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Abstract:

As neutrinos become a significant background for projected dark matter experiments, the
community will become concerned with determining if events counted in a dark matter
experiment are good dark matter candidates of low-energy neutrinos from astrophysical
sources. We investigate the feasibility of using neutrino-electron scattering in a terrestrial
detector medium as a means to determine the flight direction of the original, low-energy
solar neutrino. Using leading-order weak interactions in the Standard Model and constrains
from energy and momentum conservation, we developed a simple simulation that suggests
that 68% of the time the ejected electron would be within 0.99 radians of the incident
neutrino’s direction. This suggests that it may be fruitful to pursue low-energy neutrino
detection capability that can utilize such ejected electrons.
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1 Motivation

The nature of dark matter nature is one of the major scientific questions the modern era.
Approximately 86% of the matter of the universe is not luminous, and observed only by its
gravitational interaction [1, 2]. The neutral, weakly interacting neutrino from the Standard
Model was once considered a dark matter candidate, but further measurements proved
that these particles cannot account for the the entirety of the dark matter [2–4]. Although
neutrinos were no longer a serious candidate for dark matter experiments, they could still
be a background [5]. Early dark matter experiments did not account for the neutrino flux
because they were not sensitive to them. However, as dark matter remains undetected
and detector sensitivity has increased, the relevant backgrounds will need to be precisely
measured and subtracted [6]. The projected sensitivities for future dark matter experiments
are shown in Fig. 1. The orange band on this graph shows at what cross-sections and
candidate WIMP masses the experiments will be sensitive to neutrino backgrounds.

Since the sun is the closest cosmic nuclear reactor, it should produce the largest flux
of neutrinos close to earth. There are many different reactions that the sun undergoes as it
produces photons, but the most common one is known as the “pp chain” [7, 8]. The fluxes
as a function of the neutrino energies produced by other nuclear reactions in the sun are
shown in Fig. 2.

The first step in the sequence of reactions for the pp chain is

p+ p→ d+ e+ + νe, (1.1)
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Figure 1: The cross-section limits (solid curves) for the WIMP-nucleon spin indepedent
interaction and projection (dashed curves) for future direct detection experiments expected
in the next decade. Of particular interest to this analysis, the lowest sweeping dashed
orange band indicates the projected sensitively for WIMP experiments to backgrounds of
solar, atmospheric and diffuse supernovae neutrinos. [5]

which gives off 0.420 MeV as one of the protons turns into a neutron to form the deuteron.
The proton, deuteron, and electron have rest masses of 938.27 MeV, 1875.6 MeV, and
0.511 MeV, respectively, so the maximum amount of energy that a massless neutrino could
carry away would be

max(Eν) = [2(938.27)− 1875.6− 0.511]MeV = 0.420 MeV. (1.2)

The neutrino’s flight direction could help determine whether a given dark matter candi-
date event could be background. If solar neutrinos were to enter an active detector volume,
a fraction of these neutrinos could interact with one of the atoms to eject a valence electron.
Assuming technology will be developed to allow for tracking such electrons, we wanted to
determine the feasibility of correlating the direction of the ejected electron with the flight di-
rection of the incident neutrino. This simulation that we developed predicts this correlation
by finding the possible angles of deflection for the ejected electron. Experimentally, smaller
angles would be preferred since this better constrains the neutrino’s path and therefore
yields the most information about the incident solar neutrino flux.
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Figure 2: Energy dependence for the various neutrino sources with the detectors that are
sensitive to each of these signals. [8].

2 Theoretical Tools

The model used to find the angle of the ejected electron assumed that the valence electron
was initially at rest. To justify these assumptions, recall that most noble elements have
a typical ionization energy of 20 eV, and by the virial theorem, we can say that this is
also the kinetic energy of the electron. The MeV order energies of the incident neutrinos
are sufficiently large compared to the kinetic energies of the valence electrons, verifying
the assumption of an electron at rest. Similarly, the neutrino was assumed to be massless
because the neutrino mass is of the order of an eV or smaller, at least millionth of the energy
of the incident neutrino. An illustration of this model with the relevant variables used is in
Fig. 3.

Conservation of energy requires

Eν +me = E′ν + E′e (2.1)

where the subscript ν refers to the neutrino while the subscript e pertains to the electron.
The unprimed variables correspond to the values before the collision and the primed vari-
ables denote post-collision values. E stands for energy andm is for mass, because in natural
units, c = 1 so energy and mass have the same units. Eν and me are the initial energies
and E′ν and E′e are the final energies for the neutrino and electron, respectively, in natural
units.
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Figure 3: Schematic defining the variables for the model for the interaction.

