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In this thesis I apply QCD factorization theorems to two important hadronic
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of massive quarks through neutral current deep inelastic scattering (DIS). I work

out a method to consistently organize the QCD radiative contributions up to O(α3
s)

(N3LO), with a proper inclusion of the heavy quark mass dependence at different

momentum scales. The generic implementation of the mass dependence developed

in this thesis can be used by calculations in both an intermediate-mass factorization

scheme and a general-mass factorization scheme. The mass effect is relevant to the

predictions for Higgs, and W and Z cross sections measured at the LHC. The second

study examines the transverse-momentum distribution of the lepton-pair production

in Drell-yan process. Theory predictions based on the Collins-Soper-Sterman (CSS)
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The main finding is that the nonperturbative component of the CSS resummed cross

section plays a crucial part in explaining the data in the small transverse momentum

region.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Basics of Perturbative QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. QCD Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Renormalization of QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3. The β function and Asymptotic freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4. Quark masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5. The decoupling of heavy flavors and matching of the coupling . . . . . . 14

3. Deep Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1. Kinematics of Deep Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2. The Parton Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3. One-loop correction and the breaking of Bjorken scaling . . . . . . . . . . . . 23

3.4. Factorization in DIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5. Evolution of the PDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. DIS with massive quark production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1. Factorization with massive quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2. Classification of DIS structure functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1. SU(Nf ) Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2. Further classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



4.2.3. Structure functions for various flavor classes . . . . . . . . . . . . . . . . 44

4.2.3.1. FC2, FC02, and FCg
2 classes . . . . . . . . . . . . . . . . . . . . . . 44

4.2.3.2. FC11 and FCg
11 classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.4. Massless limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3. Various terms at three loops and the implementation of mass
dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1. ZM coefficient functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2. Coefficient functions with phase space corrections . . . . . . . . . . . 54

4.3.2.1. Rescaling variable dependence . . . . . . . . . . . . . . . . . . . . . 57

4.3.3. IM coefficient functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.3.1. FC2 class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.3.2. FC02 class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3.3. FC11 class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.3.4. FCg
2 class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.3.5. FCg
11 class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4. Scale dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1. µ and λ dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.2. Q dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5. TMD factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1. Factorization in Drell-Yan process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2. Overview of the resummation method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1. Relation between QT and φ∗η variables . . . . . . . . . . . . . . . . . . . . . . 82

vii



5.2.2. General structure of the resummed cross section . . . . . . . . . . . . 84

5.2.3. Perturbative coefficients for canonical scales . . . . . . . . . . . . . . . . 86

5.2.4. Perturbative coefficients for arbitrary scales . . . . . . . . . . . . . . . . . 89

5.2.5. Nonperturbative resummed contributions . . . . . . . . . . . . . . . . . . 94

5.2.6. Matching the W and Y terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.7. Photon radiative contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.8. Numerical accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.1. General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.2. Detailed analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.2.1. Method I: minimization with fixed scale parameters 107

5.3.2.2. Method II: computation with scale-parameter shifts 109

5.4. Implications for the W mass measurement and LHC . . . . . . . . . . . . . . . 115

5.5. Nonperturbative resummed contributions at low Q . . . . . . . . . . . . . . . . . 119

5.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6. Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

APPENDIX

A. Factorization scale dependent DIS coefficients at N3LO

in ZM approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

viii



LIST OF FIGURES

Figure Page

1.1 equivalent Gaussian variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 W and Z correlation ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Running coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Deep inelastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Bjorken scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 LO and NLO gluon emission diagrams for DIS . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 NLO virtual gluon diagrams for DIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Deep inelastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 ZM and NNF schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Representative three-loop diagrams of the flavor classes (from left to
right): FC2, FC02, FC11, FCg2 , and FCg11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Representative diagrams from FC2 class. (a) T1 (b) T2 (c) T3. . . . . . . . . . . . . . . 58

4.4 Representative diagrams from FC02 class. (a) T1 (b) T2. . . . . . . . . . . . . . . . . . . . 59

4.5 Representative diagrams from FC11 class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Representative diagrams from FCg2 class. (a) T1 (b) T2 (c) T3. . . . . . . . . . . . . . . 61

4.7 Representative diagrams from FCg11 class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Factorization scale dependence of IM and GM schemes up to NNLO (up-
per subfigure) and N3LO (lower subfigure). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 Rescaling variable dependence of IM and GM schemes up to N3LO. . . . . . . . . . 73

4.10 Q dependence of FFN, ZM, IM, and GM schemes up to N3LO. . . . . . . . . . . . . . 73

5.1 Deep inelastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Deep inelastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Dependence of Z boson QT distribution on the scale parameter C2

at O(α2
s) and O(αs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

ix



5.4 The ratios to the central theoretical prediction of the DØ electron
data at |yZ |≤ 1 and alternative theoretical predictions. The cen-
tral prediction is computed assuming C1 = C3 = 2b0, C2 = 1/2,
aZ = 1.1 GeV2, and kinematical correction 1. Theory predic-
tions based on alternative kinematical corrections (0 and 2) and
BLNY nonperturbative parametrization are also shown. . . . . . . . . . . . 101

5.5 Electrons: scale variation due to C1,2,3 at small φ∗η. . . . . . . . . . . . . . . . . . . . . 102

5.6 Same as above but for the muons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7 Dependence on the nonperturbative parameter aZ for electrons with
|yZ |≤ 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.8 χ2/Npt as a function of aZ with fixed C1,2,3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.9 χ2/Npt and scale parameters as a function of aZ for C̄1 = C̄3 =
2 b0, C̄2 = 1/2. The scale parameters are shared across three yZ
bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.10 χ2/Npt as a function of aZ for C̄1 = C̄3 = 2 b0, C̄2 = 1/2. The scale
parameters are independent in each yZ bin. . . . . . . . . . . . . . . . . . . . . . . . . 114

5.11 68% C.L. ranges for aZ in individual yZ bins and in all bins. . . . . . . . . . . . 118

5.12 Data vs. theory ratios for the QT distribution by ATLAS 7 TeV,
35− 40 pb−1 [19] and φ∗η distribution ATLAS 7 TeV, 4.6 fb−1 [20] . . 118

5.13 From [97]: the best-fit form factors bW̃ (b) in (a) Tevatron Run-2 Z
boson production; (b) E605 experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.14 From [159]: different nonperturbative parameterizations for K̃(b, µ)
at Q = 2 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

x



LIST OF TABLES

Table Page

4.1 Properties of various factorization schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Mass dependence of coefficient functions for various Feynman diagrams . . . . . 63

5.1 The best-fit χ2/Npt, central value and 68% C.L. intervals for aZ with
fixed C1,2,3 = {b0, 1/2, b0} (upper lines) and {2b0, 1/2, 2b0}
(lower lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 The best-fit χ2/Npt, central value and 68% C.L. intervals for aZ , and
best-fit C1,2,3 for 1/σλ = 0 (upper rows in each section) and 1
(lower rows). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xi



To my parents

Zhengxue Wang and Wenping Zhang.



Chapter 1

Introduction

The concept of factorization [1] is crucial in today’s applications of quantum chro-

modynamics (QCD) to particle scattering involving hadrons. There are several fun-

damental properties of strong interactions between quarks and gluons (the assumed

constituents of hadrons, often called partons) that necessitate the use of factorization

methods in calculations.

First, QCD is a renormalizable non-Abelian gauge theory with SU(3) color sym-

metry [1–3]. The most prominent difference between QCD and an Abelian gauge the-

ory (quantum electrodynamics or QED) is revealed in their renormalization of charges.

The behavior of the renormalized strong coupling differs from that of electromagnetic

coupling in that the gauge-field self-interaction, which is absent in QED, introduces

an anti-screening effect that weakens the interaction at short distances [1–3]. This

interaction turns out to dominate the evolution of the coupling and results in the

famous property of asymptotic freedom [4,5]. In today’s experiments, the strong cou-

pling at the electroweak scale (e.g. Z boson mass mZ ≈ 90 GeV) is determined to be

αs(mZ) ≈ 0.118 [6], a value small enough for carrying out a perturbative calculation

to account for high order contributions from strong interactions. Thus, such a hard

momentum scale is necessary in all perturbative QCD calculations.

On the other hand, as the momentum scale decreases, the strong coupling becomes

larger and eventually renders any perturbative calculation meaningless. This behav-

ior is consistent with the fact that free quarks or gluons have not been so far observed,

which is known as the ”confinement”. The only strong interaction participants regis-
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tered by detectors are color neutral states (hadrons). The mechanism that transforms

hadrons into quarks and gluons, or that does the inverse, is nonperturbative and is

largely unknown.

Moreover, even at large momentum scale, one has to define carefully the quanti-

ties to which perturbative calculation can reliably apply. In a typical QCD process,

contribution from individual Feynman diagrams generally contains singularities as a

result of long distance interactions. It is already shown (Kinoshita-Lee-Nauenberg

theorem [7, 8]) that part of the singularities cancel for sufficiently inclusive cross

sections. The other part of singularities does not cancel, however, for many impor-

tant processes, these divergences can be absorbed into one or more universal scalar

functions that describe the probability of transformation between hadrons and their

constituent particles. The uncancelled divergence is associated with the collinear ra-

diation of massless particles from a parton inside a hadron. The scalar functions are

referred to as a parton distribution functions (or PDFs, for an initial hadron), or

a fragmentation functions (or FFs, for a final hadron). Factorization theorems are

proved for these processes (see reviews in [1, 9–11]) to ensure that the scalar func-

tions carrying long distance information are process independent and are factorized

out from the short distance interaction. The hard-scattering cross sections can be

computed in perturbation theory order by order, while the nonperturbative hadronic

functions can only be obtained from experiments. Factorization is more difficult to

carry out for processes with more than one momentum scales, especially when the

various scales are well separated. A generic perturbative calculation in this case con-

tains logarithms of the ratio of the separated scales in the form lnn(s1/s2) at each

order, where s1 and s2 are two scales satisfying s1/s2 � 1 or s1/s2 � 1, and n is

some power constrained by the order of the calculation. The appearance of these

log terms can be problematic if they are large enough to ruin the convergence of
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perturbation series. A consistent factorization procedure needs to sum these loga-

rithms to all orders using the renormalization group invariance of the cross sections,

and recover the convergence of the hard scattering processes. Furthermore, various

approximations are to be made as part of the prescription of the factorization to pick

up important contributions and to simplify calculations. It can be a challenging task

to accommodate the prescriptions at different scales.

In this thesis I present two studies that apply QCD factorization theorems in

multiscale processes, where I deal with the complications related with the factorization

in each case. In one application I treat the inclusive cross section of the production

of massive quarks through neutral current deep inelastic scattering (DIS): e− + p→
e− + X(qh). In this study I work out a method to consistently organize the QCD

radiative contributions up to O(α3
s) (N3LO), with a proper inclusion of the heavy

quark mass dependence at different momentum scales. The study is of interest to

the phenomenology of hadronic physics for three reasons. First, it is the first study

of massive quark production in DIS at an accuracy of N3LO. Second, it results in

a generic framework of classifying contributions with various mass dependences at

N3LO, which applies not only for the current numerical calculation, but also for

future implementations when the calculation of the hard scattering process reaches

a new accuracy. Third, the mass dependence from heavy quark flavors not only

manifests itself in DIS, but has shown its importance in global QCD analysis at an

accuracy relevant for the measurements at the Large Hadron Collider (LHC). Fig. 1.1

shows the sensitivity of the experiments in CTEQ14 fits to the Higgs cross section,

where Sn is a quantity defined in [12], which provides a measure of the goodness-of-fit

to each individual experiment. From this figure we see that a prediction for the Higgs

boson production cross section σH , the key electroweak observable at the LHC, is

sensitive to the goodness-of-fit to the charm production (experiment number 147) and
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total inclusive (experiment number 159) DIS measurements at HERA. The mutual

sensitivity is introduced through the shared degrees of freedom in parton distribution

functions, which in turn are affected by the N3LO contributions to heavy-quark hard

scattering in DIS that I am computing. Fig. 1.2 gives the W and Z correlation in

lepton production processes. It shows that allowing intrinsic charm contribution leads

to cross sections that deviate significantly from the tolerance ellipse of the CTEQ6.6

fit. These figures show affirmatively the relevance of charm quark effects in DIS to

predictions for the LHC measurements.
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Figure 1.1. From [13]: The equivalent Gaussian variable Sn versus σH (in pb) at the

LHC for two center-of-mass energies.

In the other study I and my collaborators examine factorization for Drell-Yan

production of lepton pairs at hadron colliders: h1 + h2 → (Z/γ∗ → l1 + l2) + X.

This process shows its two-scale character conspicuously when the distribution of the

transverse momentum QT of the lepton pair is computed at a value QT � Q, where

Q denotes the invariant mass of the lepton pair. At this region perturbation series

receives large corrections from soft emission of gluons. In each order n they are of the
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Figure 1.2. From [14]: W and Z correlation ellipses at the LHC

form αns ln
m(Q2/Q2

T ), with m = 0, 1, ...2n− 1. In addition to factorizing the collinear

singular contributions into parton distribution functions, these large logs must be

summed properly to all orders into a soft factor. Factorization in such a manner is

variously called transverse momentum dependent (TMD) factorization, QT factoriza-

tion, or QT resummation. It was first established by Collins, Soper, and Sterman

(CSS) [1, 15–18]. One subtlety of TMD factorization is that if QT is of a small value

comparable to the intrinsic transverse motion of the partons, long distance interac-

tion becomes important and one has to introduce an additional factor to describe the

nonperturbative transverse dynamics. As with PDFs and FFs, this nonperturbative

contribution can only be parameterized and fitted with data. In this study, we give

a detailed analysis regarding the parameterization of the nonperturbative factor as

well as the effects of several perturbative parameters. Motivated by the new mea-
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surements from the LHC [19, 20] and the TEVATRON [21], we are able to perform

the analysis at an unprecedented level of accuracy and have obtained a conclusive

evidence regarding the significance of the nonperturbative small QT contribution.

The rest of this thesis is organized as follows. In Ch. 2 I summarize the basics of

perturbative QCD as a background for discussions in other chapters. In Ch. 3 I discuss

the kinematics of DIS, give an explicit calculation of a DIS structure function to the

lowest non-trivial order, and thereby introduce the idea of factorization. In Ch. 4 I

treat heavy quark production in inclusive DIS in a particular factorization scheme at

N3LO, and discuss its numerical implications. In Ch. 5 I present an analysis of the

nonperturbative contribution to a QT related distribution for Drell-Yan production of

a lepton pair using TMD factorization, in which theoretical predictions are compared

with new measurements from hadron colliders. Appendix A contains the factorization

scale dependent DIS hard coefficients at N3LO that are used in Ch. 4 to compute the

scale uncertainty of DIS structure functions.

6



Chapter 2

Basics of Perturbative QCD

Quark model was first proposed in early 1960’s to explain the hadron spectra dis-

covered at that time. In this model hadrons are composed of fermions called quarks.

It was not long before people realized that this model needed to be extended to allow

additional degree of freedom for the quarks, otherwise, the newly discovered baryon

states 4++ and Ω− would not exist, since they are made of three quarks of the same

flavor with parallel spins, which are prohibited by Pauli’s exclusion principle. Since

1973, a field theory with the name quantum chromodynamics (QCD) has been devel-

oped to explain interactions of quarks on the basis of the gauge invariance principle.

The hypothesized gauge group was SU(3), which introduces a new quantum number

color to quarks as well as the gauge bosons called gluons. Unlike the photons in quan-

tum electrodynamics (QED), the gluons in QCD are able to interact with themselves

because of the non-abelian nature of the SU(3) color group. This property finally

has lead to the discovery of asymptotic freedom of strong interactions [4, 5]. To give

an introductory account of the basic results in QCD, we start by writing down the

QCD Lagrangian.

2.1. QCD Lagrangian

The QCD Lagrangian is given by

L = Lgauge−invariant + Lgauge−fixing + Lghost, (2.1)
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where the gauge-invariant part has the Yang-Mills [22] form

Lgauge−invariant = ψ̄i(iγ
µ∂µδij − gsγµtaijAaµ −mδij)ψj −

1

4
F b
µνF

b µν . (2.2)

In Eq. (2.2) the sum over quark flavors is implicit, and repeated indices are summed

over. ψi and Aaµ are quark (with mass m) and gluon fields, respectively. γµ are the

Dirac γ-matrices. gs is the strong coupling constant. taij are the generators of the

SU(3) group in its fundamental representation, with i, j running from 1 to N = 3.

This value of N , the number of independent quark colors, is supported by experiment.

The field strength tensor is F a
µν = ∂µA

a
ν − ∂νA

a
µ − gsfabcA

b
µA

c
ν , where fabc are the

structure constants of the SU(3) group defined by the commutator[
ta, tb

]
= ifabct

c. (2.3)

The indices a, b, c are subjected to the transformation in the adjoint representation,

and run from 1 to N2 − 1 = 8. In fact, the matrix (ta)bc ≡ fabc serves as the ath

generator of the adjoint representation.

Lgauge−invariant of the form in Eq. (2.2) is invariant under the local gauge trans-

formations of the SU(3) group:

ψ′i = U(θ(x))ψi, (2.4)

taA′aµ = (i/g)(∂µU(θ(x)))U−1(θ(x)) + U(θ(x))taAaµU
−1(θ(x)), (2.5)

where

U(θ(x)) = e−it
aθa(x). (2.6)

The gauge-fixing term is introduced in order to define a suitable form for the

gluon propagator, which is necessary for the calculation of scattering amplitudes.

One common choice is the Rζ gauge

Lgauge−fixing =
1

2ζ
(∂µAaµ)(∂µAaµ). (2.7)
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There is a freedom of choosing the parameter ζ. For instance, most calculations

of matrix elements are easily performed with Feynman gauge where ζ is set to 1.

However, calculations with Rζ gauge contain contribution from unphysical gluon po-

larization states. The way to overcome this difficulty is to introduce the unobservable

ghost fields ηa residing in

Lghost = −η̄a(∂2δab + gs∂
µfabcA

c
µ)ηb. (2.8)

The ghost contribution to an S-matrix element serves to cancel the effect of unphysical

gluon states. Another useful choice for the gauge-fixing Lagrangian is the axial gauge

Lgauge−fixing =
1

2ζ
(nµAaµ)(nµAaµ), (2.9)

with a constant ζ and a 4-vector n.

2.2. Renormalization of QCD

Just as in many other quantum field theories, a perturbative calculation in QCD

may suffer from ultra-violet divergences produced by loop momentum integrals. Renor-

malization is the procedure to cancel the divergences systematically and obtain finite

physical results. The fields and coupling constant in the Lagrangian Eq. (2.1) are

the bare quantities: ψ0, g0 s, A
b
0µ, though the subscript 0 is suppressed there. Using

the standard notations, the renormalized quantities, which are related to physical

observables, can be expressed in terms of the bare ones using the renormalization

constants Zi:

ψ = Z
−1/2
ψ ψ0, A

a
µ = Z

−1/2
A Aa0µ, η

a = Z−1/2
η ηa0 . (2.10)

We can write similar relations for the coupling constant and fermion mass

gs 0 = Zgµ
εgs, (2.11)
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m0 = Zmm, (2.12)

where we use dimensional regularization to evaluate the divergent integrals at the

dimension n = 4− 2ε.

2.3. The β function and Asymptotic freedom

Dimensional regularization introduces the parameter µ with the unit of momentum

to make up for the dimension of loop integrals in a perturbative calculation of the

renormalization constants. While S-matrix elements and bare quantities such as ψ0

make no reference to µ, renormalized quantities depend on it. One important case

is the renormalized strong coupling constant gs, of which the µ dependence can be

derived from Eq. (2.11). If we plug in the one-loop value of Zg (see for example [2]),

we can rewrite it as

gs 0 =

[
1− bαs

2πε

]
µεgs, (2.13)

where αs ≡ g2
s/4π, and

b ≡ 11

12
CA −

1

3
TFNf , (2.14)

where CA = 3, TF = 1/2 and Nf stands for the number of active quark flavors. gs 0

is independent of µ, therefore taking the logarithm of Eq. (2.13) and differentiating

with respect to lnµ gives

µ
dgs
dµ

= −εgs
1− bg2s

8π2ε

1− 3bg2s
8π2ε

. (2.15)

If we retain terms up to O(g3
s) on the right hand side and take the limit ε→ 0 at the

end, we obtain a simpler form

β ≡ µ
dgs
dµ

= − b

4π2
g3
s +O(g5

s), (2.16)
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where we have defined the β function and obtained its value to one loop. It can be

shown in general that the β function takes the form

β = −gs
∞∑
n=0

βn

(αs
4π

)n+1

, (2.17)

where βn are perturbatively calculable constants with β0 = 4b = 11
3
CA − 4

3
TFNf . It

is straightforward to integrate Eq. (2.16) to obtain

1

g2
s(µ)

− 1

g2
s(µ0)

=
β0

8π2
(2.18)

or equivalently,

αs(µ) =
αs(µ0)

1 + β0αs(µ0)
2π

ln
(
µ
µ0

) . (2.19)

For Nf < 33/2, αs(µ) becomes smaller for larger value of µ. This property is

named asymptotic freedom and is one of the key features of QCD that is different

from QED, for which the coupling strength increases as the momentum scale becomes

large. The behavior is consistent with the fact that all particles with non-zero color

charge are not directly observed. The interaction between colored particles tends to

become stronger at long distances. Eventually, the large value of αs deteriorates the

perturbative prediction and some non-perturbative effect not fully known causes the

confinement. It is convenient to introduce a scale Λ at which perturbation theory

breaks down. It is defined by

ln
µ2

Λ2
= −

∫ ∞
αs(µ)

4dαs
gsβ(αs)

. (2.20)

Therefore αs would diverge at this scale. Integrating Eq. (2.20) using the one loop

beta function Eq. (2.16) gives

αs(µ) =
4

β0ln(µ2/Λ2)
. (2.21)
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Figure 2.1. From [6]: measurements of αs as a function of the energy scale Q.
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Λ depends on the renormalization scheme and the number of active flavors Nf . It can

be determined by the experimental measurement of αs. However, a small uncertainty

in αs can lead to a much larger uncertainty in Λ due to the form of Eq. (2.21). The

approximate value given by the experiment measurements is

Λ ≈ 200 MeV. (2.22)

2.4. Quark masses

The quark mass is another quantity that needs to be renormalized. The definition

of the renormalized quark mass is not unique and depends on the renormalization

scheme used. A commonly used definition is the MS mass. As with the case of

the coupling, the masses in this scheme also depend on the scale µ. Starting from

Eq. (2.12) a calculation similar to what is done for the running coupling can be

performed to give the scale dependence of m. In this case we define the γm function

by

γm ≡ −
µ

m

dm

dµ
, (2.23)

where γm has the expansion

γm =
∞∑
n=0

γn

(αs
π

)n+1

. (2.24)

The scale dependence is fully determined by Zm:

γm =
∂lnZm
∂lnµ

. (2.25)

The one-loop expression of Zm [1] then gives the first coefficient γ0 = 2. Therefore

the running of the quark mass obeys

µ
dm(µ)

dµ
=

(
−2αs(µ)

π
+O(α2

s)

)
m(µ). (2.26)
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Neglecting the O(α2
s) terms in the brackets, one can integrate the equation using

Eq. (2.21) and get

m(µ) =

[
ln(µ0/Λ)

ln(µ/Λ)

]4/πβ0

m(µ0). (2.27)

2.5. The decoupling of heavy flavors and matching of the coupling

Note that the running of both the coupling and the mass depend on the number

of active quark flavors Nf , through β0. There remains the problem of choosing the

appropriate value for Nf . For a quantity such as the running coupling, which is free of

any singularity in the zero quark mass limit, it is safe to set m = 0 in a perturbative

calculation where the mass of a quark flavor satisfies m � µ. However, in practice,

the quark masses extend from less than 1 GeV for the light flavors to nearly 200

GeV for the top quark. A large part of the perturbative region is covered in this

range. The mass effect of a heavy flavor needs to be taken seriously. Fortunately, it

is proved that the inclusion of a heavy flavor with the mass m only contributes finite

terms to the renormalized quantities of the form (µ/m)λ, with λ ≥ 1. It means that

the heavy flavor can be dropped as long as µ� m. Note that automatic decoupling

can be realized in momentum subtraction factorization schemes, but for MS one has

to use an alternative approach [23]. For instance, to obtain the evolution of αs(µ),

we include one more active flavor in Nf as µ crosses a heavy flavor mass threshold,

and specify the matching conditions of the evolutions with Nf and Nf + 1 flavors. A

detailed description of the method can be found in [24–26].
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Chapter 3

Deep Inelastic Scattering

High-energy collisions between hadrons and leptons can serve as probes of the

hadron structure. At sufficiently high energy, such collisions, through exchange of

vector bosons, can break the hadrons and produce complex hadronic states. There-

fore, this kind of processes is called deep inelastic scattering (DIS). In this chapter,

we first summarize the basic aspects of a perturbative calculation in Quantum Chro-

modynamics, then turn to the factorization of inclusive DIS. The purpose of this

chapter is to introduce key concepts describing DIS on the example of a one-loop

QCD calculation for this process.

3.1. Kinematics of Deep Inelastic Scattering

A diagram of electron-proton scattering is shown in Fig. 3.1, in which the colli-

sion occurs through one-photon exchange. In fact, the one-photon exchange has been

experimentally confirmed to be a good approximation in calculation of cross sections,

although multiple-photon processes can contribute. The hadronic part of the final

state is not shown explicitly which indicates that the measured cross section is in-

clusive: only the final state of the electron is observed and hadronic final states are

summed over in calculation of the cross section. In this section we will derive a general

form of cross section for this process. The discussion here is based on [2, 3, 27,28].

