (i.e. Fiber Channel) and data 

communication (i.e., Ethernet) applications with excellent cost and performance ratio. A portfolio of 

products varying by application, form factor, light source, operating wavelength and fiber type etc. are 

readily available.  For comparison, three types of modules are listed in table 1 by different light sources.  

Vertical cavity surface emitting laser (VCSEL) emitting at 850nm is one of the popular technologies 

due to low cost and low drive current. VCSEL couples well into inexpensive multi-mode fiber (MMF). Its 

modulation bandwidth has improved to beyond 2000 MHz.km over recent years to enable high data rate 

transmission at short distance.  Fabry-Perot (FP) laser and distributed feedback (DFB) laser emitting at 

1310nm or 1550nm are often coupled into single-mode fiber (SMF) and can reach longer distances. 1310 

nm VCSEL offering the promise of both low power consumption and high bandwidth is also an 

interesting option.  

 

Table 1. Types of laser source used in optical links 

 

Source 

type 

Operating   

λ(nm) 

Suitable   

fiber 

Launch  

power 

Detection 

type 

Data rate cost application 

VCSEL 850 

1310 

MMF 

SMF 

-3 dBm GaAs 

InGaAs 

10 Gbps Low LAN, metro 

Premises  

FP 1310 

 

SMF 0 dBm InGaAs 10 Gbps Med LAN, metro 

Access 

DFB 1310 

1550 

SMF 10 dBm InGaAs >10 Gbps High WAN, 

metro, long haul 

 

Optical links have in fact long been deployed in the current generation detector DAQ systems [2-5]. 

For example, 40k channels of 100 MHz analog optical links using single-mode edge emitting lasers are 

installed in the CMS tracker readout; 20k channels of 40 Mbps digital optical links using multi-mode 

VCSELs and arrays are installed in the ATLAS SCT readout while 2k channels of 1.6 Gbps VCSEL links 

are installed in the ATLS LAr readout.  In these systems, especially in the tracker area, the optical link 

components have to operate in high radiation environment. Sufficient radiation hardness of the light 

sources, fibers and PIN diodes up to the full LHC dose and fluence level has been demonstrated. In light 

of the experience gained from these optical link installations, it is realized that establishing common 
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radiation hardness and reliability verification procedures as well as common test benches would help 

avoiding redundant efforts. It is also realized that a compact transmitter/receiver package with both 

standard electrical and optical interfaces would seem to be a preferred solution.  

New experiments or upgrades will impose even more stringent demands on data bandwidth and 

radiation tolerance. For example the proposed LHC upgrade would increase luminosity by factor of 10 to 

10
35

 cm
-2

s
-1

.  Advanced trigger schemes are also proposed which will drive a more than 10 fold increase 

in the need for data bandwidth. While different link systems were independently developed in the past by 

each LHC experiment due to technological limitations by the requirements of the individual applications, 

given the rapid advances of optoelectronics and CMOS technologies, it is now possible to develop a 

general purpose optical link which can cover most transmission applications: a Versatile Link. 

1.2. Versatile Link project overview 

The Versatile Link project [6] aims to provide a multi-gigabit per second optical physical data 

transmission layer for the readout and control of High Luminosity LHC experiments. A point-to-point 

bidirectional system architecture is proposed for which components are currently being assessed and 

developed, as shown in Fig 1. The Versatile Link operates at a nominal data rate of 4.8 Gpbs over at least 

150 meters (the distance between detector and counting room with routing) with bit error ratio of 10
-12 

or 

better.  

 

Fig. 1. The Versatile Link architecture.  

The link components consist of electro-optical transceivers, fiber cables and other passive components 

such as connectors. The Versatile Transceiver (VTRx) is placed on detector, at the front-end. The 

standard transceiver (TRx) is placed off detector, at the back-end. The link supports single-mode (SM) 

operation with a center-wavelength of 1310nm as well as multi-mode (MM) operation with a center-

wavelength of 850nm. The fiber cables are commercial SMF and laser optimized MMF respectively.  The 

link is naturally bi-directional. But matching the number of front-end to back-end (uplink) and back-end 

to front-end (downlink) transmissions is not a requirement. More data will likely be transmitted from 

front-end to back-end. It is therefore possible to have multi-channel transmitters or receivers in the 

system.  
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Depending on the wavelength of operation and direction of data flow, four link variants are shown in 

Fig 2.   Transmission characteristics and device families of each are listed in table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  The Versatile Link variants (GBLD and GBTIA are radiation tolerant ASIC supplied by CERN GBT project)  

 
Table 2. Versatile Link characteristics and device families 

 

Components situated on the detectors at the front-end (VTRx and the first meters of fiber cables) must 

meet the strict requirements imposed by the operational environment for radiation field, lower 

temperature, low mass and volume. The radiation environment is particularly challenging. To balance 

cost and performance, the Versatile Link is developed in two radiation-tolerance classes. Calorimeter 

grade link is qualified to at least 10 kGy (Si) dose and 5 x 10
14

 n/cm
2 

fluence (1MeV neutron equivalent) 

while tracker grade link is qualified to at least 500 kGy and 2 x 10
15

 n/cm
2
. 