Also, conservation of momentum can be applied along the flight direction of the incom-
ing neutrino and in the transverse direction to give Eq. (2.2) and Eq. (2.3), respectively,

pν = p′ν cos(θ1) + p′e cos(θ2) (2.2)

0 = p′v sin(θ1) + p′e sin(θ2) (2.3)

where p stands for momentum and the same convention for subscripts and superscripts is
observed as in Eq. (2.1). The variables θ1 and θ2 are defined in Fig. 3.

Then we can relate the energies and momentums, utilizing Einstein’s relation

E2
i = p2i +m2

i . (2.4)

Since the neutrino is approximated as massless, its energy will equal its momentum. The
initial energy of the neutrino, Eν , was set to 0.420 MeV because this is the maximum energy
that is given off by this reaction in the pp chain. Therefore, applying Einstein’s relation
yields three equations for four unknowns: θ1, θ2, E′ν , and E′e. The conservation of energy
and conservation of momentum equations do not admit a unique solution because there are
many possible values of, for instance, the angles that can satisfy the existing constraints.
To select the most probable configurations, we employ the scattering cross-section for this
process, which is proportional to the probability that such an interaction will occur. The
generic equation for the cross-section of the interaction is Eq. (2.5) [9],
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(a) Interaction mediated by Z boson (b) Interaction mediated by W boson

Figure 4: Feynman diagrams that interfere with each other to determine the probability
for for the cross-section of the interaction νe + e− → νe + e−, given in Eq 2.5 [9]

dσ

dy
=
G2
F s

4π
[(cV + cA)

2 + (cV − cA)2(1− y)2] (2.5)

where σ is the total cross-section, and y = 1−cos(θ)
2 incorporates the angular dependence of

the cross section, since θ ≡ θ1 − θ2 by Fig. 3 .
However, the formula above is not complete, because this interaction is governed by

the weak force, and it can be mediated by either the Z boson or the charged W boson. The
Feynman diagrams for these two interactions are shown in Fig. 4.

Since these two diagrams can interfere with each other, an extra interference term
G2

Fm
2y

2π [(cV +1)2− (cA+1)2] is added to Eq. (2.5), with GF representing the Fermi coupling
and m stands for the mass of the electron. In addition, the couplings in Eq. (2.5) are
replaced by cV → cV + 1 and cA → cA + 1. This means that the cross-section for the
interaction, written out completely at leading order, is

dσ

dy
=
G2
F s

4π
[(cV + cA + 2))2 + (cV − cA)2(1− y)2] +

G2
Fm

2y

2π
[(cV + 1)2 − (cA + 1)2]. (2.6)

3 Monte Carlo Simulation

The conservation of energy and momentum equations can be written in terms of any one
of the unknowns in the problem: E′v, E′e, θ1, or θ2. Since the system is underdetermined,
the cross-section in Eq. (2.6) can be used as a probability distribution to find the range
of allowed values for the parameter of interest. Therefore, this experiment uses a Monte-
Carlo program to run an accept-reject method to accomplish this task. The conservation
of energy and momentum equations were first reduced to a single equation in terms of E′ν ,
and then other relevant variables in the problem were written as a function of E′ν . Since
the maximum neutrino energy for solar neutrinos that can come from the pp reaction is
0.420 MeV, a Python-implemented uniform random number generator produced values for
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E′ν between 0 and 0.420 MeV because all physical solutions had to lie in this range. However,
the neutrino also is never allowed to have its energy go all the way to zero because in the
massless neutrino model, the neutrino must travel at the speed of light, and hence has a
non-zero energy hc

λ , where λ is the neutrino’s wavelength. The approximation limits the
energy of the neutrino to lie above a minimum that is not zero. For values of E′ν that yield
unphysical solutions to the equations, we simply discarded that value of the energy.

If the random E′ν values allowed physical solutions for E′e, sin(θ1), and sin(θ2), then
the probability for the event was calculated. The calculation was performed in two steps.
First, the event generator looped through the code, keeping track of the maximum possible
cross-section value, and after 106 accepted events, returned this maximum cross-section.
This value was then saved and recorded to use as the maximum value, pmax, generated for
the accept-reject cycle.

The goal of the accept-reject method is to use the probability distribution to find the
distribution of θ2 values. The next time the code ran, as the event generator looped through
the events and found pcal for each physical event, another uniform random number generator
threw a number, pex, between 0 and pmax. If pex > pcal, we kept the values of the angles
and particle energies used to determine pcal. However, if pex < pcal, the event was rejected.
After repeating this for 106 iterations, a plot of the histogram for the θ2 values was created,
representing the scattering of 106 neutrinos off atomic electrons in some detector medium.
Then this histogram could be used to find the upper limit angle for θ2 for 68.3%, 90%, 95%,
and 99% of the data.