The S-matrix element of this process can be written as

Sfi = S
(
e− (k) p (p)→ e− (k′) X (p′)

)
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electron, k

proton, p

k′

X, p′

q

Figure 3.1. Deep inelastic scattering of an electron and a proton.

= ū(k′, s′)(ieγµ)u(k, s)

(−i
q2

)∫
d4xeiq·x 〈X| j(em)

µ (x) |p(p, r)〉 , (3.1)

where the spin indices of initial and final state electrons, and of the initial state

proton are shown explicitly as s, s′, and r. e = −|e| is the electron charge. The

initial and final hadronic states are represented by |p(p, r)〉 and |X〉, where jµ(em) =

i
∑

qQqψ̄qγ
µψq is the electromagnetic current for the proton. Qq are the charge

fractions of the quarks. qµ = kµ′− kµ is the 4-momentum transfer from the lepton to

the proton; xµ is the position 4-vector that is Fourier-conjugate to qµ. The integral

over x can be further simplified:∫
d4xe−iq·x 〈X| j(em)

µ (x) |p(p, r)〉 =

∫
d4xe−i(q+p−p

′)·x 〈X| j(em)
µ (0) |p(p, r)〉

= (2π)4 〈X| j(em)
µ (0) |p(p, r)〉 δ4(q + p− p′). (3.2)
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To obtain a transition rate we square the S-matrix element, sum and average over the

electron and proton spins, sum over all possible quantum numbers associated with

the unknown state |X〉, and divide the result by the space-time volume V T . We then

obtain the transition probability per unit time and per unit volume

Pfi =
1
4

∑
s,s′,r,X |Sfi|2
V T

=
1

q4
LµνWµν , (3.3)

where we express the transition rate as contraction of the leptonic tensor,

Lµν =
e2

2
Tr [6 kγµ6 k′γν ]

= 2e2[k′µkν + k′νkµ + (q2/2)gµν ], (3.4)

in which the electron mass is neglected for high energy collisions. The hadronic tensor

is

Wµν =
e2

2

∑
X,r

〈p(p, r)| j(em)
µ (0) |X〉 〈X| j(em)

ν (0) |p(p, r)〉

× (2π)4δ4(q + p− p′). (3.5)

We need to simplify the hadronic tensor Wµν . Before making any assumptions

regarding the details of the hadronic current j
(em)
µ , and of the initial proton state

|p(p, r)〉, all we can do is to construct the tensor Wµν by using gµν and the hadron

and photon momentum vectors, of which p and q are two independent ones. For the

parity conserving current j
(em)
µ , the general form of Wµν is

Wµν = pµpνg1 + pµqνg2 + qµpνg3 + qµqνg4 + gµνq
2g5, (3.6)

where gi are functions of Lorentz scalars p2, q2, and p·q. In the last term q2 is factored

out so that all gi have the same unit. The number of the scalar functions gi can be

reduced by the requirement of current conservation in the following form:

qµWµν = 0, (3.7a)
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qµWνµ = 0. (3.7b)

Plugging Eq. (3.6) into Eq. (3.7a) and Eq. (3.7b) and subtracting the resulting equa-

tions yield g2 = g3. Contracting Eq. (3.7a) with qν and pν will give another two

independent relations, from which we can express g3 and g4 in terms of g1 and g5.

Consequently, Eq. (3.6) simplifies to

Wµν = q2(gµν −
qµqν
q2

)g5 + [pµ − qµ(p · q/q2)][pν − qν(p · q/q2)]g1. (3.8)

It is conventional to extract some constant factors out of g1 and g5 and define another

two scalar functions, W1 and W2:

Wµν = −4πe2(gµν −
qµqν
q2

)W1(x,Q2, p2)

+ 4πe2[pµ − qµ(p · q/q2)][pν − qν(p · q/q2)]W2(x,Q2, p2), (3.9)

where we define Q2 ≡ −q2 > 0, and

x ≡ Q2

2p · q . (3.10)

The next step is to give an expression of the differential cross section. This is

done by inserting the flux factor and the phase space of the outgoing electron

dσ =
Pfi

4|p · k|
d3k′

(2π)32|k′| =
1

2s

LµνWµν

Q4

d3k′

(2π)32E ′
, (3.11)

where the Mandelstam variable s = (k + p)2, and E ′ ≡ |k′|. The proton mass is also

ignored in the flux in high energy case. Eq. (3.11) works equally well in all frames

associated by boosts along the initial beam direction. In terms of spherical variables,

this becomes

dσ =
1

4s

LµνWµν

Q4

E ′dE ′d(− cos θ)

(2π)2
, (3.12)
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where the azimuthal angle is integrated over because of azimuthal symmetry. It

is often convenient to write the differential cross section as a function of Lorentz

invariant variables. For this purpose we introduce another commonly used quantity

y ≡ p · q
p · k =

2p · q
s

. (3.13)

Now we can change variables from E ′ and − cos θ to Q2 and y:

Q2 = 2EE ′(1− cos θ), (3.14)

y = 1− 2|p|E ′(1 + cos θ)

s
, (3.15)

where E denotes the initial proton energy. The Jacobian of this transformation gives

dE ′d(− cos θ) = (1/2E ′)dydQ2. (3.16)

It is not difficult to evaluate the tensor contraction in Eq. (3.12). The result is

LµνWµν = 8πe4[xysW1 +
1

2
s2(1− y)W2]. (3.17)

These DIS cross sections are usually expressed in terms of structure functions defined

as

F1(x,Q2) ≡ W1(x,Q2), (3.18a)

F2(x,Q2) ≡ νW2(x,Q2), (3.18b)

where ν ≡ p · q. Collecting all the pieces we find the cross section

dσ

dydQ2
=

4πα2

Q4

(
xyF1 +

1− y
y

F2

)
, (3.19)

where α = e2/4π is the fine-structure constant. One can also change variables to x

and Q2 using Q2 = sxy and obtain

dσ

dxdQ2
=

4πα2

Q4

(
y2F1 +

1− y
x

F2

)
. (3.20)
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Eq. (3.19) and Eq. (3.20) are invariant under beam direction boosts.

We can compute the cross sections of the process γp → X for transversely and

longitudinally polarized photons absorbed by the proton. It can be shown [27] that

the former is proportional to F1 and the latter is proportional to FL ≡ F2 − 2xF1,

which is called the longitudinal structure function. Thus, the cross section Eq. (3.20)

can also be written as

dσ

dxdQ2
=

4πα2

Q4

[
[1 + (1− y)2]F1 +

1− y
x

FL

]
. (3.21)

3.2. The Parton Model

It was observed in early experiments that, to a good approximation, the structure

functions scale with x. That is, instead of depending on x and Q2 separately, they

depend only on one variable x (Fig. 3.2). This is known as Bjorken scaling [29,30].

Feynman proposed the parton model [30,31] to describe the scaling behavior of the

structure functions. Essentially, a hadron is seen as consisting of pointlike particles

called partons. In the standard model of particle physics, these are further assumed to

be charged fermions, called ”quarks”, and a vector boson called ”gluon”. Each parton

carries a fraction ξ of the proton momentum in the beam direction, with 0 < ξ < 1,

and a negligible1 momentum transverse to the beam. The momentum distribution

of a parton can be described by a function fi(ξ) which gives the probability of find-

ing a parton of the type i with a fraction ξ of the proton momentum. With these

assumptions, inelastic scattering of an electron and a proton can be expressed as a

superposition of elastic scatterings of an electron and charged partons. The squared

1Neglecting the transverse momenta of initial partons is not valid if they are comparable to the

net transverse momentum of the particles produced by the parton scattering. We will see such an

example in Ch. 5.
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Figure 3.2. Bjorken scaling observed by the SLAC experiments (Friedman and

Kendall 1972). F2 is shown to have no significant Q2 dependence.

matrix element of this process is known from QED:∑∣∣M (
e− (k) q (ξp)→ e− (k′) q

(
p′q
))∣∣2

= 2e4Q2
q

ŝ2 + û2

t̂2
(2π)4δ4(q + ξp− p′q), (3.22)

where by our assumption, the initial quark momentum is written as p̂ = ξp. Here

and in what follows “ ˆ ” is used to signify a parton-level quantity.
∑

denotes the

average over initial colors and spins and the sum over final colors and spins. Qq is the

quark charge in the unit of |e|. The parton-level Mandelstam variables ŝ = (k + p̂)2,

t̂ = (k − k′)2 = −Q2, and û = (p̂− k′)2 are used. After including the flux factor and

the electron phase space, as well as performing the integral over the final-state quark
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phase space, we get the parton-level cross section

d2σ̂

dxdQ2
=

2πQ2
qα

2

Q4
[1 + (1− y)2]δ(x− ξ). (3.23)

The parton-level structure functions are easily read off from Eq. (3.21):

F̂2

(0)
= 2F̂1

(0)
=
∑
q

Q2
qδ(1−

x

ξ
), (3.24)

F̂L
(0)

= 0. (3.25)

To obtain a hadron-level cross section we need to multiply Eq. (3.26) by fq(ξ), inte-

grate over all possible momentum fraction ξ, and sum over all quark flavors

d2σ

dxdQ2
=
∑
q

∫ 1

0

fq(ξ)
2πQ2

qα
2

Q4
[1 + (1− y)2]δ(x− ξ)

=
∑
q

fq(x)
2πQ2

qα
2

Q4
[1 + (1− y)2]. (3.26)

Comparing this expression with Eq. (3.21) we find the leading-order prediction given

by the parton model:

F1 =
1

2

∑
q

Q2
qfq(x), (3.27a)

F2 = 2xF1 =
∑
q

Q2
qxfq(x). (3.27b)

The parton-model calculation gives structure functions scaling to x. The relation

F2 = 2xF1, or FL = 0, is called the Callan-Gross relation [32]. It follows from our

assumption that the electron scatters off spin-1
2

quarks. In contrast, scattering on

a spin-0 particle will yield F1 = 0. Experiments have confirmed the Callan-Gross

relation and therefore the spin-1
2

of quarks.
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3.3. One-loop correction and the breaking of Bjorken scaling

The parton model calculation we have done is of the leading order in QCD (O(α0
s)),

as shown in Fig. 3.3(a). In this section we consider the next-to-leading order correc-

tions. These include processes with one gluon emitted by a quark, as in Figs. 3.3

(b-d)(along with a mirror diagram of (c)) and the vertex correction from one virtual

gluon. These diagrams represent the tensor Ŵµν for an incoming quark, which will

p̂

q

(a)

p̂

q

k

(b) (c) (d)

Figure 3.3. Parton level DIS diagrams at (a)the leading order, and (b)(c)(d)the

next-to-leading order with one gluon emitted.

be used to obtain the structure functions. The parton level Ŵµν depends on Q and

z ≡ Q2/(2p̂ · q) = x/ξ. The leading order result z = 1 becomes z < 1 with gluon

emissions, which can be seen from that the invariant mass squared (p̂ + q)2 is larger

than 0.
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We will perform the calculation using dimensional regularization [33], which pre-

serves the gauge invariance, and does not complicate phase space integration. We

use Feynman gauge, defined in Eq. (2.7) with ζ = 1, which is normally simpler in

calculations. To obtain the structure functions, simply compute the contractions in

dimension n = 4− 2ε.

1

4πe2
gµνŴµν = −(3− 2ε)F̂1 + F̂2/2z = (3− 2ε)F̂L/2z − (1− ε)F̂2/z, (3.28)

1

4πe2
p̂µp̂νŴµν = (ν̂/4z2)(F̂2 − 2zF̂1) = (Q2/8z3)F̂L. (3.29)

We first compute the contribution of the real gluon diagrams Fig. 3.3 (b),(c), and

(d) to gµνŴµν . It is given by

gµνŴ r
µν =

e2

2

∫
dnl

(2π)n−1

dnr

(2π)n−1

∑
|M(γ∗(q)q(p̂)→ g(r)q(l))|2µν gµν

× δ+(l2)δ+(r2)(2π)nδn(p̂+ q − l − r), (3.30)

where an average/sum over color is imposed. Using the Feynman rules for QCD, the

squared and contracted matrix element can be expressed as the sum of four traces

∑
|M|2µν gµν = −Q2

qµ
2εg2

sCF (Tr [6 p̂γµ(6 p̂+ 6 q)γν6 lγν(6 p̂+ 6 q)γµ]/(p̂+ q)4

+ Tr [6 p̂γµ(6 p̂+ 6 q)γν6 lγµ(6 p̂−6 r)γν ]/(p̂+ q)2(p̂− r)2

+ Tr [6 p̂γν(6 p̂−6 r)γµ6 lγν(6 p̂+ 6 q)γµ]/(p̂− r)2(p̂+ q)2

+ Tr [6 p̂γν(6 p̂−6 r)γµ6 lγµ(6 p̂−6 r)γν ]/(p̂− r)4), (3.31)

where the overall minus sign is from using −gµν for the gluon polarization sum in

Feynman gauge. The color factor is 1
3

∑
a Tr [tata] = CF . The traces can be evaluated

with, for instance, FeynCalc [34], to give

∑
|M|2µν gµν = −8Q2

qµ
2εg2

sCF (1− ε)
[
(ε− 1)

(
t̂

ŝ
+
ŝ

t̂

)
+

2Q2û

t̂ŝ
+ 2ε

]
, (3.32)
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where the sum over all quark flavors q is implicit. The Mandelstam variables are

defined as usual: ŝ = (p̂ + q)2, t̂ = (p̂ − r)2, and û = (p̂ − l)2. The phase space of

Eq. (3.30) can be simplified by integrating over l and r0

gµνŴ r
µν =

e2

2

1

(2π)n−2

∫
dn−1r

2r

∑
|M(γ∗(q)q(p̂)→ g(r)q(p̂+ q − r))|2µν gµν

× δ+((p̂+ q − r)2). (3.33)

where for simplicity r denotes both the n-vector and the magnitude of the corre-

sponding spatial (n − 1)-vector, which can be distinguished by context. Integration

over space components of r can be done using spherical coordinates in n dimensional

space:∫
dn−1r =

∫ ∞
0

drrn−2

∫
dΩn−2 =

∫ ∞
0

drrn−2 × 2(π)(n−2)/2

Γ((n− 2)/2)

∫ π

0

dθ sinn−3 θ.

(3.34)

The integral in Eq. (3.30) is Lorentz invariant, hence can be done in any frame. A

convenient choice is the center-of-mass frame of the initial quark and photon. If we

choose the last spatial axis along the direction of the incoming quark, then θ becomes

the polar angle between the initial quark and gluon. Let y = cos θ, then in this frame

it is straightforward to show that

p̂0 =
Q

2

√
1

z(1− z)
, (3.35)

r0 =
Q

2

√
1− z
z

, (3.36)

ŝ = Q2 1− z
z

, (3.37)

t̂ = −Q2 1− y
2z

, (3.38)

û = −Q2 1 + y

2z
. (3.39)
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Integrating over r will eliminate the remaining delta function∫ ∞
0

drr1−2εδ((p̂+ q)2 − 2(p̂+ q) · r)

=

∫ ∞
0

drr1−2εδ(s− 2
√
s r)

= 2−(2−2ε)s−ε. (3.40)

After changing the integration variable from θ to y, Eq. (3.33) becomes

gµνŴ r
µν = −1

4
CFg

2
se

2Q2
qµ

2ε24επ−(1−ε) 1

Γ(1− ε)

(
Q2(1− z)

z

)−ε
×
∫ 1

−1

dy(1− y2)−ε × (1− ε)
[
(1− ε)

(
1− y

2(1− z)
+

2(1− z)

1− y

)
+

2z(1 + y)

(1− z)(1− y)
+ 2ε

]
.

(3.41)

Using the relation∫ 1

−1

dy(1 + y)A(1− y)B = 2A+B+1 Γ(A+ 1)Γ(B + 1)

Γ(A+B + 2)
(3.42)

to evaluate the y integral, we obtain

gµνŴ r
µν = −1

4
CFg

2
se

2Q2
q2

2επ−(1−ε)
(
Q2

µ2

)−ε
Γ(1− ε)
Γ(1− 2ε)

(1− ε)

× zε

(1− z)1+ε

[
1− ε
1− 2ε

− 2(1− ε)(1− z)2

ε
− 4z(1− ε)
ε(1− 2ε)

+
4ε(1− z)

1− 2ε

]
, (3.43)

where the 1/ε pole is produced by the y integral in Eq. (3.41) near y = 1. It corre-

sponds to the collinear configuration of the gluon and initial quark. The Born level

contribution in Fig. 3.3 (a) is also corrected by virtual gluon processes at O(αs). To

obtain an inclusive cross section where all hadronic final states are summed over,

virtual gluon contribution must be included as well.

Diagrams with virtual gluons are shown in Fig. 3.4. Contribution from these

diagrams (including their mirror diagrams), as well as the corresponding counter

terms, constitutes the virtual gluon correction at 1 loop level. The requirement of
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gauge invariance ensures that renormalization constants for the QED vertex satisfy

the relation

Z1 = Zψ. (3.44)

Therefore the counter terms will cancel each other. It turns out that the quark self

(a) (b) (c)

Figure 3.4. Virtual gluon diagrams:(a)the vertex correction, and (b)(c):quark self

energy.

energy diagram also vanishes in zero quark mass limit for on-shell momenta p̂ = 0 or

l2 = 0, which is discussed in detail in [2] and will be skipped here. We are left with

the vertex correction Fig. 3.4 (a) to calculate. In this case the contraction is

gµνŴ v
µν =

e2

2
Q2
qµ

2εg2
sCF × 2Re[

∫
dnrTr [6 p̂γσ(6 p̂−6 r)γµ(6 l −6 r)γσ6 lγµ]

× i

r2(p̂− r)2)(l − r)2
(2π)−n+1δ((p̂+ q)2)]

=
e2

2
Q2
qµ

2εg2
sCF × (2π)−n+1δ((p̂+ q)2)× 8(ε− 1)× 2Re

(∫
dnr

(−i)N(p̂, q, r, l)

r2(p̂− r)2(l − r)2

)
,

(3.45)

where an imaginary part iε is omitted in each factor of the denominator. The factor

N(p̂, q, r, l) is

N(p̂, q, r, l) = εq2r2 + 4p̂ · rl · r + 2q2(p̂ · r + l · r) + q4. (3.46)
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Using Feynman parameters to combine the denominators, the integral inside brackets

is rewritten as

I =

∫ 1

0

dx1

∫ 1−x1

0

dx2

∫
dnr

(−2i)N(p̂, q, r, l)

(r2 − 2x1p̂ · r − 2x2l · r)3
. (3.47)

Make the substitution

rµrν →
1

n
r2gµν , (3.48)

and we can express the integral using Gamma functions

I = −Q2−2επ2−εΓ
2(1− ε)Γ(1 + ε)

Γ(1− 2ε)

(
1

ε2
+

3 + ε

2(1− 2ε)

1

ε
+

1

2(1− 2ε)

)
= −Q2−2επ2−εΓ

2(1− ε)Γ(1 + ε)

Γ(1− 2ε)

(
1

ε2
+

3

2

1

ε
+ 4

)
, (3.49)

where in the second line the O(ε) term is omitted. The ultra-violet pole 1/ε is an-

alytically continued from ε > 0 to ε < 0 to give an infrared pole. Thus the virtual

gluon contribution in Eq. (3.45) is found to be

gµνŴ v
µν = e2Q2

qµ
2εg2

sCFπ
ε−1Q−2ε22ε(1− ε)

× Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)

(
1

ε2
+

3

2

1

ε
+ 4

)
δ(1− z) (3.50)

At this point if we add the contractions in Eq. (3.43) and Eq. (3.50) together, the

infrared poles will not cancel manifestly. The way to proceed is to interpret the RHS

of Eq. (3.43) as a distribution in the limit ε → 0. This is achieved by making the

substitution [1]

zε

(1− z)1+ε
= −δ(1− z)

ε
+

1

(1− z)+

+ ε

[
lnz

1− z −
(

ln(1− z)

1− z

)
+

]
+O(ε2), (3.51)

where the “plus” functions are defined to remove the divergence produced by the

integral of 1/(1− z) near z = 1:∫ 1

x

dz f(z)+g(z) ≡
∫ 1

x

dz f(z)g(z)−
∫ 1

0

dz f(z)g(1). (3.52)
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Since the leading term of the RHS of Eq. (3.51) is proportional to 1/ε, we expand the

terms in the square brackets of Eq. (3.43) to O(ε) and obtain

gµνŴ r
µν = −1

4
CFg

2
se

2Q2
q2

2επ−(1−ε)
(
Q2

µ2

)−ε
Γ(1− ε)
Γ(1− 2ε)

(1− ε)

× zε

(1− z)1+ε

[−2(z2 + 1)

ε
+ 2z2 − 8z + 3 + ε(5− 12z)

]
= CFg

2
se

2Q2
q2

2επ−(1−ε)
(
Q2

µ2

)−ε
Γ(1− ε)
Γ(1− 2ε)

(1− ε)

×
[
−δ(1− z)

(
1

ε2
+

3

4ε
+

7

4

)
+

z2 + 1

2(1− z)+

1

ε
− 3

2
+
z

2

+
3

4(1− z)+

+
(z2 + 1)lnz

2(1− z)
− z2 + 1

2

(
ln(1− z)

1− z

)
+

]
. (3.53)

The sum of real and virtual corrections at NLO then gives

gµνŴµν =
1

2π
CFg

2
se

2Q2
q

[
3

2(1− z)+

+
(z2 + 1)lnz

1− z

− (z2 + 1)

(
ln(1− z)

1− z

)
+

+

(
9

2
+
π2

3

)
δ(1− z) + z − 3

+
1

2CF
P (0)
qq (z)

(
1

ε
− ln

(
Q2

4πµ2

)
− γE − 1

)]
, (3.54)

where the leading order quark-to-quark splitting function P
(0)
qq is identified as

P (0)
qq (z) = CF

(
2(z2 + 1)

(1− z)+

+ 3δ(1− z)

)
. (3.55)

The normalization of P
(0)
qq has an extra factor of 2 in accordance with the convention

in [35,36].

The evaluation of p̂µp̂νŴµν is much simpler. Among the real and virtual gluon

diagrams only Fig. 3.3 (b) contributes while the others vanish due to the appearance

of 6 p̂6 p̂ = p̂2 = 0 in their traces. Thus

p̂µp̂νŴµν = −1

2
e2Q2

qµ
2εg2

sCF
1

(2π)n−2

∫
dn−1r

2r
Tr [6 p̂γν(6 p̂−6 r)6 p̂6 l6 p̂(6 p̂−6 r)γν ]/(p̂− r)4

× δ+((p̂+ q − r)2)
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=
1

16
CFg

2
se

2Q2
qQ

2µ2ε24επ−(1−ε) 1− ε
Γ(1− ε)

(
Q2(1− z)

z

)−ε ∫ 1

−1

dy(1− y2)−ε
y + 1

z

=
1

8πz
CFg

2
se

2Q2
qQ

2. (3.56)

The structure functions can be obtained using Eqs. (3.28),(3.29):

F̂2
(1)

= −αs
2π
CFQ

2
qz

[
3

2(1− z)+

+
(z2 + 1)lnz

1− z

− (z2 + 1)

(
ln(1− z)

1− z

)
+

+

(
9

2
+
π2

3

)
δ(1− z)− 2z − 3

+
1

2CF
P (0)
qq (z)

(
1

ε
− ln

(
Q2

4πµ2

)
− γE

)]
, (3.57)

F̂L
(1)

=
αs
π
CFQ

2
qz

2. (3.58)

Comparing with the leading-order result Eqs. (3.24), (3.25), a prominent difference

is the appearance of a logarithmic Q dependence at NLO in Eq. (3.57), which breaks

Bjorken scaling. Moreover, a divergent term (proportional to 1/ε) due to the collinear

emission of a gluon remains in F̂2

(1)
. The next subsection will show how this diver-

gence is treated in order to give a physical cross section. On the other hand, F̂L
(1)

is non-zero but finite at this order. A similar calculation can be carried out for an

incoming gluon scattering on the photon (through exchange of a quark). In this case,

the collinear splitting of a gluon into a quark pair can be described by the function

P (0)
qg (z) = 2TR(2z2 − 2z + 1). (3.59)

3.4. Factorization in DIS

We have seen in the previous sections how to isolate the perturbative part of a DIS

cross section and ascribe the detailed information of long distance interaction within a

hadron to parton distribution functions. However, the validity of separation between

long and short distance interactions has not been justified. For instance, we assumed
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that the photon interacts with only one incoming parton with its momentum on shell,

which is far from obvious. This can be done by a careful analysis of the structure

of the S matrix. See for example Ch.13 in [2], where for each diagram, one can

isolate the regions of momenta of the particles that give the leading contribution.

These regions are called leading regions. It follows from the analysis that the leading

regions for DIS process have a typical topology illustrated by the cut-vertex graph

in Fig. 3.52. The lower bubble (along with the lines connecting the two bubbles)

hard

collinear

k

P

Figure 3.5. Leading regions of deep inelastic scattering.

contains momenta collinear to the incoming proton with low virtuality. The upper

bubble represents the hard scattering process in which the virtuality of the particles

are of order Q. The hard and collinear regions are connected by one parton line on

2Complications with the analysis of DIS leading regions in a gauge theory such as QCD are

discussed in detail in [1].
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either side of the final-state momentum cut.