2. VTRx development 

The VTRx is the transceiver module that will be placed close to the upgraded SLHC detector elements 

at the front-end.  It is a module that is based closely on a standard SFP+ transceiver in terms of electrical- 

and optical interfaces as well as overall dimensions.  The VTRx does however need to be minimally 

customized for use in the SLHC detector environment: to ensure sufficient radiation tolerance, the chipset 

used in the VTRx has been custom designed as part of the GBT project [7]; the active opto-electronic 

components have been evaluated for their radiation tolerance; and finally the mechanical interface to the 

optical fibre connector has been re-designed to reduce its mass and remove magnetic material.  In 

Link Variants Transmission VTRx Note TRx 

MM_VTx_Rx 
MM 

uplink 
GBLD+850VCSEL 

850nm 

MMF 

 

10GBASE-SR 

40GBASE-SR4 

100GBASE-SR10 

Enhanced SNAP12 

Opto Engine 

MM_Tx_VRx 
MM 

downlink 

GBTIA+GaAs PIN 

GBTIA+InGaAs PIN 

SM_VTx_Rx 
SM 

uplink 

GBLD+1310FP 

GBLD+1310VCSEL 
1310nm 

SMF 

 

10GBASE-LR 

40GBASE-LR4 

Enhanced SNAP12 

Opto Engine SM_Tx_VRx 
SM 

downlink 

GBTIA+InGaAs PIN 

 

 

   

Front-End 

Post- 
Amp 

Laser 

Driver 

GBLD 

PIN/GBTIA 

Laser 
 

   

Post- 

Amp 

Laser 

Driver 
PIN/GBTIA 

   

    

GBLD 

Back-End 

PIN/TIA 

Laser 

Laser 

Laser 

PIN/TIA 

MM_VTx_Rx 

MM_Tx_VRx 

SM_VTx_Rx 

SM_Tx_VRx 
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addition to the customization effort, we have developed the required testing procedures to enable the 

functional testing and validation of the complete VTRx. 

A fully assembled VTRx is shown in Fig. 3(a).  The VTRx does not have the microcontroller that is 

typically present on a commercial SFP+ module.  The user is thus required to set the laser bias and drive 

currents in order to achieve the desired system performance.  Initial versions of the VTRx have been 

prototyped with commercially available laser drivers – the ONET1101L edge-emitter and ONET8501V 

VCSEL drivers – coupled to either a Fabry-Pérot laser diode operating at 1300 nm or a VCSEL operating 

at 850 nm for SM and MM use respectively. 

 

TOSA

ROSA

ONET 1101L

 

 

(a)                                                                                                                   (b) 

Fig. 3 Showing a fully assembled VTRx (left) comprising Transmitter- and Receiver Optical Sub-Assemblies (TOSA and 

ROSA), PCB with laser driver (ONET1101L) and optical connector block.  The attendant optical output eye diagram (right) when 

operating at the GBT line rate of 4.8 Gb/s is also shown.  

 

Fig. 3(b) shows a typical eye diagram of the edge-emitter based VTRx that uses a commercial laser 

driver.  The eye diagram measurement allows us to quantify the performance in terms of both amplitude 

and jitter, which are compared to the specifications that have been derived from the Ethernet and Fibre 

Channel specifications scaled to the target line rate of 4.8 Gb/s.  A standard test suite for both transmitter 

and receiver has been developed to allow these measurements to be made. 

It has long been established that laser diodes subjected to particle irradiation show an increase in 

threshold current and attendant decrease in output slope efficiency [8,9].  However, due to the complexity 

of the semiconductor heterostructures used in modern laser diodes, it is necessary to carry out radiation 

testing in order to assess the damage to a particular candidate device.  Since the situation is similar for 

photodiodes, we have carried out an extensive test programme of both lasers and photodiodes to find 

devices suitable to be used in the VTRx.  We have tested a broad spectrum of devices using both neutron 

and pion beams in order to be confident that the devices will survive the SLHC lifetime fluence levels.  