However, although 0.420 MeV neutrinos are interesting because they are the highest
energy that pp neutrinos can have and thus will be the easiest to detect, other energies were
also of interest. For example, most of the pp neutrinos would have an energy of around
0.260 MeV [7], and neutrinos from other nuclear reactions in the sun could have energies
go up to larger energies, as shown in Fig. 2. To compare energies with the values seen in
Fig. 2, θ2 histograms were made for a range of values, the confidence levels were determined
for each of these graphs for each of these variables. Then putting these plots together, a
plot of the various θ2 confidence level points as a function of mass was created.

4 Results

In this section, we discuss the results of our study on 0.420 MeV neutrinos.
The frequency with which each of the probability values were accepted is shown in

Fig. 5, thereby relaying information about the shape of the probability density function.
The absolute height of the curve is not relevant because constants were not included in the
calculations, since relative, rather than absolute, probabilities were of interest.

Graphs of the other parameters of interest E′e, E′ν , θ1, and θ are shown in Fig. 6.
In Fig. 6a we discover that the final values for the neutrino’s energy cannot be below

approximately 0.16 MeV, and the neutrino is more likely to give up more of its energy. Once
the ejected neutrino’s energy is known, the final energy for the electron is determined by
the conservation of energy equation E′e = Eν +me − E′ν . The final energy for the electron
can never be less than 0.511 MeV since this is the rest mass for the electron. Furthermore,
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Figure 5: A sample differential cross-section graph when the incident neutrino energy is
Eν = 0.420 MeV.
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(a) E′
ν : the final energy of the ejected neu-

trino
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e: the final energy of the ejected elec-

tron
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(c) θ: the opening angle between the electron
and the neutrino
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(d) θ1: the angle of deflection for the neu-
trino from its original flight trajectory

Figure 6: Relevant variables that were calculated for the Eν = 0.420 MeV case.

because of the negative slope of and E′e versus E′v curve, the electron is more likely to have
a lower energy. Finally, since the neutrino can never give up all of its energy, the electron
can never receive the full 0.420 MeV of the neutrino’s incident energy, which is why the E′e
graph cuts off between 0.76 and 0.78 MeV.

We show in Fig. 6c that opening angle between the electron and the neutrino can
never be less than π

2 because of conservation of momentum, and the distribution also peaks
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at θ = π
2 . In Fig. 6d we see how this opening angle is distributed to the deflection angle

of the neutrino. The θ1 distribution is an approximately bell shaped distribution varying
between 0 and π, but skewed to the left, favoring smaller deflection angles.

Finally, the distribution of θ2 values is shown in Fig. 7. Like the θ1 distribution,
it is approximately bell-shaped. The mean of the distribution is 0.843 radians, but the
parameter of ultimate interest was the confidence level. The 1 σ confidence line is shown in
magenta (left-most line) on the plot, and the vertical line the furthest to the left is at 0.99
radians, demarcating the upper-limit for 68.5% of the θ2 values. Similarly, the 90%, 95%,
and 99% confidence lines are shown in purple, green, and teal with the higher confidence
values positioned progressively to the right.
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Figure 7: θ2 histogram for Eν = 0.420 MeV. The vertical lines on the graph, reading
from left to right, indicate the θ2 confidence limits for the 68.5%, 90%, 94.5%, and 99%,
respectively.

To find the confidence values for not only the θ2 histogram for Eν = 0.420 MeV, but for
the range of incident neutrino energies of interest, the code was run for a range of incident
neutrino energies, Eν = 0.1, 0.2, 0.3, 0.42, 0.52, 0.72, 0.92, 1.1, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0,
8.0, and 9.0 MeV. Each of these energies generated the same series of plots shown earlier
for the Eν = 0.42 MeV case.

Since the θ2 plot is ultimately the one of interest, the θ2 histograms for each of these
incident solar neutrino energies are laid on top of each other in Fig. 8. The θ2 distributions
become more sharply peaked for higher values for the incident neutrino energy.

For each of the θ2 plots, the 68%, 90%, 95%, and 99% confidence levels were found,
and then the confidence points were plotted as a function of energy as shown in Fig. 9. The
68% confidence line is the lowest, because it does not require as many θ2 values to be below
this limit. The confidence level is higher for lower incident energy values, and plateaus for
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Figure 8: Overlaying the histograms for allowed θ2 values for the various energies. Increas-
ing Eν shifts the θ2 distribution to the left as the maximum becomes more pronounced.

the larger incident neutrino energies. This property was seen earlier from the overlaid θ2
plot distribution since the larger incident neutrino energies corresponded to more tightly
peaked θ2 graphs.
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Figure 9: The upper bound for θ2 for the desired confidence levels.

5 Checking Results

5.1 Other variables of interest for Eν = 0.420 MeV

Each of the plots depends of the calculated value of the probability distribution for the
randomly generated E′ν values. Since the other pertinent variables are calculated after a
random E′ν has been thrown, these calculated variables were plotted against the E′ν to see
how they varied with respect to each other. The dependance of the deflection angle of the
neutrino with respect to the ejected energy of the neutrino is shown in Fig. 10a. If the
neutrino loses very little energy, it should not be expected to be deflected much from its
path, and hence it should have a very narrow deflection angle. So large E′ν values should
correspond to small θ1 values, and visa-versa, as illustrated in Fig. 10a.