To see how factorization of the cross section emerges from quantum field theory,

we need a concrete definition for the parton distribution functions. The contribution

from the leading-region graph involves integration over the internal momentum k

of the intermediate parton connecting the hard and collinear subgraphs. It can be

shown that the “small components” k−, and kT can be set to zero with negligible

error introduced, where the light-cone coordinates are related to the usual 4-vector

notation as (
V +, V −,VT

)
≡
(
V 0 + V 3

√
2

,
V 0 − V 3

√
2

,VT

)
. (3.60)

The parton distribution functions are then obtained by integrating the lower part of

the graph over these components and picking out the large contribution using γ+. In

light-cone gauge, the quark distribution is defined as

fq/h(ζ) ≡
∫
dy−

2π
e−ζp

+
h y
−〈ph|ψ̄(0, y−,0T )γ+ψ(0)|ph〉, (3.61)

where ph denotes the momentum of a hadron or a parton. The gluon PDF can be

similarly defined.

With this definition, assuming the only important contribution is from the leading

region in Fig. 3.5, the DIS structure functions can be written in a factorized form

as a convolution of PDFs and hard scattering coefficients

F2(x,Q) =
∑
i

∫ 1

x

dζC2,i

(
x/ζ,Q2/µ2, αs(µ

2)
)
fi/h(ζ) +O(m2/Q2) (3.62)

where the sum is over all parton flavors. m represents the highest virtuality in the

collinear part, which is much smaller compared to Q. The long distance information

is now all contained in the PDFs, and the coefficients C are infrared safe.

The picture of factorization represented by Fig. 3.5 is not strictly correct for a

QCD DIS process. In fact, Fig. 3.5 requires that there is a clear distinction between
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the virtualities from the two parts of a graph. However, it can be shown that contri-

bution from the intermediate region, e.g. m2 � k2 � Q2, is not power suppressed

and thus not negligible. Nevertheless, one can rescue the proof of factorization by

reorganizing the structure functions to properly isolate a power-suppressed part [1].

(see also [37]).

In a physical process, k− and kT are constrained by the kinematics of the photon-

parton collision. Factorization has removed the constraints on these components. As

a consequence, the parton distribution functions need to be renormalized in order

to get rid of ultra-violet divergences induced by integration over a region with large

transverse momentum. The PDFs obtained through this procedure will depend on a

new scale µF introduced during renormalization. In practice it is usually convenient

to set µF = µR = Q, where the renormalization scale µR ≡
√

4πe−γEµ. Other-

wise perturbation series will contain powers of logarithms of the form lnn(µF/Q), or

lnn(µR/Q), which break down the convergence of calculation. From now on, we use

the single notation µ to denote µF and µR. Now the factorization formula Eq. (3.62)

is modified by adding the µ dependence to the PDF part.

A one-loop calculation, using the definition Eq. (3.61) along with an MS counter

term for renormalization, gives the quark-in-quark distribution [1, 2]

fq/q(ζ, µ) = δ(1− ζ) +
αS
4π

Sε
(−ε)P

(0)
qq (ζ) +O(α2

s), (3.63)

where Sε ≡ 1 + ε(ln 4π − γE) + O(ε2). The µ dependence is only through αs. A

comparison of the zero order terms on both sides of Eq. (3.62) for a quark target then

gives (see Eq. (3.24))

C
(0)
2,q

(
z

ζ

)
= Q2

qδ(1−
z

ζ
). (3.64)
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C
(1)
2,q is similarly obtained by comparing the first-order terms using Eq. (3.57):

C
(1)
2,q

(
z

ζ
, µ

)
= −αs

2π
CFQ

2
qz

[
3

2(1− z)+

+
(z2 + 1)lnz

1− z

− (z2 + 1)

(
ln(1− z)

1− z

)
+

+

(
9

2
+
π2

3

)
δ(1− z)− 2z − 3

− 1

2CF
P (0)
qq (z) ln

(
Q2

µ2

)]
. (3.65)

3.5. Evolution of the PDFs

In reality, the more interesting parton distributions are those in hadrons, rather

than partons, since a parton target is not directly probed by the experiments. The

partons’ momentum distributions in a hadron state are not calculable as is done for

the parton-in-parton case, Eq. (3.63), since a hadron state contains long distance

interaction between the partons. The corresponding momentum scale results in a

strong coupling constant too large for perturbative method to reliably apply. Non-

perturbative methods for calculating PDFs have been developed, but so far none is

able to reach an accuracy comparable to the experiments. Instead, the nonperturba-

tive PDFs can be determined from experimental data, by knowing that hadron-level

cross sections depend on the same infrared-safe coefficient functions that were found

from a parton-level calculation in Sec. 3.4. A cross section with a hard momentum

scale can be factorized not only in DIS. Similar factorization theorems have been

proved for various processes in which the form of the PDFs is universal. An impor-

tant test of these factorization theorems is to extract the values of PDFs from one

process and apply them to others and compare the agreement with the measured cross

sections. This is essentially what is done for a global analysis of PDFs by groups such

as the CTEQ Collaboration.
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One can even go one step further about these PDFs. Just like for the renormalized

strong coupling constant, one can derive a renormalization group equation to describe

the µ dependence of fi/h(ζ, µ), despite that the value of fi/h(ζ, µ) at a fixed scale has

to be taken from experiment. It is readily proved [1, 37] that the renormalization of

the PDFs is carried out by introducing renormalization constants Zij in the form

fi/h(ζ, µ) =
∑
j

∫ 1

ζ

dy

y
Zij(y, µ)f0j/h(

ζ

y
), (3.66)

where f0j/h is expressed by a matrix element such as that in Eq. (3.61), with the field

operators being bare fields. This form of the renormalized PDFs ensures that all ultra-

violet divergences arising from large transverse momentum integrals are cancelled

order by order by the renormalization constants Zij. The bare parton densities are

independent of µ, so that differentiating both sides of the above equation with respect

to lnµ gives

d

d lnµ
fi/h(ζ, µ) = 2

∑
j

∫ 1

ζ

dy

y
Pij(y)fj/h(

ζ

y
, µ), (3.67)

where

d

d lnµ
Zij(y, µ) = 2

∑
k

∫ 1

y

dy′

y′
Pik(y

′)Zkj(
y

y′
, µ). (3.68)

Eqs. (3.67) are referred to as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

equations [38–41]. They govern the evolution of PDFs with respect to the momentum

scale µ. With the help of computer programs, the equations can be solved numerically

to the desired accuracy. The evolution kernels Pij that appear in the convolution can

be calculated perturbatively as an expansion

Pij = P
(0)
ij +

αs
4π
P

(1)
ij + . . . , (3.69)

with the leading order quark-to-quark term given by Eq. (3.55).
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Chapter 4

DIS with massive quark production

The calculation of DIS structure functions in the last chapter has assumed that all

quark flavors are massless. At NLO we have already seen that collinear singularities

associated with varnishing masses of quarks are encountered inevitably. Singularities

due to radiation of soft gluons are cancelled between contributions from real and

virtual gluon processes. Collinear singularities due to zero mass quarks are ascribed

to the internal structure of the target. However, in reality treating all quark flavors as

massless is not a good approximation, if at least one quark type has mass comparable

to the hard scale Q. In this case, more complicated factorization prescriptions are

needed for making accurate predictions. In particular, the previously used ”zero-

mass” MS scheme must be replaced by one that specifies the allocation of not only the

divergent terms but also of those with heavy quark mass dependence. It is possible,

and even desirable, to allow the allocation of terms to differ at various hard scales,

which is reminiscent of the treatment in evolving the strong coupling with various

quark flavors discussed in the first chapter. In this chapter we treat the factorization

of DIS in a particular scheme, in which we present a method to properly distribute

the heavy quark mass dependence at different momentum regions. For this purpose

we first review how massive quarks are treated in various factorization schemes.

4.1. Factorization with massive quarks

There are various factorization schemes that retain the heavy quark mass depen-

dence. Among these the fixed flavor-number (FFN) scheme is often adopted when
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Q is near the heavy quark threshold [42–47]. Analysis of the leading-power contri-

bution indicates that near the production threshold the leading region contains only

light parton lines connecting the hard and collinear parts in a factorized structure

function. Therefore FFN scheme keeps all mh dependence in hard scattering coef-

ficient functions with incoming light partons. The heavy quark is never an active

flavor as part of the hadron structure. This scheme gives the dominant contribution

near the threshold. The problem with it is at Q � mh. A fixed order calculation of

light parton initiated processes contains terms proportional to lnn
(
m2

h

Q2

)
. These large

logarithms need to be summed to all orders into a heavy parton PDF by DGLAP

equations, otherwise the convergence of the perturbation series is ruined.

The sum of the large logarithms through all orders is done in a class of schemes

named variable flavor number (VFN) schemes, in which heavy quark PDFs are intro-

duced to sum the log terms as the quark mass threshold is crossed, i.e., a heavy quark

is treated as an active flavor above its threshold [48]. Schemes of this class can have

different treatment of the heavy quark masses for the light parton initiated process

near the thresholds. If the heavy quark masses are dropped completely, the scheme

has the name (VFN-) zero-mass (ZM) scheme [49–51]. ZM scheme is reliable when

Q � mh. Proof of the factorization at this region [37] suggests that the corrections

to the factorized cross section have the power suppressed form (mh/Q)p, where p is

a positive number. The corrections can be neglected at large Q. However, setting

mh to zero is no longer valid near the threshold since the error becomes substantial.

An illustration of treating the charm quark mass in ZM and FFN schemes at NLO is

given by Fig. 4.1, where it is shown that in their respective unreliable regions, both

schemes cannot hold to the NLO accuracy.

Because of the above deficiency, recent calculations are usually done in an ad-

vanced VFN schemes that keep the mass dependence in hard scattering cross sections
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2)

(b)

Figure 4.1. From [52]:(a) ZM and (b) FFN treatment of the charm quark mass at

NLO.

near the threshold, but turn on heavy-quark PDFs as Q becomes larger. These are

so called (VFN-) general mass (GM) schemes [37,53–60]. They appropriately include

the mass effects at both small and large Q, and thus are generally more reliable for

performing calculations with heavy quark productions.

The realization of a typical VFN calculation relies on the interplay of three classes

of contributions [52]. In literature, the process of heavy quark-photon scattering

initiated by a light parton contributes a term in the structure functions which is

referred to as the flavor creation (FC) term. A term from heavy quark initiated

scattering is called the flavor excitation (FE) term. There is an overlap between

the above two since the heavy quark PDF receives contribution from the collinear

radiation of the heavy quarks from light partons. This overlapped term is often

called the subtraction term since it must be subtracted from the above two terms to

avoid double counting. A typical calculation in VFN scheme is realized by including

all these terms. Near the threshold region the heavy flavor is mainly produced via

γ∗g fusion. The contribution from the FE term is canceled by the subtraction term
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up to high order splitting contribution, which are suppressed at low energy. The cross

section is thus sensitive to the mass dependence of the FC term. In contrast, at large

Q, the leading contribution of the FC term is from the collinear quark radiation,

which is canceled by the subtraction term. The FE term becomes dominant.

The interplay between the above terms at low and high scales is suggestive of the

fact that factorization at various regions is done differently for a multiscale process.

In a general proof of factorization near the heavy-quark threshold [37], there should

be no heavy-quark line connecting the target part and the hard scattering part of a

diagram. On the other hand, one has to put in FE contributions in order to obtain

a smooth transition to a large Q value, where summation of all order logarithms is

needed. As a result, the numerical accuracy at the threshold region relies on the

cancellation between FE and the subtraction terms.

In our study we work mainly in a family of schemes founded by Aivazis, Collins,

Olness, and Tung (ACOT) [53, 61]. We shall use a scheme called S-ACOT-χ [52,

60]. This is a GM scheme that retains heavy quark mass dependence from the FC

contribution. Furthermore, it imposes a ”χ” prescription to the approximate FE and

subtraction contributions, which amounts to including a mass-dependent correction

to integration over the momentum fraction ξ, but neglecting all other mass-dependent

terms in the FE coefficient functions. It serves to speed up the cancellation between

these two terms near the threshold and to achieve fast convergence. The details of ”χ”

prescription will be discussed in Sec.4.3.2. So far calculation in S-ACOT-χ scheme

have been carried out to NNLO in [62]. There the scheme has shown significant

advantage over non-GM schemes.

Meanwhile, the O(α3
s) correction to DIS coefficient functions have been computed

in the zero-mass approximation [63,64]. To promote S-ACOT-χ calculation to N3LO,

we need O(α3
s) massive coefficients, particularly for FC terms. Nonetheless, we can
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Factorization Mass dependence Mass dependence Introduce heavy quark

schemes from coefficients from phase space PDFs at large Q

FFN yes yes no

ZM no no yes

IM no yes yes

GM yes yes yes

Table 4.1. Properties of various factorization schemes.

account for some mass effects by adopting an intermediate mass (IM) scheme [65],

where we use the ZM coefficients for all terms and impose the phase space correction

as we do in GM scheme. In Table 4.1 I summarize the properties of the above

schemes. Note that heavy quark coefficient functions for light initial partons have

been computed to O(α2
s) in [46,55,66–70]. These results are already used in [62] for a

GM calculation. In our work we will use their GM results at O(α2
s) for a benchmark

comparison since they have been proved to be reliable.

In the remainder of this chapter, I present a method to organize DIS structure

functions at N3LO according to the flavors of contributing quarks. What we will

pursue here is to implement the heavy-quark mass dependence due to the phase

space correction to various contributions at the 3-loop level. There are two purposes

for this study. First, we wish to classify the DIS structure functions in a useful way

that can be applied to both IM scheme and GM scheme at N3LO. Second, at present

we are able to obtain numerical results in IM scheme. This will give an estimate on

how important the missing mass dependence from coefficient functions are.

We do this in the following sequence: in Sec. 4.2.1, 4.2.2, and 4.2.3 we derive

the form of structure functions with full mass dependence; in Sec. 4.2.4 and 4.3.1
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we reduce these expressions to ZM forms as all masses are neglected, and discuss

how the ZM coefficients are to correspond to those given in the references above; in

Sec. 4.3.2 we implement the mass dependence from phase space corrections to the

ZM coefficients. To perform the calculation we take the mass dependent coefficients

and convolve them with PDFs in the forms derived in Sec. 4.2.3.

4.2. Classification of DIS structure functions

Since kinematics are generally different for various contributing diagrams, it is

important to classify all the diagrams before implementing the kinematic constraint.

We decompose the structure functions according to the SU(Nf ) group structure of

PDFs and coefficients. This decomposition is adopted by many calculations of coef-

ficient functions. As will be discussed in Sec. 4.2.4, the zero-mass structure functions

in this decomposition take a compact form. Also, the evolution equations of PDFs

are decoupled in this decomposition. (see Sec. 4.4)

4.2.1. SU(Nf ) Structure

According to the factorization theorem, DIS structure functions can be decom-

posed as

F (x,Q) =
∑
i=q,q̄
a=g,q,q̄

[Ci,a ⊗ Φa] , (4.1)

where the momentum distribution of parton a is from a proton. While this decompo-

sition is widely used, other ways of classifying DIS contributions are possible and in

some cases useful. We first rewrite this formula by decomposing its quark component

in another representation. In the following derivation we omit the convolution oper-

ator for simplicity. We will recover it in our final formulae. This can also be thought

of as working in Mellin space. We focus on decomposing the quark contributions in
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Eq. (4.1). With the help of SU(Nf ) generators we can expand both the PDFs and

the coefficient functions as

Φj =
∑

α=3,8,15...

Φα(tα)jj + ΦS Îjj (4.2)

∑
i

Ci,j ≡ Cj =
∑

β=3,8,15...

Cβ(tβ)jj + CS Îjj (4.3)

where the sums over α and β run over all the diagonal generators of SU(Nf ) group

(note the values that β takes in the sums of Eqs. (4.2) and (4.3)). tα here are for

SU(Nf ). They are not the same as the SU(3) generators in Sec. 2.1. The index i

here stands for all the final state indices. In fact we will find contribution from some

particular scattering processes with 2 final state indices later. The coefficient of the

expansions are given by

Φα = 2tr(Φ̂tα), (4.4)

ΦS =
1

Nf

tr(Φ̂), (4.5)

Cβ = 2tr(Ĉtβ), (4.6)

CS =
1

Nf

tr(Ĉ) (4.7)

where Φ̂ (or Ĉ) is a diagonal matrix with its diagonal element Φ̂jj being Φj (or

Ĉjj = Cj). Then the quark component becomes

∑
i,j

Ci,jΦj =
∑
α,β,j

ΦαCβ(tα)jj(t
β)jj +

∑
α,j

ΦαCS(tα)jj Îjj

+
∑
β,j

ΦSCβ Îjj(t
β)jj +

∑
j

ΦSCS Îjj Îjj. (4.8)

Since the product of SU(Nf ) generators satisfies

tatb =
1

2Nf

δabINf
+

1

2

N2
f−1∑
c=1

(ifabc + dabc)t
c, (4.9)
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and for diagonal generators we have∑
j

(tα)jj(t
β)jj = tr(tαtβ), (4.10)

the first term of Eq. (4.8) becomes 1
2

∑
α

CαΦα. Similarly, the cross terms vanish and

the last term becomes NfCSΦS. Therefore we obtain a new decomposition∑
i,j

Ci,jΦj =
1

2

∑
α

CαΦα +NfCSΦS,

=
∑
α

tr(Ĉtα)Φα + tr(Ĉ)ΦS. (4.11)

So to project out the non-singlet contributions one should take the flavor trace of

the coefficient matrix with the diagonal generators, and to project out the singlet

contributions one should take the trace with unit matrix.

4.2.2. Further classification

To distinguish contributions from different quark flavors, which will generally de-

pend on masses of the quarks, we need to further classify Feynman diagrams of differ-

ent topologies. In [64,71], this classification is done according to the flavor structures

of Feynman graphs. Depending on the configuration of the quark line/loop to which

the photons are attached, the diagrams at three-loop level can belong to one of the

five classes. Fig. 4.2 shows representative diagrams of each class, in which the FC11

and FCg
11 classes are present for the first time at this order. Even more delicate clas-

sification is needed when there is different mass dependence between various diagrams

within a same flavor class. Due to these considerations, Eq. (4.11) is generalized to∑
i,a

Ci,aΦa =
∑
FC,T

(∑
α

tr(ĈFC,T tα)Φα + tr(ĈFC,T )ΦS + CFC,T
g Φg

)
, (4.12)

where summation proceeds over various flavor classes, denoted as FC, as well as over

contributions with different mass dependence within each given flavor class, indicated

by T . The gluon contribution is included, too, to make the expression complete.
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(a) (b) (c) (d) (e)

Figure 4.2. Representative three-loop diagrams of the flavor classes (from left to right):

FC2, FC02, FC11, FCg2 , and FCg11.

4.2.3. Structure functions for various flavor classes

In a common notation, the electromagnetic charge factor of the photon vertex

is conventionally taken out of the coefficient function and included as an extra pre-

factor. We follow this convention and derive contribution to Eq. (4.12) from each

flavor class. In the discussion below we use Nf to denote the number of initial quark

flavors, and use Nfs and Q̂fs to denote the number of flavors at the photon vertex

and the corresponding charge matrix. The flavor of a possibly produced quark pair

in the final state is not included explicitly here, which will be addressed later.

4.2.3.1. FC2, FC02, and FCg
2 classes

These flavor classes already appear in 2-loop DIS. The non-singlet contribution of

FC2 class is (recall that the elements of the diagonal coefficient matrix Ĉ are defined

in Eq. (4.3))

∑
α

tr(ĈFC2tα)Φα =
∑
α

tr(CFC2(mf )Q̂
2
fst

α)Φα

=

Nf∑
i,j

e2
iC

FC2(mi)(δij −
1

Nf

)Φ+
j/p, (4.13)
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where the Fiertz identity for tα

tαikt
α
jl =

1

2
(δilδkj −

1

Nf

δikδjl) (4.14)

is used. As a convention we factor out the charge of quark at the photon vertex. The

singlet contribution in Eq. (4.12) reads

tr(ĈFC2)ΦS = tr(CFC2(mf )Q̂
2
f )ΦS

=

Nf∑
i,j

1

Nf

e2
iC

FC2(mi)Φ
+
j/p, (4.15)

So the net contribution of FC2 class is

∑
α

tr(ĈFC2tα)Φα + tr(ĈFC2)ΦS

=

Nf∑
j

e2
jC

FC2(mj)Φ
+
j/p. (4.16)

The non-singlet contribution of FC02 class is

∑
α

tr(ĈFC02tα)Φα =
∑
α

e2
iC

FC02(mi,mj)(t
α)jjΦα

=

Nfs∑
i

Nf∑
j,k

e2
iC

FC02(mi,mj)(δjk −
1

Nf

)Φ+
k/p. (4.17)

The singlet contribution is

tr(ĈFC02)ΦS = tr(CFC02(mf )Q̂
2
fs)ΦS

=

Nfs∑
i

Nf∑
j,k

1

Nf

e2
iC

FC02(mi,mj)Φ
+
k/p (4.18)

So the net contribution of this class is

∑
α

tr(ĈFC02tα)Φα + tr(ĈFC02)ΦS
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=

Nfs∑
i

Nf∑
j

e2
iC

FC02(mi,mj)Φ
+
j/p. (4.19)

The FCg
2 class has a simpler contribution

CFCg
2

g Φg = tr(C(FCg
2 ,mf )Q̂

2
f )Φg

=

Nfs∑
i

e2
iC(FCg

2 ,mi)Φg/p. (4.20)

4.2.3.2. FC11 and FCg
11 classes

In FC11 class the flavor number of the open quark line is Nf since it is also the

initial flavor. We use NL
fs to denote the quark loop flavor number. The non-singlet

contribution to FC11 class is

∑
α

tr(ĈFC11tα)Φα =
∑
α

Nf∑
i,j

NL
fs∑
k

ekei(t
α)iiC

FC11(mi,mk)× 2(tα)jjΦ
+
j/p

=

Nf∑
i,j

NL
fs∑
k

ekeiC
FC11(mi,mk)(δij −

1

Nf

)Φ+
j/p. (4.21)

The singlet contribution can be written as

tr(ĈFC11)ΦS =

Nf∑
i,j

NL
fs∑
k

1

Nf

ekeiC
FC11(mi,mk)Φ

+
j/p. (4.22)

So the total contribution of the FC11 class is∑
α

tr(ĈFC11tα)Φα + tr(ĈFC11)ΦS =
∑
i,j,k

ekeiC(FC11,mi,mk)Φ
+
j/pδij

=

Nf∑
j

NL
fs∑
k

ekejC(FC11,mj,mk)Φ
+
j/p. (4.23)

The contribution from FCg
11 class is simpler.

CFCg
11

g Φg =

NL
fs∑
i,k

ekeiC
FCg

11(mi,mk)Φg/p.
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(4.24)

Note that gauge-invariance of structure functions is preserved in each flavor class.

This is because the flavor classes correspond to various topologies for inserting elec-

troweak vertices. Since the electroweak charges are independent of QCD interactions,

the flavor classes are invariant with respect to the SU(3)˙color gauge.

4.2.4. Massless limit

The N3LO coefficient functions given in [63,64,71] are obtained in the ZM scheme.

To carry out a practical calculation with these functions we have to examine the

massless limit of all the general results obtained in the last subsection, and define the

massless coefficient functions with the same convention (charge factors) as adopted in

the above papers. There the coefficient functions are given as non-singlet and singlet

components separately. We will also make this distinction here.

In the massless case, all flavors are active, and we will not need to discriminate the

flavor number for initial state and that at the photon vertex, or the flavor number at

different vertices. We use a single number Nf for the number of flavors. The charge

matrix Q̂fs contains Nf diagonal elements in every case. Also note that the coefficient

functions has no mass dependence and hence can be taken out of the trace operation.

The non-singlet contribution from the FC2 class is

∑
α

tr(ĈFC2tα)Φα = CFC2

∑
α

tr(Q̂2
fst

α)Φα,

(4.25)

where CFC2 ≡ CFC2(mf = 0). The non-singlet contribution of the FC02 class will be

zero because it contains a trace of generators tα, as can be seen in Eq. (4.17). The
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non-singlet contribution from FC11 class in Eq. (4.21) becomes∑
α

tr(ĈFC11tα)Φα = CFC11
∑
α

tr(Q̂fs)tr(Q̂fst
α)Φα

= CFC11
∑
α

tr(Q̂fs)tr(Q̂fst
α)

tr(Q̂2
fst

α)
× tr(Q̂2

fst
α)Φα

= Nffl
ns
11C

FC11 ×
∑
α

tr(Q̂2
fst

α)Φα, (4.26)

where we have used the fact that

tr(Q̂fst
α)

tr(Q̂2
fst

α)
= 3 (4.27)

holds for all diagonal generators tα. The factor flns11 is defined in [64, 71]. The net

non-singlet contribution is∑
α,FC

tr(Ĉtα)Φα = [C(FC2) +Nffl
ns
11C(FC11)]×

[∑
α

tr(Q̂2
f t
α)Φα

]

≡ Cnsqns, (4.28)

where Cns ≡ C(FC2) +Nffl
ns
11C(FC11) and

qns =
∑
α

tr(Q̂2
f t
α)Φα =

∑
i,j,α

e2
i (t

α)iiΦ
+
j/p2(tα)jj

=
∑
i,j

e2
i (δij −

1

Nf

)Φ+
j/p

=

Nf∑
i=1

e2
i (qi + qī −

1

Nf

qs). (4.29)

This is the non-singlet quark PDF. Comparing the factors of the coefficient func-

tions in Eq. (4.28) to the parameterizations of coefficient functions given in [63, 64]

we are able to identify the functions C(FC2) and C(FC11).