Single-event effect testing has also been carried out on candidate photodiodes and ROSA assemblies.  

Fig. 4(a) shows the particle-induced drop in responsivity of two representative photodiodes.  The 

observed trend clearly shows that the drop in responsivity must be accounted for in the system power 

budget as it is significant.  Furthermore, it shows that it might – depending upon the target application – 

be advantageous to use InGaAs photodiodes for multimode links operating at 850 nm as this will lead 

overall to a lower power penalty since the damage is less for the InGaAs devices.  Fig. 4(b) shows the Bit 

Error Rate induced by a particle beam in a prototype ROSA built with a commercial InGaAs photodiode 

and the custom-designed receiving amplifier (GBTIA).  The induced error rate is clearly not acceptable 

for system operation, hence the inclusion of a Forward Error Correction (FEC) code in the GBT chipset.  
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Fig. 4(a) also shows the effectiveness of the FEC as the particle-induced errors are fully corrected and the 

BER is below 10
-12

.  Full details of the radiation testing carried out to date can be found in [10]. 
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(a)                                                                                            (b) 

Fig. 4. (a)  The effect of 180 MeV pion and 20 MeV neutron irradiation on the responsivity of InGaAs and GaAs photiodiodes. (b) 

The Bit Error Rate induced by a 60 MeV proton beam with a flux of 2x108 p/cm2/s in the GBTIA-based ROSA.    

3. Fiber and passive components 

Since both 850 nm and 1310 nm operations are accommodated within the Versatile Link project, both 

single-mode (SMF) and multimode (MMF) optical fibers are under investigation. The fiber bandwidth 

should be sufficient for data transfer at a rate of 5-10 Gbps over lengths of up to 150 m. This mandates a 

migration from legacy step-index MMF to graded index fibers. The radiation hardness of these fibers 

(both OM3 and OM4 standards) needs to be confirmed.  

Radiation Induced Absorption (RIA) of optical fiber is highly dependent on the dose rate and 

temperature of the environment. Given an equal integrated dose, fibers suffer greater RIA when that dose 

is delivered at a higher rate. They also suffer a greater RIA at lower temperatures compared to higher 

temperatures. Since many detector locations are actively cooled, radiation tests on fiber RIA need to be 

done with cooled fibers. The first tests on multimode fibers at -25 deg. C at 27 kGy(Si)/hr showed mixed 

results where some of the SMF candidates appeared to have acceptable RIA but all of the MMF 

candidates experienced attenuations greater than the dynamic range of the test equipment [11].  In order 

to qualify for deployment, the passive link must suffer less than 1.0 dB of overall RIA for the tracker area 

and 0.1 dB or less for the calorimeter.  

The mechanical integrity of fibers, cables, and connectors is also under investigation. Tensile strength, 

micro-bending, and insertion loss tests are performed pre- and post-irradiation up to 500 kGy(Si). The 

results thus far have shown negligible degradation. Post-radiation fiber bandwidth tests are performed 

with less than 10% degradation which still meets our system requirements.  

4. Standard back-end transceivers 

Back-end transceivers will not be subject to the harsh requirements that must be met by the front-end 

components. As a result these are selected from the best candidates identified from commercial vendors. 

They need to be evaluated to ensure that they meet the overall requirements of the system as they must be 

capable of working successfully with the VTRx discussed above.  Devices investigated include mature 
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single channel transceivers, upcoming array transmitters and receivers, and as per system requirement, 

high optical transmitting power modules in a few particular cases which will be discussed in section 5. 

Fig 6(a) shows the spider chart for evaluated commercial SFP+ modules to be used in single-mode 

calorimeter links. The dotted line indicates the specification for the Versatile Link back-end transceivers, 

which has been met by the majority of tested modules.  

At present a number of preliminary standards (i.e. parallel transceiver) and custom products (i.e. 

optical engine) are emerging in the array product category. For the desirable features of low power and 

high density, a number of devices are sampled with test cards. Fig 6 (b) shows the custom design of a 

carrier board loaded with a 4x4 parallel optical engine. A SNAP12 form factor device is also tested at 

elevated data rate of up to 5 Gbps.  Details of the test procedures and evaluation criteria are discussed in 

[12]. Preliminary measurements of emerging parallel components show favorable performance when 

compared with existing single channel SFP+ components. Further testing is underway to identify 

promising potential components for inclusion in the suite of recommended Versatile Link components. 