Furthermore, a larger E′ν allows the magnitude of the opening angle for the electron
to be larger while still conserving energy and momentum. It would therefore be expected
that larger E′ν should yield a larger magnitude for θ2, and this is reflected in Figure 10b.
Also, |θ2| is never greater than π

2 , because if the electron back-scatters, momentum could
not be conserved in the ẑ direction.

The opening angle between the electron and the neutrino is defined as θ = θ1 − θ2 =

|θ1|+|θ2|. Since larger E′v tend to produce larger magnitudes for θ1, but smaller magnitudes
for θ2, these two effects should compete with each other. It turns out that the θ1 dependence
is stronger because larger E′ν values correspond to smaller θ values according to Figure 10c.
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Figure 10: Examining how E′ν varies as a function of θ1 and θ2.

The θ values appear to range between [π2 , π]. The largest values for E′ν correspond
to θ = π

2 , and this makes sense because this is the value that θ2 has when the energy is
maximum. The smallest values for Eν are for θ = π, and this is when the θ1 distribution
takes over, because the E′ν is minimized for θ1 maximized, at θ = π.

Finally θ1 and θ2 were plotted against each other. Since smaller θ1 values and larger
|θ2| values both corresponded to smaller E′ν values, θ1 and |θ2| should have a negative slope
when plotted against each other. We see this confirmation in Fig. 10d, which verifies that
the experimental results are self-consistent.

5.2 Increasing Incident Neutrino Energy

As a final test, the program was run increasing the incident neutrino energy up dramatically
and observing the results. For solar neutrinos, Eν = 0.42 MeV is approximately 90% of the
electron’s rest mass. However, when the neutrino’s energy is much larger than the electron’s
rest mass, a simplified formula for the interaction’s cross-section for the interaction can be
used, shown in equation 5.1 below [9].
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s = (k + p)2 = (Eν +me)
2 (5.1)
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(a) Cross section distribution for Eν = 0.42
MeV
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(b) Cross section distribution for Eν = 4
MeV
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(c) Cross section distribution for Eν = 40
MeV
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(d) Cross section distribution for Eν = 1 GeV

Figure 11: Plots for the probability distributions for various energies

Since this constant cross section formula is valid for large enough energies, the differen-
tial cross-section becomes peaked and approaches a delta function as the incident neutrino
energy is increased. Figure 11 displays the differential cross-section distribution for varying
incident neutrino energies Eν = 0.42 MeV, 4 MeV, 40 MeV and 1 GeV. From the sequence
of graphs, it is obvious that the function becomes more peaked as Eν increases, until it is
indistinguishable from a delta function for Eν = 1 GeV for the precision of the abscissa
axis. This agrees with Eq. (5.1) prediction that the cross-section approaches a constant
function for large enough incident neutrino energies.

The differential cross-sections are needed to find the pertinent variable of interest: θ2,
the ejected angle for the electron. The more energy the neutrino has, the more energy
it can impart to the electron. More energetic electrons have smaller angles of deflection,
as explained previously in the discussion for Figure 10b. Therefore, larger values for the
incident neutrino energy, Eν , should yield tighter opening angles for θ2. The results from
Fig. 12 verify that this is indeed the case, since the peak for the θ2 distribution becomes
sharper for increasing Eν .

A more peaked θ2 distribution gives us more information about the incident neutrinos
flight direction, so these graphs can also explain why higher energy neutrinos from the solar
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(b) θ2 distribution for Eν = 4 MeV
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(c) θ2 distribution for Eν = 40 MeV
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(d) θ2 distribution for Eν = 1 GeV

Figure 12: Plots for the θ2 distribution for various incident neutrino energies

neutrino spectrum shown in Fig. 1 reliably can be used to assess neutrino flight direction
in existing experiments.

6 Conclusions

In conclusion, using the scattering cross-section for electron-neutrino interactions at lead-
ing order, given by relativistic quantum mechanics, the probability distribution for the
interaction was determined. From this distribution, the accept-reject method was used
to determine the allowed angles for the ejected electron. This θ2 was found to be within
0.99 radians, or 59◦ for the 1 sigma confidence level. This angular resolution is sufficient
to at least determine which hemisphere a given event originated in, and might therefore be
used to provide a way to distinguish which “hits” could be due solar neutrinos in an under-
ground dark matter experiment. We hope this simulation can be used to encourage future
development of detector technology that can provide information about the directionality
of low-energy scattering events in experiments searching for rare cosmic phenomena, such
as dark matter interactions.
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