Now we turn to the singlet structure function. In this case one should take the

trace of the charge matrices with the unit flavor matrix:

tr(Ĉ)ΦS =

[
C(FC2) +

tr(Q̂f )tr(Q̂f )

tr(Q̂2
f )

C(FC11) + tr(I)C(FC02)

]
×
[
tr(Q̂2

f )ΦS

]
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= [C(FC2) +Nffl
s
11C(FC11) +NfC(FC02)]× tr(Q̂2

f )ΦS

=
〈
e2
〉
Cqqs, (4.30)

where qS ≡ NfΦS is introduced to follow the convention in [63, 64, 71]. Again the

factors of the coefficient functions are as expected. (ΦS = 1
Nf

Nf∑
j

Φ+
j/p)

For gluon contributions the flavor factors are given by the same references above:

CgΦg =

[
tr(Q̂f )

2)

tr(Q̂2
f )

C(FCg
11) + C(FCg

2 )

]
×
[
tr(Q̂2

f )Φg

]
=
[
N2
f fl

g
11C(FCg

11) +NfC(FCg
2 )
]
×
[
tr(Q̂2

f )

Nf

Φg

]
=
〈
e2
〉
Cgg (4.31)

This form has correct factors for coefficient functions and exactly agrees with Eq. (4.32).

Combining the results above we recover the massless expression for structure functions

given in [63,64,71]:

x−1Fa = Cnsqns +
〈
e2
〉

(Cqqs + Cgg). (4.32)

Note that Eqs. (4.28,4.30,4.31,4.32) are in the same form as in [63,64]. Therefore we

can read off C(FC2),C(FC02),C(FC11),C(FCg
2 ), and C(FCg

11) from the coefficient

functions given in these references.
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4.3. Various terms at three loops and the implementation of mass de-

pendence

4.3.1. ZM coefficient functions

The three-loop zero-mass coefficient functions F2 and FL are taken from [64] and

[63]. In these ZM expressions, contributions from all flavor classes are combined. To

implement the mass dependence, these must be broken down to contributions from

different classes. A more delicate breakdown is needed if there is a different mass

dependence between various diagrams within the same flavor class. We first list the

ZM coefficient functions and their breakdown below, then show the corresponding

diagrams and discuss their mass implementation. Note here we follow Ref. [63, 64]

and use the notation cnq = cnns + cnps, i.e., as the sum of non-singlet (”ns”) and pure

singlet (”ps”) contributions. Also we use lowercase notations for functions taken from

the above references. The explicit expressions for the ZM coefficient functions are

c
(3)
2,ns

∼= c
(3),FC2,T1
2,ns + nfc

(3),FC2,T2
2,ns + nf

2c
(3),FC2,T3
2,ns + fl ns

11 nfc
(3),FC11

2,ns , (4.33)

c
(3),FC2,T1
2,ns (x) = 512/27D5 − 5440/27D4 + 501.099D3 + 1171.54D2 − 7328.45D1

+ 4442.76D0 − 9170.38 δ(x1)− 512/27 L5
1 + 704/3 L4

1 − 3368 L3
1

− 2978 L2
1 + 18832 L1 − 4926 + 7725 x+ 57256 x2 + 12898 x3

− 56000 x1L
2
1 − L0L1(6158 + 1836 L0) + 4.719 xL5

0 − 775.8 L0

− 899.6 L2
0 − 309.1 L3

0 − 2932/81 L4
0 − 32/27 L5

0, (4.34)

c
(3),FC2,T2
2,ns (x) = 640/81D4 − 6592/81D3 + 220.573D2 + 294.906D1 − 729.359D0
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+ 2574.687 δ(x1)− 640/81 L4
1 + 153.5 L3

1 − 828.7 L2
1 − 501.1 L1 + 831.6

− 6752 x− 2778 x2 + 171.0 x1L
4
1 + L0L1 (4365 + 716.2 L0 − 5983 L1)

+ 4.102 xL4
0 + 275.6 L0 + 187.3 L2

0 + 12224/243 L3
0 + 728/243 L4

0 , (4.35)

c
(3),FC2,T3
2,ns (x) = 64/81D3 − 464/81D2 + 7.67505D1 + 1.00830D0 − 103.2366 δ(x1)

− 64/81 L3
1 + 18.21 L2

1 − 19.09 L1 + 129.2 x+ 102.5 x2 + L0L1 (−96.07

− 12.46 L0 + 85.88 L1)− 8.042 L0 − 1984/243 L2
0 − 368/243 L3

0 , (4.36)

c
(3),FC11

2,ns (x) = {(126.42− 50.29x− 50.15x2)x1 − 11.888 δ(x1)− 26.717− 9.075xx1L1

− xL2
0(101.8 + 34.79 L0 + 3.070 L2

0) + 59.59 L0 − 320/81 L2
0(5 + L0) } x .

(4.37)

c
(3)
2,ps

∼= nfc
(3),FC02,T1
2,ps + n 2

f c
(3),FC02,T2
2,ps + fl ps

11 nfc
(3),FC11

2,ps , (4.38)

c
(3),FC02,T1
2,ps (x) = (856/81L4

1 − 6032/81L3
1 + 130.57L2

1 − 542L1 + 8501 − 4714x+ 61.5x2)

· x1 + L0L1(8831 L0 + 4162 x1)− 15.44 xL5
0 + 3333 xL2

0 + 1615 L0 + 1208 L2
0

− 333.73 L3
0 + 4244/81 L4

0 − 40/9 L5
0 − x−1(2731.82 x1 + 414.262 L0), (4.39)

c
(3),FC02,T2
2,ps (x) = (−64/81 L3

1 + 208/81 L2
1 + 23.09 L1 − 220.27 + 59.80 x− 177.6x2)x1

− L0L1(160.3 L0 + 135.4 x1)− 24.14 xL3
0 − 215.4 xL2

0 − 209.8 L0 − 90.38L2
0

− 3568/243 L3
0 − 184/81 L4

0 + 40.2426 x1x
−1 , (4.40)

c
(3),FC11

2,ps (x) = {(126.42− 50.29x− 50.15x2)x1 − 11.888 δ(x1)− 26.717− 9.075xx1L1

− xL2
0(101.8 + 34.79 L0 + 3.070 L2

0) + 59.59 L0 − 320/81 L2
0(5 + L0) } x .

(4.41)
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c
(3)
2,g
∼= nfc

(3),FCg
2 ,T1

2,g + n 2
f c

(3),FCg
2 ,T2

2,ps + fl g
11 n

2
f c

(3),FCg
11

2,ps , (4.42)

c
(3),FCg

2 ,T1
2,g (x) = 966/81 L5

1 − 1871/18 L4
1 + 89.31 L3

1 + 979.2 L2
1 − 2405 L1 + 1372 x1L

4
1

− 15729− 310510 x+ 331570 x2 − 244150 xL2
0 − 253.3 xL5

0

+ L0L1(138230− 237010 L0)− 11860 L0 − 700.8 L2
0 − 1440 L3

0

+ 4961/162 L4
0 − 134/9 L5

0 − x−1(6362.54− 932.089 L0)

+ 0.625 δ(x1) , (4.43)

c
(3),FCg

2 ,T1
2,g (x) = 131/81 L4

1 − 14.72 L3
1 + 3.607 L2

1 − 226.1 L1 + 4.762− 190 x− 818.4 x2

− 4019 xL2
0 − L0L1(791.5 + 4646 L0) + 739.0 L0 + 418.0 L2

0 + 104.3 L3
0

+ 809/81 L4
0 + 12/9 L5

0 + 84.423 x−1 , (4.44)

c
(3),FCg

11
2,g (x) = 3.211 L2

1 + 19.04 xL1 + 0.623 x1L
3
1 − 64.47 x+ 121.6 x2 − 45.82 x3

− xL0L1(31.68 + 37.24 L0) + 11.27 x2L3
0 − 82.40 xL0 − 16.08 xL2

0

+ 520/81 xL3
0 + 20/27 xL4

0 . (4.45)

c
(3)
L,ns

∼= c
(3),FC2,T1
L,ns + nfc

(3),FC2,T2
L,ns + n 2

f c
(3),FC2,T3
L,ns + fl ns

11 nfc
(3),FC11

L,ns , (4.46)

c
(3),FC2,T1
L,ns (x) = 512/27 L4

1 − 177.40 L3
1 + 650.6 L2

1 − 2729 L1 − 2220.5− 7884 x

+ 4168 x2 − (844.7 L0 + 517.3 L1)L0 L1 + (195.6 L1 − 125.3) x1 L
3
1

+ 208.3 xL3
0 − 1355.7 L0 − 7456/27 L2

0 − 1280/81 L3
0 + 0.113 δ(x1), (4.47)
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c
(3),FC2,T2
L,ns (x) = 1024/81 L3

1 − 112.35 L2
1 + 344.1 L1 + 408.4− 9.345 x− 919.3 x2

+ (239.7 + 20.63 L1) x1 L
2
1 + (887.3 + 294.5 L0 − 59.14 L1)L0 L1

− 1792/81 xL3
0 + 200.73 L0 + 64/3 L2

0 + 0.006 δ(x1), (4.48)

c
(3),FC2,T3
L,ns (x) = {3 xL2

1 + (6− 25x)L1 − 19 + (317/6− 12 ζ2) x− 6 xL0 L1 + 6x Li2(x)

+ 9 xL2
0 − (6− 50x)L0} 64/81, (4.49)

c
(3),FC11

L,ns (x) = {(107.0 + 321.05 x− 54.62 x2) x1 − 26.717 + 9.773 L0

+ (363.8 + 68.32 L0)xL0 − 320/81 L2
0 (2 + L0)} x . (4.50)

c
(3)
L,ps

∼= nfc
(3),FC02,T1
L,ps + n 2

f c
(3),FC02,T2
L,ps + fl ps

11 nfc
(3),FC11

L,ps , (4.51)

c
(3),FC02,T1
L,ps (x) = (1568/27 L3

1 − 3968/9 L2
1 + 5124 L1) x2

1 + (2184 L0 + 6059 x1)L0 L1

− (795.6 + 1036 x)x2
1 − 143.6 x1 L0 + 2848/9 L2

0 − 1600/27 L3
0

− (885.53 x1 + 182.00 L0)x−1 x1, (4.52)

c
(3),FC02,T2
L,ps (x) = (−32/9 L2

1 + 29.52 L1) x2
1 + (35.18 L0 + 73.06 x1)L0 L1 − 35.24 xL2

0

− (14.16− 69.84 x) x2
1 − 69.41 x1 L0 − 128/9 L2

0

+ 40.239 x−1 x2
1, (4.53)

c
(3),FC11

L,ps (x) = {(107.0 + 321.05 x− 54.62 x2)x1 − 26.717 + 9.773 L0

+ (363.8 + 68.32 L0)xL0 − 320/81 L2
0 (2 + L0)} x . (4.54)

c
(3)
L,g
∼= nfc

(3),FCg
2 ,T1

L,g + n 2
f c

(3),FCg
2 ,T2

L,ps + fl g
11 n

2
f c

(3),FCg
11

L,ps , (4.55)
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c
(3),FCg

2 ,T1
L,g (x) = (144 L4

1 − 47024/27 L3
1 + 6319 L2

1 + 53160 L1) x1 + 72549 L0 L1

+ 88238 L2
0 L1 + (3709− 33514 x− 9533 x2) x1 + 66773 xL2

0

− 1117 L0 + 45.37 L2
0 − 5360/27 L3

0 − (2044.70 x1

+ 409.506 L0) x−1, (4.56)

c
(3),FCg

2 ,T2
L,g (x) = (32/3 L3

1 − 1216/9 L2
1 − 592.3 L1 + 1511 xL1) x1 + 311.3L0 L1

+ 14.24 L2
0 L1 + (577.3− 729.0 x) x1 + 30.78 xL3

0 + 366.0 L0

+ 1000/9 L2
0 + 160/9 L3

0 + 88.5037 x−1 x1, (4.57)

c
(3),FCg

11
L,g (x) = (−0.0105 L3

1 + 1.550 L2
1 + 19.72 xL1 − 66.745 x+ 0.615 x2) x1

+ 20/27 xL4
0 + (280/81 + 2.260 x)xL3

0 − (15.40− 2.201 x) xL2
0

− (71.66− 0.121 x) xL0 . (4.58)

4.3.2. Coefficient functions with phase space corrections

Next, we wish to introduce approximate mass dependence into the ZM coefficient

functions listed in the previous section. To obtain some guidance, let us briefly

review how mass dependence arises in various Feynman diagrams in the GM scheme,

to which our current calculation will provide an approximation. DIS cross sections

receive contributions from diagrams of various orders. For perturbative calculation to

reliably apply, a hard scale represented by Q is required. A perturbative computation

of the cross sections using factorization theorem involves convolving a hard scattering

factor H with a target factor T . It should be stressed again that strictly speaking H

is not the contribution of the graphs with the hard region represented in Fig. 3.5,

rather, it is obtained by making the proper approximation to structure functions to

eliminate all potential large contributions to correction terms that should be power
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suppressed. In this notation the factorized structure function is written as [37,62]

H · Z · T ≡
∑
a

∫
d4k

(2π)4
Ha(q, l)Za(l, k, l̂)Ta(k, p), (4.59)

where there is a sum over parton flavors and an implicit sum over spin indices, which

turns H and T into traces so that the factorization becomes convolution of scalar

functions. A projection operator Z is applied between H and T . It serves to approxi-

mate the momentum entering the hard part by one collinear to the target momentum

with low virtuality. Also it picks out the leading terms in the spin sum. For example,

for initial-state quarks Z operator is

Za(l, k; l̂) =
1

4
(2π)4 SH(l̂)ST δ(l

+ − l̂+)δ(l− − l̂−)δ2(~lT ), (4.60)

where SH(l̂) and ST = γ+ project out the leading spin components and the delta func-

tions select only the large component as the convolution variable and make approxi-

mations about the small components. For a quark with negligible mass as compared

with Q, it suffices to set

l̂µ = p̂µ =
(
ξp+, 0,~0T

)
. (4.61)

Changing the integration variable from l+ to ξ will then turn the integral in Eq. (4.59)

into a convolution over the momentum fraction ξ.

When the massive hard-scattering functions are not fully known, as in our N3LO

calculation, the generic structure of Eq. (4.50), and freedom to select the form of l̂ in

the Z operator can be employed to approximate mass dependence of the factorized

cross sections. To see this let us carefully examine the kinematics of the scattering

process. In Eq. (3.62) the integral over ζ is constrained in the range [x, 1]. The

lower bound is obtained by applying momentum conservation of the hard scattering

process: (p̂ + q)2 ≥ 0. The upper bound follows from the requirement that the
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remnants of the target should have positive energy. However, when the hard and

target parts are connected by a heavy quark line, factorization of structure functions

removes the kinematic constraint of producing pairs of heavy quarks, because one

heavy quark is hidden in the target remnants. This constraint excludes the production

of heavy quarks when the CM energy of the hadron-photon system is below the

production threshold. As a consequence, the lower bound of the integral becomes

χ = x
(

1 + (
∑

fsmh)
2/Q2

)
. The way to enforce this phase space constraint within

the framework of factorization is to set

l̂µ =

(
ξ

p+

1 + (
∑

fsmh)2/Q2
, 0,~0T

)
. (4.62)

Now we can use this feature to construct approximate coefficient functions in the

IM scheme that account for phase space constraints, by writing

CIM (x̂,mh) = CZM (χ̂) θ(χ ≤ ξ ≤ 1), (4.63)

where

χ = x

(
1 +

(
∑

fsmh)
2

Q2

)
. (4.64)

The sum of fs is over all the massive quarks produced in the final state. In the rest of

this section we apply the χ variable to coefficient functions from all the flavor classes.

Note that this notation only includes the mass effect from the scattering kinematics,

while the mass dependence in the hard scattering coefficients are absent. Furthermore,

a generalization of the phase-space constraint( 4.64) has also been developed [65],

which turn it off when the scattering energy W is much larger than mh. We now

introduce this generalized constraint.
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4.3.2.1. Rescaling variable dependence

The phase space constraint( 4.64) for FE term is an approximate constraint, which

leaves a freedom of tuning it by adjusting the form of the momentum l̂µ in Eq. (4.60).

For a given hard scale Q, threshold suppression due to the phase-space constraint

happens at a relatively large x value, where the heavy quark threshold is approached.

At this region the mass effect of phase space is important. It has been argued [65] that

for small x away from the threshold, it is unnecessary to keep using the χ variable for

the FE term. One could generalize the rescaling variable χ to ensure suppression near

threshold and recover the scaling variable x away from it. The generalized “rescaling”

variable that realizes the smooth transition is given also in Ref. [65] by

x = ζ
(

1 + ζλ(
∑

fs
mh)

2/Q2
)−1

, (4.65)

where the new variable ζ has been shown to satisfy x < ζ < χ. The parameter λ

reflects the extent to which ζ differs from the uniform rescaling χ. λ = 0 corresponds

to the choice ζ = χ. The transition from χ to x is more rapid as λ becomes larger.

Note that for heavy-flavor production in the FC channel, the kinematics of the

hard scattering predicts that we should use χ as the rescaling variable for any x.

While this must be enforced in GM scheme calculations, in the IM scheme, we do not

have to stick with it because of lack of massive FC coefficients.

The kinematic constraints depend only on the masses of the quarks in a given

Feynman diagram. They do not alter classification of flavor classes (FC) that was

worked out in Sec. 4.2.3. Once the massive coefficient functions in the FFN scheme

are available, we will replace the approximate phase-space constraints in the flavor-

creation diagrams by the exact ones in the same way as it has been done in the NNLO

GM calculation. We will now list all coefficient functions in the IM scheme, keeping

track of their approximate mass dependence in each flavor class.
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4.3.3. IM coefficient functions

4.3.3.1. FC2 class

(a) (b) (c)

Figure 4.3. Representative diagrams from FC2 class. (a) T1 (b) T2 (c) T3.

C (3),FC2,T1
a,ns = c (3),FC2,T1

a,ns (ζ̂(2m1)), (4.66)

C (3),FC2,T2
a,ns = c (3),FC2,T2

a,ns (ζ̂(2(m1 +m2))), (4.67)

C (3),FC2,T3
a,ns = n′fc

(3),FC2,T3
a,ns (ζ̂(2(m1 +m2))). (4.68)

where a = 2, L. For simplicity, in Eq. (4.68) only the mass of the cut loop is consid-

ered. n′f denotes the number of quark flavors in the uncut quark loop.

When a virtual quark loop appears in a graph, such as the case in Fig. (4.3(c)),

a related issue is to consistently include contributions from various quark flavors in

the loop. If all quark masses could be neglected, then one could simply set the Nf

associated with the loop to be the number of all the quarks known. Unfortunately,

this is not our case. We have already seen how αs(µ) is evolved when µ runs through

the quark masses. Recall that the renormalization equation of αs(µ) follows from

the scale independence of the bare coupling gs 0 = Zgµ
εgs. To evolve αs one varies
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the number of active quark flavors as µ changes. In a consistent calculation of the

hard scattering coefficients, one should also use the same active flavor number in

the renormalization constant Zg to cancel the UV divergences from loop diagrams.

Therefore, we count all the flavors with masses below µ in the loop.

4.3.3.2. FC02 class

(a) (b)

Figure 4.4. Representative diagrams from FC02 class. (a) T1 (b) T2.

C (3),FC02,T1
a,ps = c (3),FC02,T1

a,ps (ζ̂(2(m1 +m2))), (4.69)

C (3),FC02,T2
a,ps = c (3),FC02,T2

a,ps (ζ̂(2(m1 +m2))). (4.70)

In Fig. (4.4(b)) the Nf of the virtual loop is implemented in the same way as in

Fig. (4.3(c)). Note that if m2 is heavy, then this class of diagrams belongs to the FE

contribution. While the phase space correction is to be enforced for the production

of all quarks, the dependence of the coefficients on m2 can be consistently neglected

along with the contribution from the corresponding subtraction terms. However, the

mass dependence on m1 should be retained.
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4.3.3.3. FC11 class

Figure 4.5. Representative diagrams from FC11 class.

C (3),FC11
a,ns = c (3),FC11

a,ns (ζ̂(2(m1 +m2))), (4.71)

C (3),FC11
a,ps = c (3),FC11

a,ps (ζ̂(2(m1 +m2))). (4.72)

The massless expression for pure singlet and non-singlet components are the same for

FC11 class, so we have

C (3),FC11
a,ns = C (3),FC11

a,ps = C(FC11,m1,m2). (4.73)

4.3.3.4. FCg
2 class

C (3),FCg
2 ,T1

a,g = c (3),FCg
2 ,T1

a,g (ζ̂(2m1)), (4.74)

C (3),FCg
2 ,T2

a,g = c (3),FCg
2 ,T2

a,g (ζ̂(2(m1 +m2))), (4.75)

C (3),FCg
2 ,T3

a,g = c (3),FCg
2 ,T3

a,g (ζ̂(2(m1 +m2))). (4.76)
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(a) (b) (c)

Figure 4.6. Representative diagrams from FCg2 class. (a) T1 (b) T2 (c) T3.

Figure 4.7. Representative diagrams from FCg11 class.

4.3.3.5. FCg
11 class

C (3),FCg
11

a,g = c (3),FCg
11

a,g (ζ̂(2(m1 +m2))) (4.77)

The gluon initiated production of massive quarks belongs to the FC channel. The

mass dependence in the coefficients need to be implemented once they are available.
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FC2

cFC2,T1
a,ns (ζ̂(2m1))

cFC2,T2
a,ns (ζ̂2((m1 +m2)))

cFC2,T3
a,ns (ζ̂2((m1 +m2)))

FC02 cFC02,T1
a,ps (ζ̂(2(m1 +m2)))

FC02 cFC02,T2
a,ps (ζ̂(2(m1 +m2)))

FC11

cFC11,T1
a,ns (ζ̂(2(m1 +m2)))

cFC11,T1
a,ps (ζ̂(2(m1 +m2)))

Continued on next page
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continued from previous page

FCg
2

c
FCg

2 ,T1
a,g (ζ̂(2m1))

c
FCg

2 ,T2
a,g (ζ̂(2(m1 +m2)))

c
FCg

2 ,T3
a,g (ζ̂(2(m1 +m2)))

FCg
11 c

FCg
11,T2

a,g (ζ̂(2(m1 +m2)))

Table 4.2: Mass dependence of coefficient functions for various Feynman diagrams

4.4. Scale dependence

So far, the coefficient functions are given at a fixed scale µ = Q. In a perturbative

calculation the structure functions computed to all orders are independent of the scale

choice, while the coefficient functions and PDFs are not. However, real calculations

are done up to some finite order n, in which case the µ dependence of the coefficient

functions and PDFs cancel up to one higher order. The uncertainty caused by this

residual scale dependence is of the same order as the neglected terms in perturbation

series. Generally one would expect the convergence of the scale uncertainty as high

order corrections are included. It will become clear that the scale dependent terms are

proportional to powers of logarithms of the form lnm(µ2/Q2). Therefore the choice
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µ ∼ Q is often preferred since it can speed up the convergence of the calculation.

Nevertheless, the variation of µ can give an estimation of the magnitude of the high

order terms.