 

                   

(a)                                                                                     (b) 

Fig. 6. (a) SFP+ spider chart for single-mode calorimeter variant short list, the dotted line indicates back-end component 

specification values. (b) Test board for the 4-array optical engine. 

5. System integration 

To ensure a link BER below 10
-12

 at the target data rate and length, the optical power budget must be 

carefully planned ahead so that an adequate receiving signal-to-noise ratio is maintained under all 

operation conditions.  Noise and interference penalties are simulated using 10GbE link model which 

renders a maximum penalty of 1.0 dB for multi-mode versatile link and a maximum penalty of 1.5 dB for 

single-mode versatile link. These results are validated by bit error rate measurement on a number of 

surveyed reference links [13]. Radiation degradations of the VTRx and fibers are discussed in section 2 

and 3. Fiber attenuation, connector and splice losses are also accounted for. The available powers are 

mostly constrained by radiation degradation of the VTRx PIN diodes, especially in the tracker area. For 

these links higher transmitter optical powers are required.  In table 3, we report the power budgets for all 

link variants where at least 1.8 dB safety margins are maintained.   

Link jitter allocation and component jitter contribution are derived from Fiber Channel standards at 4.8 

Gbps data rate. The prototyped VTRx samples are tested to be compliant with extra margin. Link 

reliability is qualitatively predicted using vendor data and standard part count method. Pending on 

demonstration test results against targeted environmental stresses, the Versatile Link failure rate is 500 
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FIT (failure per 10
9
 device-hours), which is equivalent to 5% channel failure during 10 years of detector 

operation.  

Table 3. Tracker grade and calorimeter grade link optical power budget 

Tracker grade MM_VTx_Rx MM_Tx_VRx SM_VTx_Rx SM_Tx_VRx 

Min. Tx OMA -5.2 dBm -1.6 dBm -5.2 dBm -3.6 dBm 

Max. Rx sensitivity -11.1 dBm -13.1 dBm -12.6 dBm -15.4 dBm 

Power budget 5.9 dB 11.5 dB 7.4 dB 11.8 dB 

Fiber attenuation 0.6 dB 0.6 dB 0.1 dB 0.1 dB 

Insertion loss 1.5 dB 1.5 dB 2.0 dB 2.0 dB 

Link penalties 1.0 dB 1.0 dB 1.5 dB 1.5 dB 

Tx radiation penalty 0 dB - 0 dB - 

Rx radiation penalty - 5.4  dB - 5.4 dB 

Fiber radiation penalty 1.0 dB 1.0 dB 1.0 dB 1.0 dB 

Margin 1.8 dB 2.0 dB 2.8 dB 1.8 dB 

Calorimeter grade MM_VTx_Rx MM_Tx_VRx SM_VTx_Rx SM_Tx_VRx 

Min. Tx OMA -5.2 dBm -3.2 dBm -5.2 dBm -5.2 dBm 

Max. Rx sensitivity -11.1 dBm -13.1 dBm -12.6 dBm -15.4 dBm 

Power budget 5.9 dB 9.9 dB 7.4 dB 10.2 dB 

Fiber attenuation 0.6 dB 0.6 dB 0.1 dB 0.1 dB 

Insertion loss 1.5 dB 1.5 dB 2.0 dB 2.0 dB 

Link penalties 1.0 dB 1.0 dB 1.5 dB 1.5 dB 

Tx radiation penalty 0 dB - 0 dB - 

Rx radiation penalty - 2.5 dB - 2.5 dB 

Fiber radiation penalty 0.1 dB 0.1 dB 0 dB 0 dB 

Margin 2.7 dB 4.2 dB 3.8 dB 4.1 dB 

6. Conclusions 

Optical links designed for next generation HEP experiments must meet the requirements of high data 

rate and stringent environmental constraints. The Versatile Link project aims to provide a general purpose 

physical link for the LHC upgrades.  It carries out the approach of modification of standard package, 

qualification of commercial lasers, fibers, connectors and photodiodes as well integration of custom 

ASIC.   

Performance compliant, low mass package is successfully validated. Integration of ASICs and optical 

sub-assemblies shows good results. Prototype phase of VTRx development is close to completion. Set of 

irradiation tests on front-end and passive components render lists of qualified components.   Both single 

channel and parallel back-end transceivers are evaluated. System specifications based on simulation and 

testing are produced, which gives us confidence that the system will work on a large scale. System 

demonstrators will soon be available to interested users for sampling. 
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