As is seen before, the evolution of PDFs are closely related to the splitting func-

tions. Like the hard-scattering coefficients, quark-to-quark splitting functions intro-

duced in Ch. 3 can be decomposed into their NS and PS components,

Pqiqk = Pq̄iq̄k = δikP
V
qq + P S

qq, (4.78)

Pqiq̄k = Pq̄iqk = δikP
V
qq̄ + P S

qq̄, (4.79)

P±NS ≡ P V
qq ± P V

qq̄ . (4.80)

To express the scale dependent terms it is usually convenient to introduce the matrix

form of the splitting functions

P ≡

 Pqq Pqg

Pgq Pgg

 , (4.81)

in which the quark-to-quark splitting function is decomposed into a non-singlet and

a pure-singlet components as

Pqq = P+
NS + PPS, (4.82)

where

PPS = Nf (P S
qq + P S

qq̄) . (4.83)

Other matrix elements are related with the usual splitting functions by

Pqg = Nf Pqig , Pgq = Pgqi . (4.84)

The quark-singlet and gluon components of coefficient functions and PDFs can be

grouped into vectors

C ≡
(
Cs Cg

)
, q ≡

 qs

g

 . (4.85)
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Knowing the coefficient functions at a fixed scale, the expressions for arbitrary µ

can be obtained recursively by expanding all the relevant quantities in terms of a0,

which is defined as

a0 ≡ a(µ = Q), (4.86)

a(µ) ≡ αs(µ)

4π
. (4.87)

The expansions then read

a = A0a0 + A1a
2
0 + A2a

3
0 + · · · , (4.88)

qa = q(0)
a + q(1)

a a0 + q(2)
a a2

0 + . . . , (4.89)

Ca = D(0)
a + D(1)

a a0 + D(2)
a a2

0 + . . . . (4.90)

where all the scale dependence resides in the expansion coefficients. At µ = Q,

coefficient functions and PDFs are denoted by

qa(µ = Q) ≡ qa,0 = q
(0)
a,0 + q

(1)
a,0a0 + q

(2)
a,0a

2
0 + . . . , (4.91)

Ca(µ = Q) ≡ Ca,0 = D
(0)
a,0 + D

(1)
a,0a0 + D

(2)
a,0a

2
0 + . . . . (4.92)

The evolution of a(µ) is governed by the beta function

da

dL
= a(β0a+ β1a

2 + . . .), (4.93)

where L ≡ ln Q2

µ2
. If we plug in Eq. (4.88), we can solve the differential equation for

the coefficients Ai order by order and obtain

a = a0 + β0La
2
0 + (β2

0L
2 + β1)a3

0 + · · · . (4.94)

Similarly, the explicit form of the PDFs can be determined by solving the DGLAP

equation in the following form

dqa
dL

= −P⊗ qa. (4.95)
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To expand RHS we use Eq. (4.89) and

P = P(0)a+ P(1)a2 + P(2)a3 + · · · (4.96)

= P(0)a0 + (β0LP(0) + P(1))a2
0 +

[
(β2

0L
2 + β1L)P(0) + 2β0LP(1) + P(2)

]
a3

0 + · · ·
(4.97)

The first few expansion coefficients of PDFs are found to be

q(0)
a = q

(0)
a,0, (4.98)

q(1)
a = −LP(0) ⊗ q

(0)
a,0 + q

(1)
a,0, (4.99)

q(2)
a =

1

2
(L2P(0) ⊗P(0) − 2LP(1) − β0L

2P(0))⊗ q
(0)
a,0 − LP(0) ⊗ q

(1)
a,0 + q

(2)
a,0, (4.100)

q(3)
a =

[
−1

6
L3P(0) ⊗P(0) ⊗P(0) +

1

2
β0L

3P(0) ⊗P(0) + L2P(0) ⊗P(1)

− (
1

3
β2

0L
3 +

1

2
β1L

2)P(0) − β0L
2P(1) − LP(2)

]
⊗ q

(0)
a,0

+

(
1

2
L2P(0) ⊗P(0) − 1

2
β0L

2P(0) − LP(1)

)
⊗ q

(1)
a,0 − LP(0) ⊗ q

(2)
a,0 + q

(3)
a,0. (4.101)

Now, if we impose scale invariance of the singlet and gluon structure functions

Ca(µ)⊗ qa(µ) = Ca,0 ⊗ qa,0 (4.102)

we can obtain C
(i)
a (µ) for arbitrary µ in terms of C

(i)
a,0 for µ = Q. Up to third order

the coefficients with arbitrary scale are given by

Ca(x, αs(µ), L) = c(0)
a (x) +

3∑
l=1

als

(
c(l)
a (x) +

l∑
m=1

c(l,m)
a (x)Lm

)
+ . . . , (4.103)

with

c(1,1)
a =c(0)

a ⊗P(0),

c(2,1)
a =c(0)

a ⊗P(1) + c(1)
a ⊗ (P(0) − β01),

c(2,2)
a =

1

2
c(1,1)
a ⊗ (P(0) − β01),
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c(3,1)
a =c(0)

a ⊗P(2) + c(1)
a ⊗ (P(1) − β11) + c(2)

a ⊗ (P(0) − 2β01),

c(3,2)
a =

1

2

{
c(1,1)
a ⊗ (P(1) − β11) + c(2,1)

a ⊗ (P(0) − 2β01)

}
,

c(3,3)
a =

1

3
c(2,2)
a ⊗ (P(0) − 2β01) . (4.104)

Similar expressions for the non-singlet coefficient functions can also be derived, in

which case the evolution of the corresponding non-singlet PDF obeys

dqa,NS
dL

= −P+
NS ⊗ qa,NS. (4.105)

In the following we give the NS and PS components of c
(l,m)
a in terms of scale in-

dependent coefficients and splitting functions at N3LO. The non-singlet coefficient

functions are

c
(3,3),NS
2,q =

1

6
P (0)
qq ⊗ P (0)

qq ⊗ P (0)
qq −

1

2
β0P

(0)
qq ⊗ P (0)

qq +
1

3
β2

0P
(0)
qq , (4.106)

c
(3,2),NS
2,q = −1

3
β0c

(1)
2,q ⊗ P (0)

qq +
1

2
c

(1)
2,q ⊗ P (0)

qq ⊗ P (0)
qq + P (1),NS

qq ⊗ P (0)
qq ,

+ β2
0c

(1)
2,q − β0P

(1),NS
qq − 1

2
β1P

(0)
qq , (4.107)

c
(3,1),NS
2,q = c

(2),NS
2,q ⊗ P (0)

qq + c
(1)
2,q ⊗ P (1),NS

qq − β1c
(1)
2,q − 2β0c

(2),NS
2,q + P (2),NS

qq , (4.108)

c
(3,3),NS
L,q = 0 (4.109)

c
(3,2),NS
L,q = −2

3
β0c

(1)
L,q ⊗ P (0)

qq +
1

2
c

(1)
L,q ⊗ P (0)

qq ⊗ P (0)
qq + β2

0c
(1)
L,q, (4.110)

c
(3,1),NS
L,q = c

(2),NS
L,q ⊗ P (0)

qq + c
(1)
L,q ⊗ P (1),NS

qq − β1c
(1)
L,q − 2β0c

(2),NS
L,q . (4.111)

where we have used the leading order result C
(0)
2 (x) = (δ(1−x) 0) and C

(0)
L (x) = (0 0)

to simplify the expressions. Note that the non-zero pure-singlet splitting functions

start to enter at NNLO. The PS functions are given by

c
(3,3),PS
2,q =

1

6
P (0)
qg ⊗ P (0)

gg ⊗ P (0)
gq +

1

6
P (0)
qq ⊗ P (0)

qg ⊗ P (0)
gq +

1

6
P (0)
qg ⊗ P (0)

gq ⊗ P (0)
qq ,

− 1

2
β0P

(0)
qg ⊗ P (0)

gq , (4.112)
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c
(3,2),PS
2,q =

1

2
c

(1)
2,g ⊗ P (0)

gg ⊗ P (0)
gq +

1

2
c

(1)
2,g ⊗ P (0)

gq ⊗ P (0)
qq −

2

3
β0c

(1)
2,g ⊗ P (0)

gq +
1

2
c

(1)
2,q ⊗ P (0)

qg ⊗ P (0)
gq ,

+
1

2
P (1)
qg ⊗ P (0)

gq + P (1),PS
qq ⊗ P (0)

qq − β0P
(1),PS
qq +

1

2
P (0)
qg ⊗ P (1)

gq , (4.113)

c
(3,1),PS
2,q = c

(2)
2,g ⊗ P (0)

gq + c
(2),PS
2,q ⊗ P (0)

qq + c
(1)
2,g ⊗ P (1)

gq + c
(1)
2,q ⊗ P (1),PS

qq − 2β0c
(2),PS
2,q ,

+ P (2),PS
qq , (4.114)

c
(3,3),PS
L,q = 0, (4.115)

c
(3,2),PS
L,q =

1

2
c

(1)
L,g ⊗ P (0)

gg ⊗ P (0)
qg +

1

2
c

(1)
L,g ⊗ P (0)

gq ⊗ P (0)
qq +

1

2
c

(1)
L,q ⊗ P (0)

qg ⊗ P (0)
gq ,

− 2

3
β0c

(1)
L,g ⊗ P (0)

gq , (4.116)

c
(3,1),PS
L,q = c

(2)
L,g ⊗ P (0)

gq + c
(2),PS
L,q ⊗ P (0)

qq + c
(1)
L,g ⊗ P (1)

gq + c
(1)
L,q ⊗ P (1),PS

qq − 2β0c
(2),PS
L,q .

(4.117)

The gluon functions are

c
(3,3)
2,g =

1

6
P (0)
qg ⊗ P (0)

gg ⊗ P (0)
gg +

1

6
P (0)
qq ⊗ P (0)

gg ⊗ P (0)
gg +

1

6
P (0)
qg ⊗ P (0)

gq ⊗ P (0)
qg ,

+
1

6
P (0)
qq ⊗ P (0)

gq ⊗ P (0)
qg −

1

2
β0P

(0)
qg ⊗ P (0)

gg −
1

2
β0P

(0)
qq ⊗ P (0)

qg +
1

3
β2

0P
(0)
qg ,

(4.118)

c
(3,2)
2,g =

1

2
c

(1)
2,g ⊗ P (0)

gg ⊗ P (0)
gg +

1

2
c

(1)
2,g ⊗ P (0)

gq ⊗ P (0)
qg +

1

2
c

(1)
2,q ⊗ P (0)

qg ⊗ P (0)
gg ,

+
1

2
c

(1)
2,q ⊗ P (0)

qq ⊗ P (0)
qg −

2

3
β0c

(1)
2,g ⊗ P (0)

gg −
2

3
β0c

(1)
2,q ⊗ P (0)

qg +
1

2
P (0)
qg ⊗ P (1)

gg ,

+
1

2
P (1)
qg ⊗ P (0)

gg +
1

2
P (0)
qq ⊗ P (1)

qg +
1

2
P (1)
qq ⊗ P (0)

qg + β2
0c

(1)
2,q −

1

2
β1P

(0)
qg − β0P

(1)
qg ,

(4.119)

c
(3,1)
2,g = c

(2)
2,g ⊗ P (0)

gg + c
(2)
2,q ⊗ P (0)

qg + c
(1)
2,g ⊗ P (1)

gg + c
(1)
2,q ⊗ P (1)

qg − β1c
(1)
2,g − 2β0c

(2)
2,g + P (2)

qg ,

(4.120)

c
(3,3)
L,g = 0, (4.121)

c
(3,2)
L,g =

1

2
c

(1)
L,g ⊗ P (0)

gg ⊗ P (0)
gg +

1

2
c

(1)
L,g ⊗ P (0)

gq ⊗ P (0)
qg +

1

2
c

(1)
L,q ⊗ P (0)

qg ⊗ P (0)
gg ,

+
1

2
c

(1)
L,q ⊗ P (0)

qq ⊗ P (0)
qg −

2

3
β0c

(1)
L,g ⊗ P (0)

gg −
2

3
β0c

(1)
L,q ⊗ P (0)

qg + β2
0c

(1)
L,q, (4.122)
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c
(3,1)
L,g = c

(2)
L,g ⊗ P (0)

gg + c
(2)
L,q ⊗ P (0)

qg + c
(1)
L,g ⊗ P (1)

gg + c
(1)
L,q ⊗ P (1)

qg − β1c
(1)
L,g − 2β0c

(2)
L,g.

(4.123)

Therefore, to compute the scale-dependent terms, one needs the splitting functions

as well as coefficients at a fixed scale up to NNLO accuracy. The former can be

found in [35,36], and the latter are given in [63,64]. These publications contain both

analytical expressions of these functions and their approximate forms obtained by

fitting the exact expressions, using much simpler functions in an x range covering

the kinematics of current experiments. Since the scale uncertainty is a higher-order

effect, it suffices to use the approximate functions to compute the convolutions in the

expressions above. Nevertheless, the resulting scale dependent terms at N3LO can

be lengthy and contain harmonic polylogarithms [72] of high weights, which would

slow down further convolution with PDFs when computing the cross sections. Thus,

these parts are also fitted using simpler functions. The expressions for numerical

implementation are given in appendix. A

4.5. Numerical results

In this section I present some of the numerical implications of the implementation

of the N3LO terms, based on the coefficient functions derived in the previous section.

We focus on contributions with charm quarks at HERA, i.e. the most phenomeno-

logically relevant application of our formalism.

4.5.1. µ and λ dependence

In the following discussion we distinguish two definitions of structure functions

with heavy quark contributions, F2c and F2h. F2c is an experimentally measured

semi-inclusive structure function, in which at least one charm quark is observed in

the final state. This function is well-defined only when Q is close to the heavy-quark
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mass mh; it becomes infrared-unsafe at Q � mh. In contrast, F2h includes charm

quark contributions only for diagrams where the incoming photon couples to a charm

quark directly. F2h cannot be measured on its own, but is well-defined in QCD theory.

We have plotted the x dependence of the semi-inclusive structure function F2h

for selected factorization scale choices as well as for selected rescaling variable values

near the charm quark threshold region.

Even at N3LO, the IM predictions show larger dependence on the QCD scale

µ and rescaling parameter λ in Eq.( 4.65), than the numerically stable N2LO GM

prediction. This is expected, given the approximate nature of the IM coefficient

functions. For example, subfigures (a) and (b) in Fig. 4.8 show scale dependence of

NNLO and N3LO predictions in intermediate mass scheme. Here we choose λ = 0.3

in the rescaling variable for all the IM curves. The factorization scales are taken

to be µ2
F = Q2, Q2 + 2m2

c , Q
2 + 4m2

c , for the three curves at each order. Increasing

the scale tends to raise the IM curves by a significant amount compared to the GM

curves. Though there is a slight decreasing trend of the scale uncertainty as higher

order corrections are included, the convergence is much slower than the GM result

in (a). The missing mass dependence in IM scheme clearly plays an important role

for the production of heavy quarks at a Q value near their threshold. Meanwhile,

the scale convergence from NNLO to N3LO is also affected by the evolution of PDFs

and the strong coupling αS, which are evolved only up to NNLO. They give another

source of missing scale dependence at N3LO.

Fig. 4.9 shows the effect due to the variation of λ. Subfigure (a) shows the λ

dependence of the IM predictions at the fixed factorization scale µ2
F = Q2 + 4m2

c .

The predictions are compared with the GM scheme for F2c and F2h. The difference

between these two definitions is due to the contribution from light-quark initiated

production of heavy-quark pairs. The plot shows that the difference is essentially not
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Figure 4.8. Factorization scale dependence of IM and GM schemes up to NNLO (upper

subfigure) and N3LO (lower subfigure).
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noticeable. As is shown before, a large value of λ tends to raise the prediction. There

is no convergence of the uncertainty due to variation of λ. IM predictions with λ of

order 0.2-0.3 are closer to the NNLO GM result than those with λ = 0. This has

been also observed earlier at NLO [65].

4.5.2. Q dependence

The dependence of the structure function F2h on Q is plotted for various schemes

and µ and λ values, as shown in Fig. 4.10. In almost the whole Q spectrum the

kinematic constraint results in an effect of suppression of the N3LO IM curve, when

compared with the N3LO GM curve with the same µ and λ. However, as we have

observed previously, we can get the two predictions much closer by setting µ =

1.36Q and λ = 0.2. Curves obtained in various VFN schemes tend to converge

at large Q, while the FFN curve has a substantial deviation in the same region,

as expected. Therefore, the NNLO IM prediction with λ = 0.2 can be used as a

reasonable approximation to the GM prediction at NNLO.

4.6. Conclusions

In this chapter, we have developed a method to systematically classify and organize

QCD radiative corrections from heavy quark flavors at N3LO. This is the first study

of inclusive DIS with the heavy-quark mass effect from the O(α3
s) corrections in

the S-ACOT-χ scheme. The mass effect is relevant for the measurements at the

LHC such as Higgs production and W and Z productions. The results are useful

for calculations in both general-mass scheme and intermediate mass scheme. The

numerical implementation is at present for IM scheme using the zero-mass coefficient

functions computed by Vermaseren, Vogt, and Moch [63,64]. The programming of the

IM implementation is integrated into the CTEQ fitting code for future use. Once the
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three-loop massive coefficient functions for flavor-creation channels are published, we

will be able to use them and our framework to realize an N3LO factorization in GM

scheme with the full mass dependence. For numerical purpose we have also computed

the three-loop ZM coefficients at an arbitrary factorization scale (Appendix A). The

parameterization of these functions have not been given explicitly in previous works.

In our numerical calculations, we have found that the IM structure function con-

verges to the ZM scheme calculation at large Q, as expected. However, near the heavy

quark production threshold, both IM and ZM schemes cannot give reliable predic-

tions due to missing of mass dependence from coefficient functions. In particular,

the factorization scale uncertainty of the IM scheme does not converge from NLO to

N3LO calculations. The uncertainty due to variation of the rescaling variable λ shows

the same pattern. These observations tell us that the high order corrections in IM

scheme are not reliably small near the heavy quark threshold. Combining them with

lower order calculation in IM or GM schemes will not improve the accuracy of the

calculation. Nevertheless, we have found that we can vary the scale µ together with

λ in IM scheme to mimic the reliable prediction from the GM scheme. The preferred

values over the range 1.5GeV< Q <30GeV are found approximately to be µ = 1.36Q

and λ = 0.2.
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Chapter 5

TMD factorization

QCD factorization methods utilizing transverse-momentum-dependent (TMD) par-

ton distributions and fragmentation functions provide a powerful framework for de-

scribing multiscale observables in high-energy hadron interactions. Production of

Drell-Yan lepton-antilepton pairs in Z/γ∗ boson production in hadron-hadron colli-

sions is one basic process in which TMD factorization is applied. In this chapter,

we present a detailed analysis of the factorization for Drell-Yan production of vector

bosons at hadron colliders, and examine the issue with evolution of the cross section

at small transverse momentum where nonperturbative contribution to the cross sec-

tion becomes important1. We first review the factorization of Drell-Yan process in

various cases, then we extend a popular formalism of TMD factorization to perform

a phenomenological study using data from hadron colliders.

5.1. Factorization in Drell-Yan process

In Drell-Yan process hA(pA)hB(pB) → ll̄(q)X, the produced vector boson with

momentum qµ decays into a pair of leptons. As long as Q ≡
√
q2 is sufficiently larger

than the infrared QCD scale Λ, the leading contribution to the cross section comes

from the region of the form in Fig. 5.1, where the vector boson decay belongs to the

hard part of the diagram. The cross section of this process then reads

dσ

dQ2
=
∑
a,b

∫
dξAdξBfa/A(ξA)fb/B(ξB)

dσ̂

dQ2
+ power suppressed terms (5.1)

1The discussion here is mostly from a work by M. Guzzi, P. Nadolsky, and B. Wang [73]
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Figure 5.1. Leading region of Drell-Yan process when the transverse momentum of

the lepton pair is large or not observed.
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where dσ̂/dQ2 represents the cross section of the parton level process in the center of

Fig. 5.1. This factorization formula works equally well for differential cross sections

with respect to other kinematic variables of the vector boson such as the rapidity y,

and lepton angular variables. It also works for distributions in transverse momentum

QT with a value comparable to the hard scale Q. However, this is no longer the

case if the phase space contains multiple momentum scales that are well separated.

For instance, if one carries out to a fixed order O(αns ) a perturbative calculation of

the distribution of the vector boson’s transverse momentum QT , using (collinear)

factorization similar to Eq. 5.1, the resulting cross section contains large logarithms

up to αns ln2n−1(Q2
T/Q

2). Therefore, the perturbation series fails to converge and the

cross section blows up as QT/Q → 0, which is not supported by data from exper-

iment. People seek to develop a more intricate factorization procedure to separate

factors that depend on various scales. The proper evolution of these factors resums

the large log terms to all orders and results in a convergent cross section. Such a

factorization/resummation formalism has first been developed in the classical papers

by Collins, Soper, and Sterman (CSS) [1,15–18] . The pictorial description of factor-

ization at small QT is shown in Fig. 5.2, where a soft factor S is separated from the

lepton-vector boson vertex and contains the all order sum of the large logarithms.

An important distinction of factorization in Fig. 5.2 from the collinear factoriza-

tion in Fig. 5.1 is that the latter fails to include the contribution from radiated soft

gluons with small transverse momenta of order QT , while the former accounts for this

contribution by enforcing the conservation of transverse momenta and using trans-

verse momentum dependent (TMD) distributions for the partons. The cross section

takes the form
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Figure 5.2. Leading region of Drell-Yan process for small transverse momentum of

the lepton pair .
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dσ

dQ2dydQT

=
∑
a,b

Ha,b(Q
2)

∫
dkATdkBTdkSTPa/A(kAT )Pb/B(kBT )S(kST )

× δ2(QT − kAT − kBT − kST ) + power suppressed terms, (5.2)

where Ha,b, S, Pa/A, and Pb/B correspond to the hard, soft, and the collinear factors,

respectively, in Fig. 5.2, and the transverse momenta of the soft and collinear factors

are denoted by kST , kAT , and kBT .

As we have seen, the Collinear QCD factorization is applicable for describing

lepton pairs with QT of order of the invariant mass Q of the pair. The respective

large-QT cross sections have been computed up to two loops in the QCD coupling

strength αs [74–77] and are in reasonable agreement with the data.

But, at small QT , all-order resummation of large logarithms ln(QT/Q) needs to be

performed [78–80] to obtain sensible cross sections. TMD factorization, such as the

CSS formalism, provides a systematic framework for QT resummation to all orders

in αs. The resummed cross sections have been computed at various QCD orders in

the CSS formalism and kindred approaches [76, 77, 81–90]. In addition to perturba-

tive radiative contributions, the resummed cross sections include a nonperturbative

component associated with QCD dynamics at momentum scales below 1 GeV. Un-

derstanding of the nonperturbative terms is important for tests of TMD factorization

and precision studies of electroweak boson production, including the measurement of

W boson mass [91].

Instead of measuring QT distributions directly, one can measure the distribu-

tion in the angle φ∗η [92] that is closely related to QT/Q. The φ∗η distributions have

been recently measured both at the Tevatron [21] and Large Hadron Collider [19,20].

Small experimental errors of the φ∗η measurements (as low as 0.5%) allow one to

test the QT resummation formalism at an unprecedented level. On the theory side,
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the small-QT resummed form factor for Z boson production has been computed to

NNLL/NNLO [93]. We would like to confront precise theoretical predictions imple-

mented in programs Legacy and ResBos [94–96] by the new experimental data to

obtain quantitative constraints on the nonperturbative contributions.

Such analysis is technically challenging and requires to examine several effects

that were negligible in the previous studies of the resummed nonperturbative terms

[94,96,97]. The framework for the fitting for Drell-Yan processes in the CSS formalism

must be extended to the φ∗η, rather than QT , distributions. Nonperturbative effects

must be distinguished from comparable modifications by NNLO QCD corrections and

NLO electroweak (EW) corrections.

To carry out this study, we modified the QT resummation calculation employed in

our previous studies to evaluate NNLO QCD (α2
s) and NLO EW (αEW ) perturbative

contributions and consider the residual QCD scale dependence associated with higher-

order terms. This implementation was utilized to determine the nonperturbative

factor from the DØ Run-2 data on the φ∗η distributions.

Our findings shed light on several questions raised in recent studies of TMD fac-

torization [98–110] and soft-collinear-effective (SCET) theory [111–113]. We examine

if the φ∗η data corroborate the universal behavior of the resummed nonperturbative

terms that is expected from the TMD factorization theorem [18] and was observed

in the global analyses of Drell-Yan QT distributions at fixed-target and collider en-

ergies [96, 97]. We also investigate the rapidity dependence of the nonperturbative

terms, which may be indicative of new types of higher-order contributions [114]. It

has been argued [77, 88–90, 115] that the evidence for nonperturbative smearing is

inconclusive at the NLL+NLO level because of a large scale dependence. To address

this point, we fully include the scale dependence in the resummed cross section up to

O(α2
s), i.e. NNLL/NNLO. We argue that the impact of the power-suppressed contri-
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butions is generically distinct from the scale dependence: the nonperturbative effects

can be distinguished from the NNLO scale uncertainties.

A significant nonperturbative component that we find is consistent with a universal

quadratic (Gaussian) power-suppressed contribution of the magnitude corroborated in

2005 [97]. The DØ data are precise enough and may be able to distinguish between the

Gaussian and alternative nonperturbative functions that have been recently proposed

[116].

The current chapter documents this analysis in detail and is organized as fol-

lows. Section 5.2 reviews the relation between the φ∗η angle and transverse momen-

tum QT in the Collins-Soper-Sterman notations (Sec. 5.2.1), general structure of the

resummed cross section and estimation of NNLO contributions and their scale depen-

dence (Secs. 5.2.2, 5.2.3, 5.2.4), nonperturbative model (Sec. 5.2.5), matching of the

small-QT and large-QT terms (Sec. 5.2.6) and photon radiation (Sec. 5.2.7). Next, in

Sec. 5.3, the size of the nonperturbative contributions is estimated by a χ2 analysis

of the DØ data in three bins of vector boson rapidity (yZ), by applying two different

methods to examine the scale dependence of the resummed cross section. By using

the constraining power of this data set, we suggest a Gaussian smearing factor suit-

able for W and Z production, and we give an estimate at 68% C.L. for the leading

parameter of the NP functional form. We provide the user with several sets of grids

of theory predictions for phenomenological applications based on CT10 NNLO [117]

PDF eigenvector grids and for scans of the nonperturbative smearing function and

estimates of its uncertainty in future measurements.
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5.2. Overview of the resummation method

5.2.1. Relation between QT and φ∗η variables

The CSS resummation formalism predicts fully differential distributions in elec-

troweak boson production, including decay of heavy bosons. While the original for-

mulation of the CSS formalism deals with resummation of logarithms dependent on

the boson’s transverse momentum QT , it can be readily extended to resum angular

variables of decay particles. One such variable is the azimuthal angle separation ∆ϕ

of the leptons in the lab frame, which approaches π (back-to-back production of lep-

tons in the transverse plane) when QT → 0. Consequently, the region ∆ϕ → π is

sensitive to small-QT resummation [95].

Recently, an angular variable φ∗η was proposed in [92] that has an experimental

advantage compared to QT and ∆ϕ. The φ∗η variable is not affected by the experimen-

tal resolution on the magnitudes of the leptons’ (transverse) momenta that limits the

accuracy of the QT measurement. Soft and collinear resummation for the φ∗η distribu-

tion can be worked out either analytically [88–90, 115] or numerically by integrating

the resummed QT distribution over the leptons’ phase space.

To describe decays of massive bosons, the CSS formalism [95] usually operates

with the lepton polar angle θCS and azimuthal angle ϕCS in the Collins-Soper (CS)

reference frame [118]. The CS frame is a rest frame of the vector boson in which the

z axis bisects the angle formed by the momenta ~p1 and -~p2 of the incident quark and

antiquark. In the CS frame, the decay leptons escape back-to-back (~l1 +~l2 = 0), and

the electron’s and positron’s 4-momenta are

lµ1 |CS frame = (Q/2) {1, cosϕCS sin θCS, sinϕCS sin θCS, cos θCS} , (5.3)
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and

lµ2 |CS frame = (Q/2) {1,− cosϕCS sin θCS,− sinϕCS sin θCS,− cos θCS} . (5.4)

On the other hand, the angular variable φ∗η is defined in a different frame (“η

frame”), in which the leptons escape θ∗η and π−θ∗η with respect to the incident beams

direction. The η frame is related to the lab frame by a boost β = tanh((η1 + η2) /2)

along the incident beam direction, where η1 and η2 are the pseudorapidities of l− and

l+ in the lab frame. The frame coincides with the CS frame when QT = 0. Knowing

the polar angle θ∗η in the η frame and the difference ∆ϕ = ϕ1 − ϕ2 of the lepton’s

azimuthal angles in the transverse plane to the beam direction, one defines

φ∗η = tan (φacop/2) sin θ∗η (5.5)

in terms of the acoplanarity angle φacop = π −∆ϕ. We write cos θ∗η as a function of

the lepton momenta in the lab frame as

cos θ∗η = tanh

(
η1 − η2

2

)
=

√
l+1 l
−
2 −

√
l−1 l

+
2√

l+1 l
−
2 +

√
l−1 l

+
2

=
f (cos θCS)− f (− cos θCS)

f (cos θCS) + f (− cos θCS)
, (5.6)

where l±1,2 = (l01,2 ± lz1,2)/
√

2,

f(cos θCS) ≡
√
M2

T + 2MTQ cos θCS +Q2 cos2 θCS −Q2
T sin2 θCS cos2 ϕCS, (5.7)

and M2
T = Q2 +Q2

T . We also write cos ∆ϕ as

cos ∆ϕ = (Q2
T −Q2 sin2 θCS −Q2

T sin2 θCS cos2 ϕCS)
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×[(Q2 sin2 θCS +Q2
T sin2 θCS cos2 ϕCS +Q2

T )2 − 4M2
TQ

2
T sin2 θCS cos2 ϕCS]−

1
2 .(5.8)

In the limit QT → 0, φ∗η simplifies to

φ∗η ≈ (QT/Q) sinϕCS, (5.9)

since tan(φacop/2) =
√

(1 + cos ∆ϕ) /(1− cos ∆ϕ), and

θ∗η → θCS, cos ∆ϕ→ −1 + 2

(
QT

Q

sinϕCS
sin θCS

)2

. (5.10)

Measurement of φ∗η thus directly probes QT/Q.2

Relations like these can analytically express the φ∗η distribution in terms of the

QT distribution, but in practice it is easier to compute the φ∗η distribution by Monte-

Carlo integration in ResBos code. In this case, the interval of small QT/Q maps

onto the region of small φ∗η values. For example, in Z production at Q ≈ MZ , the

range 10−3 ≤ φ∗η ≤ 0.5 radians corresponds to 0.1 . QT . 50 GeV.

5.2.2. General structure of the resummed cross section

The resummed cross sections that we present are based on the calculation in

[81, 94–96] with added higher-order radiative contributions (Secs. 5.2.3, 5.2.4) and

a modified nonperturbative model (Sec. 5.2.5). We write the fully differential cross

section for Z boson production and decay as

2The asymptotic relation between φ∗η and QT /Q can alternatively be obtained by introducing

the component aT of ~QT along the thrust axis n̂ = (~l1,T −~l2,T )/|~l1,T −~l2,T |, where ~l1,T and ~l2,T are

the transverse momenta of e− and e+, and identifying aT = QT sinϕCS at QT → 0 [89,90,92,119].
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dσ
(
h1h2 → (Z → `¯̀)X

)
dQ2 dyZ dQ2

T d cos θCS dϕCS
=

4∑
α=−1

Fα (Q,QT , y)Aα (θCS, ϕCS) (5.11)

in terms of the structure functions Fα(Q,QT , yZ) and angular functions Aα(θCS, ϕCS).

The variables Q, QT , and yZ correspond to the invariant mass, transverse momentum,

and rapidity of the boson in the lab frame; θCS and ϕCS are the lepton decay angles

in the CS frame. Among the structure functions Fα, two (associated with the angular

functions A−1 = 1 + cos2 θCS and A3 = 2 cos θCS) include resummation of soft and

collinear logarithms in the small-QT limit. For such functions, we write

Fα(Q,QT , yZ) = Wα(Q,QT , yZ ;C1/b, C2Q,C3/b) + Yα(Q,QT , yZ ;C4Q), (5.12)

where

Wα(Q,QT , yZ) =

∫
d2b

4π2
ei
~QT ·~b

∑
j=u,d,s...

W̃α,j(b,Q, yZ) (5.13)

is introduced to resum small-QT logarithms to all orders in αs. The W term de-

pends on several auxiliary QCD scales C1/b, C2Q, and C3/b with constant coefficients

C1,2,3 ≈ 1 that emerge from the solution of differential equations describing renormal-

ization and gauge invariance of QT distributions [1,15]. Yα(Q,QT , yZ ;C4Q) is a part

of the non-singular remainder, or ”the Y term”. It depends on a factorization and

renormalization momentum scale C4Q.

The Fourier-Bessel integral over the transverse position b in theW term in Eq. (5.13)

acquires contributions from the region of small transverse positions 0 ≤ b . 1 GeV−1,

where the form factor can be approximated in perturbative QCD, and the region
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b & 1 GeV−1, where the perturbative expansion in the QCD coupling αs(1/b) breaks

down, and nonperturbative methods are necessitated. In Z boson production, the

small-b perturbative contribution dominates the Fourier-Bessel integral for any QT

value [80,97,120]. At QT below 5 GeV, the production rate is also mildly sensitive to

the behavior in the b > 0.5 GeV−1 interval, where the full expression for W̃α,j(b,Q)

is yet unknown.

The constraining of the non-perturbative factor is deteriorated by various un-

certainties from theory and from experiment. To determine the acceptable large-b

forms of W̃α,j(b,Q) by comparison to the latest Z boson data, we need to update

the leading-power contribution to W̃α,j(b,Q, yZ) computable in perturbative QCD,

denoted by W̃ pert
α,j (b,Q, yZ), by considering additional QCD and electromagnetic cor-

rections and dependence on QCD factorization scales. In particular, scale dependence

in the perturbative form factor W̃ pert may smear sensitivity to the nonperturbative

factor [76, 88, 93, 115]. We will review the perturbative contributions in the next two

subsections.

5.2.3. Perturbative coefficients for canonical scales

For a particular “canonical” combination of the scale parameters, the perturbative

contributions simplify; the resummed form factor at b� 1 GeV−1 takes the form

W̃ pert
α,j (b,Q, yZ) =

∑
j=u,d,s...

|Hα,j(Q,Ω, Q)|2 exp [−S(b,Q)]

×
∑
a=g,q,q̄

[
Cja ⊗ fa/h1

]
(χ1, µF )

∑
b=g,q,q̄

[
Cj̄b ⊗ fb/h2

]
(χ2, µF )(5.14)

in terms of a 2→ 2 hard part |Hα,j(Q,Ω, Q)|2, Sudakov integral
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S(b,Q) =

∫ Q2

b20/b
2

dµ̄2

µ̄2

[
A(µ̄) ln

(
Q2

µ̄2

)
+B(µ̄)

]
, (5.15)

and convolutions
[
Cj/a ⊗ fa/h

]
of Wilson coefficient functions Cj/a and PDFs fa/h for

a parton a inside the initial-state hadron h. The convolution integral is defined by

[
Cja ⊗ fa/h

]
(χ, µF ) =

∫ 1

x

dξ

ξ
Cja
(
χ

ξ
, µF

)
fa/h(ξ, µF ). (5.16)

In Eq. (5.16) the convolution depends on the momentum fractions χ1,2 that reduce

to x
(0)
1,2 ≡ (Q/

√
s)e±yZ in the limit Q2

T/Q
2 → 0, as explained in Sec. 5.2.6, as well as

on the factorization scale µF = b0/b. Some scales are proportional to the constant

b0 = 2e−γE = 1.123..., where γE = 0.577... is the Euler-Mascheroni constant.

The functions Hα,j, A, B, and C can be expanded as a series in the QCD coupling

strength,

Hα,j(αs(µ̄)) = 1 +
∞∑
n=1

(
αs(µ̄)

π

)n
H

(n)
α,j , A(αs(µ̄)) =

∞∑
n=1

(
αs(µ̄)

π

)n
A(n) , etc.

(5.17)

Some perturbative contributions can be moved between the hard function Hα,j and

Sudakov exponential depending on the resummation scheme [84]. In the Collins-

Soper-Sterman (CSS) resummation scheme, Hα,j(αs) = 1 to all αs orders. In the

Catani-De Florian-Grazzini (CFG) resummation scheme, Hα,j(αs) includes hard vir-

tual contributions starting at O(αs), while the Sudakov exponential depends only

on the type of the initial-state particle (quark or gluon) that radiates soft emissions.

In Drell-Yan production, differences between the CSS and CFG schemes are small,

below 1% in the kinematic region explored. We carry out the analysis in the CSS
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scheme, but the nonperturbative function that we obtain can be readily used with

the CFG scheme.

The functions A and B for the canonical choice of scales are evaluated up to O(α3
s)

and O(α2
s) respectively, using their known perturbative coefficients [35,121–125]. The

three-loop coefficient A(3) provided in [35] is included, but has a weak effect on the

cross section (3% at QT ≈ 2 GeV). The coefficient A(3) has been also derived within

the soft-collinear effective theory [126], and a somewhat different expression was ob-

tained. We do not use the SCET expression for A(3), as the SCET representation for

W̃ pert contains an extra scale-dependent term already at order αs that is absent in

the expansion in the CSS or CFG resummation schemes. The additional term arises

from the “collinear anomaly” generated by breaking of the symmetry of the SCET

Lagrangian by regulators of loop integrals [126–129]. It does not appear in the ex-

pansion of W̃ pert in the CSS scheme, suggesting that the resummation scheme of the

SCET derivation is different, and consequently the perturbative Sudakov coefficients

are different, too. In any case, A(3) has inappreciable influence on the conclusions.

The Wilson coefficient functions C(i) are computed exactly up to O(αs) and ap-

proximately to O(α2
s). Most of our numerical results were obtained with the O(α2

s)

approximation for the Wilson coefficient before the exact O(α2
s) result were pub-

lished [76,77,93]. This expression is constructed by using a numerical approximation

for the canonical part of the Wilson coefficient at O(α2
s) and exact expression for its

dependence on soft scales. Our a posteriori comparison shows the approximation to

be close to the exact expression, cf. the next subsection.

The Y contribution in Eq. (5.13) is defined as the difference between the fixed-

order perturbative QT distribution calculation and the asymptotic distribution ob-

tained by expanding the perturbative part W̃ pert up to the same order. It is given

by
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Yα(QT , Q, yZ) =

∫
dξ1

ξ1

∫
dξ2

ξ2

∞∑
n=1

[
αs(C4Q)

π

]n
×

fa/h1(ξ1, C4Q) R
(n)
α,ab (QT , Q, yZ ; ξ1, ξ2, C4Q) fb/h2(ξ2, C4Q), (5.18)

where the functions R
(n)
α,ab are integrable when QT → 0, and their explicit expressions

for all contributing α to O(αs) can be found in [17,95]. The O(α2
s) contribution to the

dominant structure function Y−1 is included using the calculation in [74,120]. O(α2
s)

corrections to the other structure functions in the Y term are essentially negligible in

the small-QT region of our fit.

5.2.4. Perturbative coefficients for arbitrary scales

The resummed form factor in Eq. (5.14) can be generalized to allow variations in

the arbitrary factorization scales arising in the solution of Collins-Soper differential

equations. At small b, the scale-dependent expression takes the form

W̃ pert
α,j =

∑
j=u,d,s...

|Hα,j(Q,Ω, C2Q)|2 exp

[
−
∫ C2

2Q
2

C2
1/b

2

dµ̄2

µ̄2
A(µ̄;C1) ln

(
C2

2Q
2

µ̄2

)
+B(µ̄;C1, C2)

]

×
∑
a=g,q,q̄

[
Cja ⊗ fa/h1

](
χ1,

C1

C2

,
C3

b

) ∑
b=g,q,q̄

[
Cj̄b ⊗ fb/h2

](
χ2,

C1

C2

,
C3

b

)
, (5.19)

where the coefficients C1 = bµ̄ and C2 = µ̄/Q are associated with the lower and upper

integration limits in Eq. (5.19), while µF = C3/b is the factorization scale at which

Wilson coefficient functions are evaluated. The “canonical” representation adopted

in Eq. (5.14) corresponds to C1 = C3 = b0 and C2 = 1. For the rest of the discussion,

we use the same scale C2Q to compute the hard function Hα,j and the Y term, i.e.

set C4 = C2.
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The perturbative coefficients A(n), B(n), and C(n) are generally dependent on the

scale coefficients, but the full form factor W̃ pert is independent when expanded to a

fixed order in αs. We can therefore reconstruct the perturbative coefficients order-

by-order for arbitrary C1, C2, C3 if we know the canonical values of the coefficients,

indicated by the superscript “(c)”.

By truncating the series at O(α2
s), we must have

W̃ (b,Q,C1, C2, C3)|O(α2
s)= W̃ (b,Q,C1 = C3 = b0, C2 = 1)|O(α2

s). (5.20)

Making a series expansion on both sides of Eq. (5.20), we find the following relations

by equating the coefficients in front of each power of log (b2Q2):

A(1)(C1) = A(1,c); (5.21)

A(2)(C1) = A(2,c) − A(1,c)β0 ln
b0

C1

; (5.22)

A(3)(C1) = A(3,c) − 2A(2,c)β0 ln
b0

C1

− A(1,c)

2
β1 ln

b0

C1

+ A(1,c)β2
0

(
ln
b0

C1

)2

;(5.23)

B(1)(C1, C2) = B(1,c) − A(1,c) ln
b2

0C
2
2

C2
1

; (5.24)

B(2)(C1, C2) = B(2,c) − A(2,c) ln
b2

0C
2
2

C2
1

+ β0

[
A(1,c) ln2 b0

C1

+B(1,c) lnC2 − A(1,c) ln2C2

]
; (5.25)

C(1)
ja

(
ξ,
C1

C2

, C3

)
= C(1,c)

ja (ξ) + δjaδ(1− ξ)
{
B(1,c)

2
ln
b2

0C
2
2

C2
1

− A(1,c)

4

(
ln
b2

0C
2
2

C2
1

)2
}

− P
(1)
ja (x) ln

µF b

b0

; (5.26)

C(2)
ja

(
ξ,
C1

C2

, C3

)
= C(2,c)

ja (ξ) + δjaδ(1− ξ)L(2)(C1, C2)
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+

{
β0

2
C(1,c)
jb (ξ)− [C(1,c)

jb ⊗ P (1)
ba ](ξ)− P (2)

ja (ξ)

}
ln
µF b

b0

+
1

2
[P

(1)
jb ⊗ P

(1)
ba ](ξ) ln2 µF b

b0

. (5.27)

Here the beta-function coefficients for Nc colors and Nf flavors are β0 = (11Nc −
2Nf )/6, β1 = (17N2

c −5NcNf−3CFNf )/6, CF = (N2
c −1)/(2Nc). P

(n)
ja (ξ) is a splitting

function of order n. The term L(2)(C1, C2) in C(2)
ja realizes the exact dependence on

the soft scale constants C1 and C2:

L(2)(C1, C2) ≡ 1

32
(A(1,c))2 log4

(
b2

0C
2
2

C2
1

)
− 1

8
A(1,c)β0 log

(
b2µ2

F

b2
0

)
log2

(
b2

0C
2
2

C2
1

)
− 1

8
A(1,c)B(1,c) log3

(
b2

0C
2
2

C2
1

)
− 1

24
A(1,c)β0 log3

(
b2

0C
2
2

C2
1

)
− 1

4
A(1,c)δC1c log2

(
b2

0C
2
2

C2
1

)
− 1

4
A(2,c) log2

(
b2

0C
2
2

C2
1

)
+

1

4
β0B

(1,c) log

(
b2µ2

F

b2
0

)
log

(
b2

0C
2
2

C2
1

)
+

1

8
(B(1,c))2 log2

(
b2

0C
2
2

C2
1

)
+

1

8
β0B

(1,c) log2

(
b2

0C
2
2

C2
1

)
+

1

2
B(1,c)δC1c log

(
b2

0C
2
2

C2
1

)
+

1

2
B(2,c) log

(
b2

0C
2
2

C2
1

)
. (5.28)

The dependence on C3 is small already at O(αs). The canonical coefficients in the

CSS scheme are [95]

A(1,c) = CF ; B(1,c) = −3

2
CF ; A(2,c) = CF

[(
67

36
− π2

12

)
CA −

5

18
Nf

]
;

B(2,c) = C2
F

(
π2

4
− 3

16
− 3ζ3

)
+ CACF

(
11

36
π2 − 193

48
+

3

2
ζ3

)
+

1

2
CFNf

(
−π

2

9
+

17

12

)
,

(5.29)

and δC(1,c) = − ln2(C1/(b0C2)e−3/4) + π2/4− 23/16.
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The expression for C(2)
ja (ξ, C1/C2, C3) in Eq. (5.27) is more complex than for the

other coefficients. From the fixed-order NNLO calculation [130] we know that the

contribution C(2)
ja is small in magnitude (2-3% of the cross section) in Z production and

does not vary strongly with yZ [75], hence has weak dependence on ξ. Its importance

is further reduced in the computation of the normalized φ∗η distributions that we will

work with.

Knowing this, we approximate C(2)
ja (ξ, C1/C2, C3) as

C(2)
ja (ξ, C1/C2, C3) ≈

{
〈δC(2,c)〉+ L(2)(C1, C2)

}
δ(1− ξ) δja, (5.30)

where 〈δC(2,c)〉 denotes the average value of the Wilson coefficient in Z production

for the canonical scale combination and L(2)(C1, C2) is the same as in Eq.(5.28). It

is estimated from the requirement that the resummed cross section reproduces the

fixed-order prediction for the computation of the invariant mass distribution, which is

known since a long time [131] and was evaluated in our analysis by the computer code

Candia [132,133] 3. The second term in Eq. (5.30) realizes the exact dependence on

soft scale constants C1 and C2. The ξ dependence of C(2)
ja (ξ, C1/C2, C3) is neglected

in this approximation. The C3 dependence is included to O(αs) and is of the same

order as the O(α2
s) dependence on C1 and C2.

The part δC(2,c)
ja of C(2,c)

ja proportional to δjaδ(1 − ξ) can be determined from the

calculation in [93] as

δC(2)
qq,c = CACF

(
59

18
ζ3 −

1535

192
+

215

216
π2 − π4

240

)
+

1

4
C2
F

(
−15ζ3 +

511

16
− 67π2

12
+

17

45
π4

)
− 1

16

(
π2 − 8

)2
C2
F +

1

864
CFNf

(
192ζ3 + 1143− 152π2

)
, (5.31)

3Other computer codes are also publicly available at this purpose: DYNNLO [76,86] and Vrap

[75].
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Figure 5.3. Dependence of Z boson QT distribution on the scale parameter C2 at

O(α2
s) and O(αs).

where ζ3 = 1.20206..., CF = (N2
C − 1)/(2NC), CA = NC . Using the following relation

in the CFG formalism:

HDY
α,j = 1 +

αs(Q)

π
HDY (1) +

α2
s(Q)

π2
HDY (2) + . . . , (5.32)

one can estimate that the impact on HDY
q due to the inclusion of the O(α2

s) virtual

corrections H
DY (2)
q at Q ≈ MZ is about 2%. This correction is of the same order as

the magnitude of the effect of about 1% from the averaged coefficient 〈δC(2,c)〉 in our

calculation. This approximation is valid in the kinematic region of W/Z production.

The full expression for C(2,c)
ja (ξ) can be implemented in the future numerical work

when the experimental errors further decrease.
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The effect of the inclusion of scale-dependent terms at O(α2
s) is illustrated in

Fig. 5.3 for the QT differential cross section for Tevatron Z production at the central

rapidity yZ = 0 and Q = MZ . The orange solid band is the O(αs) uncertainty

obtained by variations of C2 in the range 0.5− 2, while the blue dot-dashed band is

the same uncertainty evaluated at O(α2
s). The sensitivity of the cross section to C2

is clearly reduced upon the inclusion of the O(α2
s) contribution.

5.2.5. Nonperturbative resummed contributions

Our fit to the φ∗η will adopt a simple flexible convention [97] for W̃α(b,Q) at

b & 1 GeV−1 that can emulate a variety of functional forms arising in detailed non-

perturbative models [82,108,109,111,134–138].

The convention is motivated by the observation that, given the strong suppression

of the deeply nonperturbative large-b region in Z boson production, only contributions

from the transition region of b of about 1 GeV−1 are non-negligible compared to the

perturbative contribution from b < 1 GeV−1. In the transition region, W̃ (b,Q) can

be reasonably approximated by the extrapolated leading-power, or perturbative, part

W̃ pert(b,Q), and the nonperturbative smearing factor W̃NP (b,Q):

W̃α,j(b,Q, yZ) = W̃ pert
α,j (b∗, Q, yZ)W̃NP (b,Q, yZ). (5.33)

When b is large, the slow b dependence in W̃ pert
α,j (b∗, Q) can be neglected, compared

to the rapidly changing W̃NP (b,Q). The latter contribution captures the effect of

the powerlike contributions proportional to bp with p > 0 that alter the large-b tail

of W̃ (b,Q) in a different way compared to W̃ pert(b,Q). The powerlike contributions

suppress the rate only at QT below 2-3 GeV, while the leading-power term and its

scale dependence affect a broader interval of QT values (see representative figures in
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Ref. [115]). The nonperturbative suppression results in a characteristic shift of the

peak in the dσ/dQT distribution, which is distinct from the scale dependence.

To avoid divergence due to the Landau pole in αs(µ) at µ → 0, we redefine the

scales of order 1/b in W̃ pert(b,Q) according to the b∗ prescription [16,17] dependent on

two parameters [97]. In the Sudakov exponential, the lower limit (C1/b)
2 is replaced

by (C1/b∗(b, bmax))
2, with

b∗(b, bmax) ≡
b√

1 + (b/bmax)2
, (5.34)

where bmax is set to 1.5 GeV−1 in [97]. To avoid evaluating the PDFs fa/h(ξ, µF )

at a factorization scale µF below the initial PDF scale µini ≈ 1 GeV, we choose

µF = C3/b∗(b, C3/µini); it is larger than µini for any b. This prescription is preferred

by the global fit to Drell-Yan QT data, where it both preserves the exact perturbative

expansion for W̃ pert at b < 1 GeV−1 and improves the agreement with the data.

In a broad range of Q values in the Drell-Yan process, the behavior of experimen-

tally observed QT distributions is described by [96,97]

W̃NP (b,Q) = exp

[
−b2

(
a1 + a2 ln

(
Q

2 Q0

)
+ a3 ln

(
x

(0)
1 x

(0)
2

0.01

))]
, (5.35)

with x
(0)
1,2 = Q√

s
e±y, free parameters a1, a2, a3, and a fixed dimensional parameterQ0 =

1.6 GeV. The b2 dependence characterizes the leading power-suppressed contribution

[134] that can be resolved with the available data. The ln(Q) dependence is predicted

by the Collins-Soper evolution equation [15]. The higher-order power-suppressed

contributions proportional to b4, etc. cannot be reliably distinguished in the fit from

the b2 term. Although linear contributions proportional to b may also arise from

long-distance dynamics [139], they have been empirically disfavored in a global QT
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fit [96].

In the vicinity of Q around MZ , Eq. (5.35) reduces to

W̃NP (b,Q ≈MZ) = exp
[
−b2aZ

]
(5.36)

with

aZ = a1 + a2 ln

(
MZ

2 Q0

)
+ a3 ln

(
M2

Z

0.01 s

)
. (5.37)

One of the essential applications of CSS resummation formalism concerns the

measurement of W boson mass in hadron-hadron collisions. The current most precise

W mass measurements obtained by the DØ and CDF collaborations at the Tevatron

[140, 141] quote a total error of about 20 MeV, with the bulk of it (approximately

90%) associated with three theoretical sources: PDFs uncertainty (of order 10 MeV

according to [142]), EW corrections, and the model of W̃NP (b,Q) in production of W

bosons. The last source of uncertainty appears because the W mass measurements

are sensitive to the shape of the cross section in the low-QT region.

Once aZ is determined from Z/γ∗ boson production, it is easy to predict W̃NP in

W boson production at the same
√
s:

W̃NP (b,Q ≈MW ) = exp
[
−b2aW

]
, (5.38)

where

aW = aZ + a2 ln

(
MW

MZ

)
+ a3 ln

(
M2

W

M2
Z

)
. (5.39)

For bmax = 1.5 GeV−1, one finds a2 = 0.17 ± 0.03 GeV2 and a3 = −0.03 ± 0.02

GeV2 [97], where the error estimate includes the scale dependence. The log terms
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proportional to a2 and a3 are small in Eq. (5.39), so that it is safe to assume aW ≈ aZ

in central-rapidity measurements at the same
√
s.

If Q is substantially different from MZ , or if predictions for the LHC are made,

the a2 and a3 contributions cannot be neglected. The nonperturbative coefficient

becomes

a(Q,
√
s) = aZ(1.96 TeV) + a2 ln

(
Q

MZ

)
+ a3 ln

(
Q2

M2
Z

s

(1.96 TeV)2

)
. (5.40)

5.2.6. Matching the W and Y terms

By examining the mapping of QT distributions on φ∗η distributions discussed in

Sec. 5.2.1, we can identify three regions with distinct QCD dynamics: the resumma-

tion region φ∗η . 0.1 rad, where the W term dominates; the intermediate (matching)

region 0.1 . φ∗η . 0.5 rad; and the perturbative region φ∗η & 0.5 rad, where the

W + Y term approaches the fixed-order (FO) contribution. As φ∗η increases in the

intermediate region, the W + Y term eventually becomes smaller than the FO term

at φ∗η ≡ φswitch(Q, yZ). The final cross section is taken to be equal to the W +Y term

at φ∗η < φswitch and FO term at φ∗η ≥ φswitch [95].

The position of the switching point is subject to some variations dependent on

the shapes of the W term and its asymptotic expansion at not too small φ∗η ∝ QT/Q,

i.e. away from the Q2
T/Q

2 → 0 limit where the W term is uniquely defined. These

variations have almost no effect on the fit of the nonperturbative function in the

resummation region φ∗η. They originate from the possibility of including additional

terms of order Q2
T/Q

2 in the longitudinal momentum fractions χ1,2 in the W term

and its asymptotic expansion. These terms vanish at Q2
T/Q

2 → 0, but they can be

numerically important or even desirable in the intermediate region, where they may
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improve agreement between the W + Y and FO terms.

At intermediate QT/Q, radiation of a Z boson and semi-hard jets requires suffi-

cient center-of-mass energy of incident partons, or large enough partonic momentum

fractions ξ1 and ξ2. For example, the FO hadronic cross section is written as

dσ

dQ2dyZdQ2
T

=
∑
a,b

∫ 1

0

dξ1

∫ 1

0

dξ2
dσ̂

dQ2dyZdQ2
T

fa/A(ξ1)fb/B(ξ2)

≡
∫ 1

ξ̄1

dξ1

∫ 1

ξ̄2

dξ2h(ξ1, ξ2) δ

[(
ξ1

x1

− 1

)(
ξ2

x2

− 1

)
− Q2

T

M2
T

]
, (5.41)

where h(ξ1, ξ2) contains the hard-scattering matrix element and PDFs, and MT =√
Q2 +Q2

T . The energy constraint from the δ-function imposes the following bound-

aries on the partonic momentum fractions: ξ1 = x1 + (Q2
T/s)/(ξ2 − x2); ξ̄1 =

[x1 + (Q2
T/s)/(1 − x2)] ≤ ξ1 ≤ 1; ξ̄2 ≡ [x2 + (Q2

T/s)/(1 − x1)] ≤ ξ2 ≤ 1, with

x1,2 = MT√
s
e±y.

These boundaries are absent in theW and asymptotic contributions, which depend

on convolutions of Wilson coefficient functions and PDFs,

[
Cj,a ⊗ fa/hi

]
(χi, µF ) =

∫ 1

χi

dξi
ξi
Cj,a

(
χi
ξi
, µF b, C1, C2, C3

)
fa/hi(ξi, µF )(5.42)

for i = 1 or 2. The variables χi satisfy χ1,2 → x
(0)
1,2 ≡ (Q/

√
s)e±y and cannot

exceed ξ̄1,2. Thus, for non-negligible Q2
T/Q

2, the W and asymptotic term may include

contributions from the unphysical momentum fractions ξi ≤ ξ̄i, and ideally one should

include kinematically important Q2
T/Q

2 contributions into χ1,2 to bring them as close

to ξ̄1,2 as possible.4

4The logic here follows a general argument for matching of the resummed contribution onto the

fixed-order result that applies in other areas, such as the treatment of PDFs for heavy quarks in DIS
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As the procedure for including the Q2
T/Q

2 corrections in the W term is not unique,

we explored several of them. We find that either χ1,2 = x
(0)
1,2 = (Q/

√
s)e±y or

χ1,2 = x1,2 = (MT/
√
s)e±y results in the comparable agreement with the φ∗η data

from DØ and ATLAS 7 TeV. These prescriptions are designated as the “kinematical

corrections of type 0” and “type 1”, or kc0 and kc1, in our numerical outputs.

In contrast, some alternative choices produce worse agreement with the examined

data, such as χ1,2 = ξ̄1,2 = ((MT + QT )/
√
s)e±y designated as kc2. Furthermore, the

kc1 prescription improves matching compared to kc0 at
√
s = 14 TeV, corresponding

to scattering at smaller x. We use the kc1 matching as the default prescription in the

subsequent comparisons.

5.2.7. Photon radiative contributions

Our resummed calculations include both Z-mediated and photon-mediated con-

tributions to production of Drell-Yan pairs, as well as their interference. Electroweak

radiative contributions have been extensively studied in Z boson [143–146] and W

boson production [147–152]. The dominant NLO electroweak contribution is associ-

ated with final-state radiation of photons. To compare the DØ data to the ResBos

prediction without the NLO electroweak correction, we correct the fitted data to the

Born level for final-state leptons by subtracting the NLO EM correction obtained

bin-by-bin by the Photos code [153]. This correction is essential for the agreement

of ResBos theory and data. However, since the photon-mediated and final-state

photon radiation contributions are relatively small, in the first approximation we

can treat them as a linear perturbation and evaluate for a fixed combination of the

in a general-mass variable number scheme [52,62]. Matching is stabilized by constructing resummed

coefficient functions that comply with the energy-momentum conservation in the exact fixed-order

contribution.
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nonperturbative and scale parameters taken either from the BLNY or our best-fit

parametrizations.

5.2.8. Numerical accuracy

Given the complexity of the resummation calculation, we expect several sources

of random numerical errors that may compete with the accuracy of the most precise

φ∗η data points, which are of order 0.5% of the respective central cross sections. The

numerical errors may arise from the parametrizations of PDFs, integration, and in-

terpolation at various stages of the analysis. They can be treated as independent and

uncorrelated and primarily result in higher-than-normal values of the figure-of-merit

function χ2 when not explicitly included in the estimates. In comparison, the varia-

tions due to aZ or C1,2,3 parameters are of order a few percent and correlated across

the φ∗η spectrum.

5.3. Numerical results

5.3.1. General features

In this section we determine aZ from the distribution (1/σ) dσ/dφ∗η measured by

DØ [21] that is normalized to the total cross section σ in the measured Q and y range.

These data are given in three bins of Z boson rapidity yZ . In the first two, |yZ |≤ 1 and

1 ≤ |yZ |≤ 2, the (1/σ) dσ/dφ∗η distribution is measured separately for electrons and

muons at Npt = 29 points of φ∗η. In the third bin, |yZ |≥ 2, only electrons are measured

at 25 points of φ∗η. The first two yZ bins provide substantial new constraints. The

third bin has larger statistical errors and reduced discriminating power.

All predictions are obtained by using CT10 NNLO PDFs [117]. Predictions based

on MSTW’08 NNLO PDF sets [154] were also computed and did not show significant
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Figure 5.4. The ratios to the central theoretical prediction of the DØ electron data at

|yZ |≤ 1 and alternative theoretical predictions. The central prediction is computed

assuming C1 = C3 = 2b0, C2 = 1/2, aZ = 1.1 GeV2, and kinematical correction 1.

Theory predictions based on alternative kinematical corrections (0 and 2) and BLNY

nonperturbative parametrization are also shown.

difference with CT10 NNLO predictions.

From the previous section, the resummed cross sections depend on the pertur-

bative scales, power-suppressed contributions, and choice of subleading kinematic

terms. It is possible to identify an optimal combination of these factors that results

in a good description of the DØ data across the full φ∗η range. In particular, the

large-QT/large-φ∗η data generally prefer the factorization scale of order Q/2 or even

less in the fixed-order piece. At small-QT/small-φ∗η, the scale parameter C3 in the

range 1.5b0−2b0 is slightly more preferable. To illustrate properties of the φ∗η distribu-

tions, we compute the resummed cross sections using a combination C1 = C3 = 2 b0,
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Figure 5.5. Electrons: scale variation due to C1,2,3 at small φ∗η.
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Figure 5.6. Same as above but for the muons.
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C2 = Q/2, and aZ = 1.1 GeV2 that is close to the best-fit solution. The difference

between the best-fit solution and the prediction based on these round-off values will

be discussed in Sec. 5.3.2.

A comparison of the prediction with these choices to the DØ data for |yZ |≤ 1 and

a few other predictions is presented in Fig. 5.4. The new parametrization provides

better description of the data at 0.1 ≤ φ∗η ≤ 1 than the superimposed prediction

utilizing the BLNY parametrization [96] of W̃NP . Consequently, it results in a better

χ2 than the ResBos prediction used in the DØ analysis [21], which used the CTEQ6.6

NLO PDFs, BLNY W̃NP , and canonical choice of C1,2,3.

We also compare predictions for three types (0, 1, 2) of the kinematical (matching)

correction discussed in Sec. 5.2.6. For the selected combination of scale parameters,

the type-0 and 1 kinematical corrections provide a nearly identical prediction. The

type-0 and type-1 corrections can differ by 2-3% for other scales. Type 2 is generally

disfavored, so that we assume the type-1 correction for the rest of the analysis.

A prediction with the same theoretical parameters, as well as for variations in

QCD scales in the ranges 1/4 ≤ C2 ≤ 1 and b0 ≤ C1,3 ≤ 4b0, are compared to the

data for electron production in Fig. 5.5 and muon production in Fig. 5.6. Here we

show all rapidity bins both for electron and muon samples. The ratios of the DØ data

to ResBos theory with the optimal parameters are indicated by black circles. Yellow

solid, blue dashed, and magenta dot-dashed bands represent variations in theory due

to C2, C1, and C3, respectively, all normalized to the best-fit prediction. Again, the

agreement with ResBos observed in these figures is better than in [21]. Figs. 5.5

and 5.6 demonstrate that the theoretical uncertainty at small φ∗η is dominated by

variations of C1 and C3. The bands of scale uncertainty are reduced significantly for

0.04 ≤ φ∗η ≤ 0.1 upon the inclusion of O(α2
s) scale dependence, as has been discussed

in Sec. 5.2.4.
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Figure 5.7. Dependence on the nonperturbative parameter aZ for electrons with

|yZ |≤ 1.

The scale variations can be compared to the dependence on aZ and kinematic

correction in Fig. 5.7, which result in a distinctly different patterns of variation in

dσ/dφ∗η. In particular, while the perturbative scale coefficients C1, C2, C3 produce a

slowly changing variation across most of the measured φ∗η range, the increase in aZ

produces a distinct variation that suppresses the rate at φ∗η . 0.02 and increases it at

0.02 . φ∗η . 0.5, with the rate above 0.5 essentially unaffected.

It is therefore possible to separate the scale dependence from the aZ dependence

if we restrict the attention to φ∗η below and around φ∗η = 0.1. To this aim we consider

only the first 12 bins of φ∗η, starting from the smallest value, for each value of rapidity.

Extending the fitted range above φ∗η ≥ 0.1 has a minimal effect on aZ .
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5.3.2. Detailed analysis

We pursue two approaches for the examination of the low-φ∗η region. In method I,

we study dependence on aZ assuming fixed resummation scales corresponding to half-

integer scale parameters, such as C1/b0 = C3/b0 = 1, C2 = 1/2 or C1/b0 = C3/b0 =

2, C2 = 1/2. In this method, the goodness-of-fit function χ2 is minimized with respect

to aZ for select combinations of fixed scale parameters. We find that a χ2 minimum

with respect to aZ exists in these cases, but, given the outstanding precision of the

φ∗η data, the best-fit χ2/Npt remains relatively high, of order 2-3. This is partly due

to the numerical noise discussed in Sec.5.2.8.

The χ2 function can be further reduced by allowing arbitrary C1,2,3 parameters,

in particular, by taking C2 to be below 1/2. In this context, one has to decide on the

acceptable range of variations in C1,2,3, i.e. the resummation scales.

As computations for multiple combinations of aZ and C1,2,3 parameters would be

prohibitively CPU-extensive, in method II we first consider a fixed scale combination

indicated by {C̄1, C̄2, C̄3} and implement a linearized model for small deviations of the

scale parameters from C̄1,2,3. The central combination C̄1,2,3, namely C̄1 = C̄3 = 2b0,

C̄2 = 1/2, produces good agreement with the data, although not as good as completely

free C1,2,3. The linearized model is explained in Sec. 5.3.2.2. It provides a fast estimate

of small correlated changes in the φ∗η shape of the kind shown in Figs. 5.5 and 5.6.

The χ2 function is sampled at discrete aZ values in the interval aZ = [0.1 : 3.5]

GeV2 and reconstructed between the sampling nodes by using polynomial interpola-

tion. When the scale variations are allowed, the dependence of χ2 on aZ is asymmetric

and very different from a quadratic one.

To account for the asymmetry of the distributions, we quote the central value

aZ that minimizes χ2(aZ) and the 68% confidence level (C.L.) uncertainty. The

probability density function P(aZ) for aZ in a sample with N points is taken to
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Figure 5.8. χ2/Npt as a function of aZ with fixed C1,2,3.

follow a chi-squared distribution with N degrees of freedom,

P(aZ) = Pχ(N,χ2(aZ)) =
(χ2)N/2−1 exp (−χ2/2)

Γ(N/2) 2N/2
. (5.43)

With this, we determine the 68% C.L. intervals [aZ,min, aZ,max], where aZ,min and

aZ,max are defined implicitly by

0.16 =

∫ aZ,min

0
P(aZ) daZ∫ +∞

0
P(aZ) daZ

, 0.84 =

∫ aZ,max

0
P(aZ) daZ∫ +∞

0
P(aZ) daZ

. (5.44)

For an asymmetric distribution as in method II, the central value aZ does not coincide

with the middle of the 68% C.L. interval or the mean aZ given by the first moment

of the P(aZ) distribution.

5.3.2.1. Method I: minimization with fixed scale parameters

In method I aZ is determined from the DØ data by minimization of a function
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Fit results for φ∗η ≤ 0.1

Npt χ2
min/Npt aZ ± δaZ (GeV2)

|yZ |≤ 1, e+ µ 24 3.24 0.79+0.2
−0.03

2.83 1.14± 0.08

1 ≤ |yZ |≤ 2, e+ µ 24 1.87 0.79± 0.05

3.03 1.12+0.14
−0.13

|yZ |≥ 2, e 12 0.74 0.8+0.03
−0.05

0.58 1.04+0.18
−0.16

All yZ bins, 60 2.19 0.79± 0.03

weighted average 2.46 1.12± 0.07

Table 5.1. The best-fit χ2/Npt, central value and 68% C.L. intervals for aZ with fixed

C1,2,3 = {b0, 1/2, b0} (upper lines) and {2b0, 1/2, 2b0} (lower lines).
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χ2(aZ) =

Npt∑
i=1

(
Di − T̄i(aZ)

si

)2

, (5.45)

where Di are the data points; T̄i(aZ) are the theoretical predictions for fixed scale

parameters {C̄1, C̄2, C̄3}; si are the uncorrelated experimental uncertainties; and Npt

is the number of points.

The dependence of χ2 on aZ in three rapidity bins for two combinations of C̄1,2,3

is illustrated in Fig. 5.8, and the corresponding best-fit parameters are listed in Ta-

ble 5.1. Electrons and muons are combined in the first two bins of rapidity, |yZ |≤ 1

and 1 ≤ |yZ |≤ 2. In both cases, the χ2 behavior is close to parabolic. The locations

of the χ2 minima are consistent in all three bins. However, the quality of the fit is

unacceptable in the first two bins that have the smallest experimental errors, with

χ2/Npt ≈ 3. On the other hand, the agreement is very good (χ2/Npt < 1) in the third

bin, which has larger errors.

The weighted averages over all three bins are ā
Z,all y = 0.79 ± 0.03 and 1.12 ±

0.07 GeV2 for the two scale combinations. The location of the minimum is distinct

from zero in both cases, but its dependence on the scale parameters warrants further

investigation that we will now perform.

5.3.2.2. Method II: computation with scale-parameter shifts

To simplify the minimization when the scale parameters are varied, we introduce a

linearized approximation for the covariance matrix of the type adopted for evaluating

correlated systematic effects in PDF fits [155, 156]. For each scale parameter Cα,

α = 1, 2, 3, we define a nuisance parameter λα ≡ log2(Cα/C̄α) and compute the

finite-difference derivatives of theory cross sections
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βiα ≡
Ti(aZ , λα = +1)− Ti(aZ , λα = −1)

2
, α = 1, 2, 3; i = 1, . . . , Npt (5.46)

over the interval λα = ±1 corresponding to C̄α/2 ≤ Cα ≤ 2C̄α. Variations of λα

introduce correlated shifts in theory cross sections Ti(aZ , C1,2,3) with respect to the

fixed-scale theory cross sections Ti(aZ , C̄1,2,3) ≡ T̄i(aZ). We can reasonably assume

that the probability distribution over each λα is similar to a Gaussian one with a

central value of 0 and half-width σλ, taken to be the same for all λα. The goodness-

of-fit function is then defined as

χ2(aZ , λ1,2,3) =

Npt∑
i=1

(
Di − T̄i(aZ)−∑3

α=1 βαiλα
si

)2

+
3∑

α=1

λ2
α

σ2
λ

. (5.47)

The minimum with respect to λα can be found algebraically for every aZ as [155]

minχ2 = χ2(aZ , λ̄α) =

Npt∑
i,j

(Di − T̄i(aZ))(cov−1)ij(Dj − T̄j(aZ)), (5.48)

containing the inverse of the covariance matrix,

(cov−1)ij =

[
δij
s2
i

−
3∑

α,β=1

βi,α
s2
i

A−1
αβ

βj,β
s2
j

]
, (5.49)

and a matrix A given by

A�� = σ2
λδαβ +

Npt∑
k=1

βk,αβk,β
s2
k

. (5.50)
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Eq. (5.48) is essentially the standard χ2 function based on the covariance matrix in

the presence of the correlated shifts. For every aZ , the nuisance parameters λ̄α that

realize the χ2 minimum are also known,

λ̄α(aZ) =

Npt∑
i=1

Di − T̄i(aZ)

si

3∑
δ=1

A−1
αδ

βi,δ
si
. (5.51)

Based on this representation for χ2 (designated as “fitting method II”), we ex-

plored the impact of the scale dependence on the constraint on aZ . Even if the scales

are varied, data prefer a nonzero nonperturbative Gaussian smearing of about the

same magnitude as in method I.

In the simplest possible case, the C1,2,3 parameters are independent of the rapidity

or other kinematic parameters and shared by all e and µ bins. In this case, variations

of the scale parameters reduce χ2/Npt to about 1.3, i.e. the fit is better than for the

fixed scale combinations discussed above. We focus on the case when the central scale

parameters are C̄1 = C̄3 = 2 b0, C2 = 1/2, although the conclusions remain the same

for other choices.

The plots of χ2/Npt vs. aZ and optimal C1/b0, C2, C3/b0 vs. aZ , derived from the

optimal λα parameters in Eq. (5.51), are shown in Fig. 5.9. The χ2 dependence on

aZ becomes asymmetric when the scale shifts are allowed, with the large-aZ branch

being flattened out in contrast to the small-aZ one that remains steeply growing.

From the right inset, we see that the optimal C1 and C3 are monotonously increasing

and decreasing as functions of aZ , respectively. In the vicinity of the minimum, C1

and C3 are of about the same magnitude at (1.2 − 1.5)b0. Very small or large aZ

can be obtained only by taking C1 and C3 to be uncomfortably far from unity. In

contrast, the optimal C2 parameter is generally in the range 0.3-0.5 and has weaker

dependence on aZ .
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Fit results for φ∗η ≤ 0.1

C1,C2, C3 are shared by all yZ bins

Npt χ2
min/Npt aZ ± δaZ (GeV2) Best-fit C1,2,3

All yZ bins 60 1.29 0.82+0.34
−0.12 1.4, 0.33, 1.23

1.31 0.82+0.22
−0.11 1.42, 0.33, 1.23

C1,C2, C3 are independent in each yZ bin

Npt χ2
min/Npt aZ ± δaZ (GeV2) Best-fit C1,2,3

|yZ |≤ 1, e+ µ 24 1.0 0.56+0.95
−0.02 0.21, 0.18, 7.56

1.16 0.85+0.3
−0.15 1.47, 0.3, 1.46

1 ≤ |yZ |≤ 2, e+ µ 24 1.48 1.22+0.27
−0.36 18, 0.58,0.1

1.70 0.79+0.2
−0.1 1.69, 0.37, 0.77

|yZ |≥ 2, e 12 - - -

0.59 0.99+0.99
−0.31 1.74, 0.48, 2.12

Weighted average 60 0.97± 0.25

of all bins 0.82± 0.12

Table 5.2. The best-fit χ2/Npt, central value and 68% C.L. intervals for aZ , and

best-fit C1,2,3 for 1/σλ = 0 (upper rows in each section) and 1 (lower rows).

112



The values of χ2/Npt, aZ , and C1,2,3 parameters at the minimum are reported

in the upper portion of Table 5.1. When the C1,2,3 parameters are shared by all

bins, the fit is relatively insensitive to the confidence level assigned to the variations

λα± 1, controlled by the parameter σλ in Eq. (5.47). In Table 5.1, the upper rows in

each section correspond to the fit without a constraint on the λ parameters, i.e., for

1/σλ = 0. The lower rows are for assigning a 68% probability to the −1 ≤ λα ≤ 1

intervals, corresponding to 1/σλ = 1.

For the shared C1,2,3, the outcomes of the fits with 1/σλ = 0 and 1 are very

similar, apart from the uncertainty on the aZ parameter, which is increased when the

λα variations are totally free. [The asymmetric 68% C.L. uncertainties are computed

according to Eq. (5.44)].

In contrast, when the scale parameters are taken to be independent in each yZ bin

(but still shared between the electron and muon samples), only the case of σλ = 1

results in an acceptable fit in all three yZ bins. The best-fit parameters for this

case are listed in the lower part of Table 5.2. When the scale shifts were arbitrary

(1/σλ = 0, upper lines), the fits were underconstrained and produced inconsistent

aZ values and large scale shifts in all three bins, especially in the third bin that is

not shown for this reason. On the other hand, for σλ = 1 (lower lines), the three fits

converged well and rendered compatible aZ values. The χ2/Npt vs. aZ dependence for

this case is illustrated in Fig. 5.10, where the minima are neatly aligned in the three

bins. The fit to the second bin is generally worse than for the other two, suggesting

possible rapidity dependence of aZ . The scale dependence in each bin is qualitatively

similar to that in the right inset of Fig. 5.9.

Even when C1,2,3 are independent in each yZ bin, by averaging the aZ values over

three bins, we obtain the āZ = 0.8− 0.9 GeV2 in the last section of Table 5.2 that is

essentially the same as in the case when C1,2,3 are shared by all bins. The findings in
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Tables 5.1 and 5.2 are recapitulated in Fig. 5.11, showing the 68% C.L. intervals in

the fits with fixed C1,2,3 = b0, 1/2, b0 and 2b0, 1/2, 2b0, as well as the fit with varied

C1,2,3 and σλ = 1. All fits consistently yield aZ values that are at least 5σ from zero.

5.4. Implications for the W mass measurement and LHC

The previous sections demonstrated that the φ∗η distributions in Z/γ∗ production

are sensitive to several QCD effects. Depending on the φ∗η range, hard or soft QCD

emissions can be studied. The nonperturbative power corrections in QCD can be

determined at φ∗η ≤ 0.1, provided the dependence on resummation scales is controlled.

To distinguish between various contributing effects, new developments in the

Collins-Soper-Sterman resummation formalism were necessitated. The computer code

ResBos includes all such effects relevant for computation of resummed differential

distributions of lepton pairs. New components of the theoretical framework imple-

mented in ResBos were reviewed in Sec. 5.2. In the large-φ∗η region dominated by

hard emissions, the two-loop fixed-order contributions implemented in ResBos show

good agreement with the DØ data when the renormalization/factorization scale C4Q

for hard emissions is set to be close to Q/2.5

In the resummed W piece dominating at small φ∗η, we include 2-loop perturbative

coefficients in the resummed W term by using the exact formulas for the A and B
coefficients and a numerical estimate for the small O(α2

s) contribution δC(2) to the

Wilson coefficient functions. We also fully include up to O(α2
s) the dependence on

resummation scale parameters C1 and C2, see Secs. 5.2.3 and 5.2.4. Matching cor-

rections and final-state electroweak contributions were implemented and investigated

in order to understand their non-negligible impact on the cross sections. Finally, we

5In this region, a three-loop correction must be computed in the future to reach NNLO accuracy

in αs.
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implemented a form factor W̃NP (b,Q) describing soft nonperturbative emissions at

transverse positions b & 1 GeV−1 in the context of a two-parameter b∗ model [97], cf.

Sec. 5.2.5.

With this setup, we performed a study of the small-φ∗η region at the DØ Run-

2 with the goal to determine the range of plausible nonperturbative contributions.

We found that, to describe Drell-Yan dilepton production with the invariant mass

70 ≤ Q ≤ 110 GeV, it suffices to use a simplified nonperturbative form factor that

retains only a leading power correction, W̃NP (b,Q = MZ) = exp (−b2aZ). The power

correction modifies the shape of dσ/dφ∗η in a pattern distinct from variations due to the

dependence on the resummation scales C1/b, C2Q, and C3/b in the leading-power term

W̃ pert, see Figs. 5.5, 5.6, and 5.7. For various fixed combinations of scale parameters

C1,2,3, or when the scale parameters were varied, the fits require nonzero aZ values

that were summarized in Tables 5.1 and 5.2. For example, when the variations in

the scales C1,2,3 were incorporated as shared free parameters in all rapidity bins using

a correlation matrix, we obtained aZ = 0.82+0.22
−0.11 GeV2 at 68% C.L., cf. Table 5.2,

consistently with other tried methods. The estimate of the 68% C.L. uncertainty

including the scale dependence indicates clear preference for a non-zero aZ , without

appreciable rapidity dependence.

The magnitude of aZ depends on the resummation scales, but allowing the scales

to vary increases the probability for having larger, not smaller aZ . The best-fit aZ is

also correlated with bmax, which controls the upper boundary of the b range where the

exact perturbative approximation for W̃ pert(b,Q, yZ) is used. Using bmax = 1.5 GeV−1

in this study, we obtain a(b,Q) ≈ 0.8 GeV2 at Q = MZ , which is consistent with the

value obtained with the other W̃NP forms maximally preserving the perturbative

contribution [97,136–138]. The dependence on bmax weakens at bmax above 1 GeV−1,

and even larger aZ values are preferred for bmax below 1 GeV−1, cf. Fig. 2 in [97].
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The fitted data was corrected for the effects of final-state NLO QED radiation. In

the fitted region φ∗η < 0.1, the uncertainty due to the matching of the resummed and

finite-order terms was shown to be negligible.

The nonperturbative form factor at other
√
s and Q values can be predicted using

the relations in Sec. 5.2.5. This is possible because the dominant part of W̃NP is asso-

ciated with the soft factor exp (−S(b,Q)) which does not depend on
√
s or the types

of the incident hadrons. It is argued in Sec. 5.2.5 that the W̃NP factors are identical

within the 68% C.L. error in central-rapidity Z and W production at the same
√
s.

The same aZ value that we determined can be readily applied to predict W boson

differential distributions at the Tevatron Run-2, or, with appropriate modifications

proportional to ln(Q) and ln(s), in other kinematical ranges, cf. Eq. (5.40).

The resummation calculation employed in this analysis can be reproduced using

the ResBos-P code [157] and input tables [158] available at the “QT resumma-

tion portal at Michigan State University”. The central input tables are provided for

aZ = 1.12 ± 0.07 GeV2, C1 = C3 = 2b0, C2 = 1/2, and central CT10 NNLO PDF.

In addition, the distribution includes ResBos tables corresponding to the best-fit

resummed parameters and CT10 NNLO PDF eigenvector sets. Finally, for a detailed

exploration of the low-φ∗η region, the distribution includes tables for aZ in the inter-

val 0.5 − 1.7 GeV2 with step 0.1 GeV2 using the central PDF, and, to study scale

dependence, 7 ResBos grids for the central aZ,central = 1.12 GeV2, and the scale

parameters C1 = b0, 4b0, C2 = 1/4, 1, and C3 = b0, 4b0.

As an example of a phenomenological application, Fig. 5.12 compares the ResBos

predictions with the ATLAS data [19, 20] on Drell-Yan pair production near the Z

boson resonance peak at
√
s = 7 TeV. The figure shows ratios of data to theory cross

sections. The left subfigure shows the QT distribution for 35 − 40 pb−1, compared

to the ResBos prediction with aZ = 1.1GeV2, C1 = C3 = 2 b0, C2 = 1/2. The
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yellow band indicates variations in the cross section due to the scales in the range

C1 = b0, 4b0, C2 = 1/4, 1, and C3 = b0, 4b0. In the case of QT distribution, we obtain

good agreement between theory and data and in the intermediate/small QT region

the theoretical uncertainty due to C1,2,3 scale parameters is reduced compared to the

study of Ref. [88].

The right subfigure shows the ratio of the more recent φ∗η distribution to the

central theory prediction based on our default parametrization at much higher level

of accuracy. Here, a ResBos prediction based on the BLNY parametrization has

shown better agreement with the data than other available codes and was used for

event simulation during the ATLAS analysis. A comparable, although somewhat

worse agreement is realized by the GNW parametrization, which was not used at any

stage by ATLAS. The right subfigure shows several curves for the default C1,2,3 choice

and aZ in the range 0.5 − 1.7 GeV2. It is clear that the ATLAS φ∗η data is sensitive

to aZ as well as bmax and can possibly discriminate subleading power contributions

to the nonperturbative form factor W̃NP (b,Q) proportional to b4 and beyond. We

provide sets of updated ResBos grids for the LHC kinematics that can be used for

future improvements in the nonperturbative model.

5.5. Nonperturbative resummed contributions at low Q

As presented above, the data from Tevatron and the LHC have put better con-

straints on the nonperturbative parameterizations of the resummed cross section in

CSS resummation formalism. However, one needs to be cautious to use the same

parameterization for a lower Q region, as in this case the cross section receives more

contribution from the large b region where the nonperturbative factor becomes impor-

tant, and therefore is more sensitive to the form of the parameterization. The trend

is clearly shown in Fig. 5.13 where the b-space cross section multiplied by b is plotted
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as a function of b at Q = mZ and Q = 11 GeV. The uncertainty caused by variation

of bmax increases substantially as Q decreases. This shows that simply extending the

high Q fit to small Q may turn out to be unsuccessful.

A recent study Ref. [159] suggests that the quadratic form of Eqs. (5.35) can be

modified to reduce the bmax dependence. The modification satisfies general properties

of the a2 term in the small and large b limits (see Eq.(79) of that reference for

the explicit form for the proposed parameterization). The effect is reflected in the

evolution kernel K̃(b, µ) [1] of the TMD distributions. The desired property that

K̃(b, µ) approaches a constant at large b is clearly shown in Fig. 5.14. At small b the

quadratic behavior of the nonperturbative parameterization is recovered as expected.

The full consequence of this new parameterization is under an on-going study by D.

Clark, P. Nadolsky, T. Rogers, N. Sato, and B. Wang.
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5.6. Conclusions

In our analysis we have shown that a significant nonperturbative Gaussian smear-

ing is necessary to describe features of the low φ∗η spectrum. A non-zero NP function is

present even if all the perturbative scale parameters of the CSS formalism are varied.

Values of aZ smaller than 0.5 GeV2 are disfavored by the fit to the recent DØ data, as

demonstrated in Sec. 5.3. Therefore, the small-QT/small-φ∗η spectrum cannot be fully

described by employing perturbative scale variations only. The constraining power of

φ∗η differential distribution data allows us to estimate the size of these nonperturba-

tive effects. The parameterization of the nonperturbative factor could be different for

low Q processes such as semi-inclusive DIS at the ep collider HERA. Further studies

are needed to reconcile our result with low Q fits.

Concluding, ResBos is a valuable tool for investigations at low transverse momen-

tum regions at colliders. It will be of particular interest to explore the constraining

power of the new forthcoming LHC data for Z and W production at a variety of
√
s, boson’s invariant masses, and rapidities. Precise measurements of hadronic cross

sections at small QT will verify the TMD formalism for QCD factorization and shed

light on the nonperturbative QCD dynamics.
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Chapter 6

Summary and Conclusion

In this thesis, I present two studies applying QCD factorization theorems to im-

portant hadronic processes. In the study of DIS with massive quark contributions,

I’ve developed a framework for implementation of DIS factorization in a general-

mass scheme and intermediate mass scheme. Approximate analytic expressions for

structure functions with mass dependence are derived for all classes of QCD radia-

tive contributions at N3LO. The general results I obtain account for dependences on

heavy-flavor masses arising both from hard scattering coefficients and from phase-

space constraints. This derivation not only enables an immediate calculation of DIS

structure functions in intermediate mass scheme using N3LO zero-mass coefficient

functions, it also ensures a full implementation in general-mass scheme once the cor-

responding massive coefficients are published. Meanwhile, I’ve programmed the N3LO

IM calculation into the CTEQ fitting package and used it to obtain numerical results.

When compared with the GM prediction near the heavy quark threshold, IM scheme

shows a much slower convergence and is less stable when the factorization scale µ or

the rescaling variable λ are varied. This behavior indicates that the convergence of

IM scheme is not satisfactory unless the missing mass dependence from the coefficient

functions is implemented to obtain a GM result. However, I have found that increas-

ing µ or λ from their default values (µ = Q, λ = 0) tends to bring the IM prediction

close to the GM prediction. In the Q and x range we have explored, the preferred

combination of µ and λ is λ ≈ 0.2 and µ ≈ 1.5Q.
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In the other study I and my collaborators extended the CSS resummation formal-

ism to the distribution of a transverse-momentum-dependent variable φ∗η, which has

been measured precisely at the hadron colliders LHC and Tevatron. After making sev-

eral advancements that substantially improve the theory prediction, our calculation

reaches an accuracy at which the nonperturbative contribution to the resummed cross

section at small φ∗η is unambiguously constrained by the data. In our fits to transverse

momentum distributions in inclusive Z boson production at the Tevatron, positive

values of aZ above 0.5 GeV2 are strongly preferred, even after the uncertainty due to

variations of perturbative scales are included by the fits. This study gives conclusive

evidence that the nonperturbative smearing at small φ∗η must be included in order to

obtain sensible description of the QT distributions in the Tevatron vector boson pro-

duction. This work is done by M. Guzzi, P. Nadolsky, and myself. In this work, I’ve

derived the relation between the kinematic variable φ∗η and QT , and explored various

prescriptions for matching the resummed contribution onto the fixed-order result, and

found the best candidate that has been used by our fittings. I also contributed to

the development of the resummation code ResBos and adopted it for calculations of

vector boson production in LHC nuclear-nuclear scattering documented in [160].
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Appendix A

Factorization scale dependent DIS coefficients at N3LO in ZM

approximation

In this appendix I collect explicit parameterizations of the scale-dependent parts

of N3LO zero-mass coefficient functions in Eqs. (4.106) to (4.123). These expressions

are obtained by fitting to the corresponding coefficients in the above equations using

elementary functions to speed up numerical calculation. The abbreviations used in

these functions follow the convention in Ref. [64], where

x1 = 1− x, L0 = lnx, L1 = lnx1, Dk = [Lk1/x1]+ (A.1)

More compact expressions can be further obtained by optimizing the the set of ele-

mentary functions used in the fits. However, the results here are sufficient to achieve

desirable accuracy and speed in our numerical calculation. With an error of 0.1% or

less the non-zero coefficients are given by

c
(3,3),NS
2,q =308.55δ(1− x)− 101.66D0 − 199.11D1 + 75.852D2 + 148.24− 139.11x

− 6.7296x2 − 0.32885x3 + 33.842L0 + 1.5424L2
0 − 0.00092756L3

0

+ 0.067578xL5
0 + 274.96L1 + 250.85L0L1 − 37.83x1L0L1 + 74.512L2

0L1

+ 13.72L3
0L1 + 1.3355L4

0L1 + 0.14154L5
0L1 − 75.852L2

1 + 21.358x1L
2
1

− 7.4233L0L
2
1 − 0.000010418L3

1 + 1.2416L0L
3
1 + 0.093976L0L

4
1 + 0.00351L0L

5
1

+Nf (−29.819δ(1− x)− 11.852D0 + 18.963D1 + 1.1852 + 10.667x

+ 7.1111L0 + 7.1111xL0 − (9.4815L0)/x1 − 9.4815L1 − 9.4815xL1)
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+N2
f (0.59259δ(1− x) + 0.79012D0 − 0.39506− 0.39506x), (A.2)

c
(3,2),NS
2,q =− 3136.8δ(1− x) + 1993.9D0 + 363.65D1 − 704D2 + 151.7D3

− 2225.1 + 488.49x+ 486.69x2 − 83.463x3 − 481.39L0

− 111.7L2
0 − 4.7637L3

0 − 5.7988xL5
0 − 2267.6L1 − 2850.1L0L1

+ 985.17x1L0L1 − 516.67L2
0L1 − 88.271L3

0L1 − 7.2046L4
0L1 − 5.7366L5

0L1

+ 1253.8L2
1 − 394.29x1L

2
1 + 496.05L0L

2
1 − 151.71L3

1 − 40.285L0L
3
1

+ 4.6966L0L
4
1 + 0.29938L0L

5
1 +Nf (458.24δ(1− x)− 28.9D0 − 162.77D1

+ 42.667D2 + 78.21− 308.93x+ 1.3006x2 − 0.78035x3

+ 74.036L0 + 8.2812L2
0 − 0.00032616L3

0 + 0.57989xL5
0 + 307.37L1

+ 242.52L0L1 − 9.9832x1L0L1 + 91.021L2
0L1 + 18.229L3

0L1 + 1.762L4
0L1

+ 0.66393L5
0L1 − 42.666L2

1 − 6.8392x1L
2
1 − 17.458L0L

2
1 + 0.000021119L3

1

+ 1.2188L0L
3
1 + 0.070134L0L

4
1 + 0.0010968L0L

5
1) +N2

f (−13.428δ(1− x)

− 5.7284D0 + 2.3704D1 + 3.1605 + 6.716x+ 2.3704L0 + 2.3704xL0

+ 2.3704xL0 − (4.7407L0)/x1 − 1.1852L1 − 1.1852xL1), (A.3)

c
(3,1),NS
2,q =9909.8δ(1− x)− 3466.1D0 + 1475.3D1 + 1012.6D2 − 692.15D3

+ 94.815D4 − 1.3022e5− 1.6888e6x+ 4.9762e6x2 + 1.5383e6x3

− 39109L0 − 3820.2L2
0 − 116.17L3

0 − 1.2286e5xL5
0 + 1.2579e6L1

− 1.2349e7L0L1 + 9.2416e6x1L0L1 − 2.8764e6L2
0L1 − 7.222e5L3

0L1

− 82641L4
0L1 − 1.2637e5L5

0L1 + 1.2404e5L2
1 − 1.7743e7x1L

2
1

− 2.4192e7L0L
2
1 + 7056.2L3

1 − 2.5795e6L0L
3
1 − 3.0623e5L0L

4
1

126



− 31762L0L
5
1 +Nf (−1752.8δ(1− x) + 314.4D0 + 163.4D1 − 229.93D2

+ 31.605D3 − 352.69− 569.88x+ 83.527x2 + 46.774x3 − 236.92L0

− 114.12L2
0 − 8.9338L3

0 − 0.13281xL5
0 − 1785.9L1 − 949.61L0L1

+ 84.103x1L0L1 − 77.659L2
0L1 − 21.676L3

0L1 − 2.0691L4
0L1

− 0.24703L5
0L1 + 337.18L2

1 − 57.32x1L
2
1 − 151.17L0L

2
1 − 35.185L3

1

− 3.2916L0L
3
1 − 0.096397L0L

4
1 − 0.0016913L0L

5
1) +N2

f (63.585δ(1− x)

− 0.79012D0 − 11.457D1 + 2.3704D2 + 6.4081− 55.287x+ 12.039L0

− 4.3457xL0 + (3.9506xL0)/x1 + 3.5846L2
0 − 0.59259xL2

0

+ (1.1852xL2
0)/x1 + 30.6L1 + 23.96L0L1 + 4.048L2

0L1 − 2.276L2
1), (A.4)

c
(3,2),NS
L,q =− 234.67 + 445.9x− 18.963L0 + 215.7xL0 + 9.4815xL2

0 + 75.852L1

− 431.41xL1 + 75.852xL2
1 + 75.852x(−L0L1 − Li2(x)) + 75.852xLi2(x)

+Nf (14.222− 71.111x− 14.222xL0 + 28.444xL1) + 2.3704N2
fx, (A.5)

c
(3,1),NS
L,q =− 0.87467D0 + 2.9520δ(1− x) + 1673.2− 2019.4x− 157.33x2 − 33.264x3

+ 563.89L0 + 38.908L2
0 + 0.015289L3

0 + 3.6906xL5
0 + 1424.4L1

+ 3522L0L1 + 247.33x1L0L1 + 1245.9L2
0L1 + 131.57L3

0L1 + 11.105L4
0L1

+ 4.4232L5
0L1 − 542.69L2

1 − 106.96x1L
2
1 − 1052.1L0L

2
1 + 72.64L3

1

− 23.271L0L
3
1 − 2.0821L0L

4
1 − 0.094305L0L

5
1 +Nf (−0.21867δ(1− x)− 201.63

+ 467.6x− 38.763L0 + 183.31xL0 − 0.041333L2
0 + 49.636xL2

0 − 45.942L1

− 184.1xL1 − 200.67L0L1 + 18.16L2
1 + 18.963xL2

1 + 37.926x(−L0L1 − Li2(x))

+ 47.407xLi2(x)) +N2
f (4.7407− 19.753x− 9.4815xL0 + 4.7407xL1),

(A.6)
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c
(3,3),PS
2,q =Nf (128.11− 78.222/x+ 4.46x+ 78.222x2 − 39.111L0 − (14.222L0)/x

− 18.963xL0 + 12.642x2L0 + 5.9259L2
0 − 26.074xL2

0 + 20.148L1

+ (26.864L1)/x− 20.148xL1 − 26.864x2L1 − 40.296Li2(x)− 40.296xLi2(x))

+N2
f (1.1852 + 1.5802/x− 1.1852x− 1.5802x2 + 2.3704L0 + 2.3704xL0),

(A.7)

c
(3,2),PS
2,q =Nf (−2577− 519.71/x+ 2452.6x+ 670.85x2 − 27.766x3

− 1339.7L0 − (92.445L0)/x+ 59.722L2
0 − 20.315L3

0 − 22.157xL5
0

− 0.1809L1 + 1889.7L0L1 − 1064.1L2
0L1 + 184.32L3

0L1

+ 3.8334L4
0L1 − 14.034L5

0L1 − 0.011195L2
1 − 446.79x1L

2
1

− 68.801L0L
2
1 − 0.00023531L3

1 + 59.064L0L
3
1 + 4.4548L0L

4
1

+ 0.15857L0L
5
1) +N2

f (−41.481 + 2.3704/x+ 27.259x+ 11.852x2

− 18.963L0 − 26.074xL0 + 9.4815x2L0 − 7.1111L2
0 − 7.1111xL2

0), (A.8)

c
(3,1),PS
2,q =Nf (−1.0426e5− 1327.3/x+ 1.0591e5x+ 369.04x2 − 840.12x3

− 44264L0 − (196.19L0)/x− 6075.8L2
0 − 678.89L3

0 + 312.43xL5
0

− 27.464L1 + 38744L0L1 − 32525L2
0L1 − 2662.1L3

0L1 − 1230.9L4
0L1

+ 204.25L5
0L1 − 1.8507L2

1 − 2132x1L
2
1 + 9166.7L0L

2
1 − 0.042467L3

1

+ 1744.6L0L
3
1 + 159.44L0L

4
1 + 7.4339L0L

5
1) +N2

f (−1108.5

+ 2.3109/x+ 1420.5x− 350.75x2 + 36.062x3 − 187.79L0

− (0.00011512L0)/x+ 2.7895L2
0 + 5.8977L3

0 − 13.273xL5
0

− 0.058827L1 + 433.38L0L1 − 489.15L2
0L1 + 111.58L3

0L1 + 4.6653L4
0L1
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− 9.3149L5
0L1 − 0.0035366L2

1 + 22.537x1L
2
1 + 137.96L0L

2
1

− 0.000071868L3
1 + 16.668L0L

3
1 + 1.3545L0L

4
1 + 0.051912L0L

5
1), (A.9)

c
(3,2),PS
L,q =Nf (289.19− 214.52/x+ 92.9x− 471.7x2 − 71.111L0 − (42.667L0)/x

+ 298.67xL0 − 37.926x2L0 + 128xL2
0 − 184.89L1 + (61.63L1)/x+ 123.26x2L1

+ 184.89xLi2(x)) +N2
f (−14.222 + 4.7407/x+ 9.4815x2 − 14.222xL0),

(A.10)

c
(3,1),PS
L,q =Nf (−3314.6 + 102.66/x+ 5670.9x− 3197.1x2 + 738.22x3 − 1402.1L0

+ (28.442L0)/x+ 60.877L2
0 − 2.6978L3

0 − 25.085xL5
0 − 724.27x2

1L1

+ 4.7652L0L1 − 915.67L2
0L1 + 378.68L3

0L1 + 12.415L4
0L1 − 16.477L5

0L1

− 76.44x2
1L

2
1 + 0.51302L0L

2
1 − 31.596x2

1L
3
1 + 0.018705L0L

3
1

− 1.6877x2
1L

4
1) +N2

f (101.54− 18.962/x− 30.29x+ 20.191x2

− 25.693x3 + 37.453L0 + 66.843xL0 + 18.963x2L0 + 0.56133L2
0

+ 2.0267xL2
0 + 49.698L1 − (9.4815L1)/x− 49.456xL1 + 16.189x2L1

− 6.9493x3L1 − 28.444xLi2(x)), (A.11)

c
(3,3)
2,g =Nf (399.05− 181.33/x− 525.5x+ 1149.4x2 − 24.444L0 − (32L0)/x

− 686.22xL0 + 260.44x2L0 + 19.852L2
0 − 215.7xL2

0 + 9.4815x2L2
0

− 34.519L1 + (78.222L1)/x+ 675.85xL1 − 772.44x2L1 − 78.815L0L1

+ 157.63xL0L1 − 157.63x2L0L1 + 78.815L2
1 − 157.63xL2

1 + 157.63x2L2
1

− 176Li2(x)− 352xLi2(x)− 77.037x2Li2(x)) +N2
f (−15.259 + 3.358/x

129



+ 39.704x− 26.025x2 − 3.8519L0 + 13.037xL0 − 1.7778L2
0 + 3.5556xL2

0

+ 5.037L1 − 10.074xL1 + 10.074x2L1), (A.12)

c
(3,2)
2,g =Nf (−57450− 1228.1/x+ 47479x+ 10102x2 + 2427.5x3 − 17307L0

− (208.01L0)/x− 1354.6L2
0 − 107.18L3

0 − 357.75xL5
0 − 379.06L1

+ 35759L0L1 − 16867L2
0L1 + 4963.8L3

0L1 + 180.86L4
0L1 − 197.24L5

0L1

− 370.32L2
1 − 388.72x1L

2
1 + 5088.3L0L

2
1 + 132.44L3

1 + 1330.5L0L
3
1

+ 80.9L0L
4
1 + 2.9889L0L

5
1) +N2

f (1344.3 + 3.755/x− 1122.1x

− 247.27x2 − 14.576x3 + 446.05L0 + (0.00012663L0)/x+ 52.883L2
0

+ 6.3206L3
0 + 5.4021xL5

0 − 32.587L1 − 846L0L1 + 275.42L2
0L1

− 118.79L3
0L1 − 5.3802L4

0L1 + 2.0534L5
0L1 + 9.3333L2

1 + 194.83x1L
2
1

+ 44.656L0L
2
1 − 9.8797e− 6L3

1 − 22.146L0L
3
1 − 1.5846L0L

4
1 − 0.050975L0L

5
1),

(A.13)

c
(3,1)
2,g =Nf (−3.36D0 + 3.08δ(1− x)− 2.8815e7− 48.168/x+ 2.848e7x− 1.6448e6x2

− 6.4254e5x3 − 7.7369e6L0 − (146.04L0)/x− 7.3547e5L2
0 − 25503L3

0

− 41247xL5
0 − 7.5335e5L1 + 2.1693e7L0L1 − 4.644e6L2

0L1 + 3.3127e6L3
0L1

+ 1.4557e5L4
0L1 + 39200L5

0L1 − 78297L2
1 + 9.0347e6x1L

2
1 + 1.6752e7L0L

2
1

− 3920.9L3
1 + 2.1277e6L0L

3
1 + 2.3136e5L0L

4
1 + 21262L0L

5
1)

+N2
f (−0.186667δ(1− x) + 25577− 0.058912/x− 27228x+ 1573x2 + 165.3x3

+ 9176.9L0 − (0.0038876L0)/x+ 1339.1L2
0 + 80.841L3

0 − 48.032xL5
0

+ 19.23L1 − 9640.5L0L1 + 8303.2L2
0L1 + 334.28L3

0L1 + 267.15L4
0L1

− 33.442L5
0L1 − 18.685L2

1 − 49.197x1L
2
1 − 2785.1L0L

2
1 − 3.0983L3

1
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− 399.04L0L
3
1 − 49.526L0L

4
1 − 2.3414L0L

5
1), (A.14)

c
(3,2)
L,g =Nf (269.33− 498.67/x+ 4314x− 7570.7x2 − 238.22L0 − (96L0)/x

+ 4085.3xL0 − 519.11x2L0 + 1009.8xL2
0 − 483.56L1 + (192L1)/x− 3315.6xL1

+ 3607.1x2L1 − 576xL0L1 + 576x2L0L1 + 576xL2
1 − 576x2L2

1

+ 1543.1xLi2(x) + 576x2Li2(x)) +N2
f (33.778 + 10.074/x− 200.89x+ 157.04x2

+ 21.333L0 − 71.111xL0 − 28.444x2L0 − 21.333xL2
0 + 32xL1 − 32x2L1),

(A.15)

c
(3,1)
L,g =Nf (1.9209e5 + 193.97/x− 1.6788e5x− 17981x2 − 6269.8x3 + 50113L0

+ (64.016L0)/x+ 5164.1L2
0 + 156.89L3

0 + 1100.5xL5
0 + 30.05L1

− 1.0998e5L0L1 + 56816L2
0L1 − 16132L3

0L1 − 546.58L4
0L1 + 570.79L5

0L1

+ 1.9748L2
1 + 2045.1x1L

2
1 − 20527L0L

2
1 + 0.044221L3

1 − 4553.1L0L
3
1

− 326.95L0L
4
1 − 13.199L0L

5
1) +N2

f (−480.99− 42.863/x+ 886.38x

− 843.69x2 + 34.592x3 − 252.14L0 + 40.032xL0 − 62.097x2L0 − 50.265L2
0

+ 154.01xL2
0 − 0.28067L3

0 + 16.249xL3
0 + 500.47L1 − 781.54xL1

+ 267.18x2L1 + 13.899x3L1 + 1548xL0L1 + 63.16L2
1 − 95.96xL2

1 + 32.8x2L2
1

+ 774x(−L0L1 − Li2(x)) + 31.88Li2(x) + 908.15xLi2(x) + 105.46x2Li2(x)),

(A.16)
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