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We show that the well known Georgi-Machacek (GM) model can be realized as a limit of the
recently constructed Supersymmetric Custodial Higgs Triplet Model (SCTM) which in general con-
tains a significantly more complex scalar spectrum. We dub this limit of the SCTM, which gives a
weakly coupled origin for the GM model at the electroweak scale, the Supersymmetric GM (SGM)
model. We derive a mapping between the SGM and GM models using it to show how a supersym-
metric origin implies constraints on the Higgs potential in conventional GM model constructions
which would generically not be present. We then perform a simplified phenomenological study of
diphoton and ZZ signals for a pair of benchmark scenarios to illustrate under what circumstances
the GM model can mimic the SGM model and when they should be easily distinguishable.

I. INTRODUCTION

The discovery of a 125 GeV scalar at the Large
Hadron Collider (LHC) [1, 2] with Standard Model (SM)
Higgs boson like properties [3] appears to have set-
tled the nature of the electroweak symmetry breaking
(EWSB) mechanism. However, uncertainties in Higgs bo-
son coupling measurements [4-9] still leaves room for
extended Higgs sectors which contribute non-negligibly
to EWSB!. Of course any extended Higgs scalar sec-
tor must be carefully constructed in order to satisfy the
stringent constraints [10] from electroweak precision data
(EWPD). In particular, measurements of the p parameter
imply the tree level relation ps.ee = 1, which is automati-
cally satisfied by Higgs sectors respecting the well known
‘custodial’ SU(2)¢ global symmetry [11].

Extended Higgs sectors that include only electroweak
doublets with SM like quantum numbers, as in the
Minimal Supersymmetric SM (MSSM), automatically
preserve custodial symmetry [12] regardless of whether
each doublet obtains the same vacuum expectation value
(VEV) or not. In order to avoid resorting to highly tuned
cancelations, larger electroweak representations are con-
strained by piree = 1 to come in (N,N) representa-
tions [12] of the global SU(2);, ® SU(2)g symmetry
which breaks down to the diagonal SU(2)¢ subgroup af-
ter EWSB. In contrast to doublets, this requires multiple
scalars for a given SU(2)r representation and further-
more, their VEVs must be ‘aligned’ at tree level.

One of the most thoroughly explored examples of
an extended (non-doublet) Higgs sector is the Georgi-
Machacek (GM) model [13, 14] which contains a (3, 3) in
addition to the SM Higgs doublet, which is a (2,2). The
construction of the (3,3) is accomplished by adding two
electroweak triplets with hypercharges Y =1 and Y =0
whose VEVs are aligned at tree level. This leads to a
rich phenomenology [14-16] which has been examined in

1 We reserve the ‘Higgs’ label for scalars that contribute to EWSB
and therefore do not include electroweak singlets.

many recent studies [17-30]. Though specifying the ori-
gin of the new Higgs scalars in the GM model is not
necessary for analyzing much its phenomenology, implic-
itly it is assumed they arise out of a UV sector which
explains their presence and ameliorates the fine tuning
issues associated with each of their masses as well as the
p parameter [16]. Typically it is envisioned that the GM
model scalars arise as pseudo Goldstone bosons [13] of a
strongly coupled sector whose global symmetry breaking
structure [31] contains them in its coset 2.

More recently, the Supersymmetric Custodial Higgs
Triplet Model (SCTM) was constructed [37-39] in which
the Higgs sector contains three electroweak triplet chiral
superfields, along with the doublets of the MSSM, and a
superpotential plus soft SUSY breaking sector which re-
spects the global SU(2); ® SU(2)r symmetry. As a con-
sequence of supersymmetry, this theory inevitably comes
along with a ‘doubling’ of the scalar sector (in addition
to introducing a new fermion sector) with respect to the
original GM model and leads to a significantly more com-
plicated mass spectrum. However, as we analyze in detail
here, in a certain limit one recovers only the GM spec-
trum at low energies. We dub this limit of the SCTM, the
Supersymmetric GM (SGM) model. In obtaining the GM
model Higgs spectrum from an underlying supersymmet-
ric theory we are able to realize a weakly coupled origin
for the GM scalar spectrum at the electroweak scale.

In addition to giving a weakly coupled origin for the
GM model and, by virtue of being a superymmetric the-
ory, solving the various fine tuning problems of the GM
model [15, 16], the SGM also inherits other benefits from
the SCTM. As examined in [37, 38], both tree level and
1-loop effects in the SCTM can contribute the large cor-
rections necessary to explain the observed Higgs mass
without needing to resort to heavy stops or stop mix-

2 In particular the SU(5)/SO(5) symmetry breaking pattern found
in a number of composite Higgs scenarios [31, 32], including
certain Little Higgs [33] and the Littlest Higgs Model with T-
Parity [34-36], contains within its coset the same SU(2)r ®
SU(2) g representations as the GM scalar sector.



ing as needed in the MSSM [40]. It also avoids problems
with EWPD which plague non-custodial supersymmet-
ric Higgs triplet models invoked [41] to solve the Higgs
mass problem of the MSSM. The SCTM also allows for
a natural connection between the scale of supersymme-
try breaking and the scale at which the original global
SU(2)r, ® SU(2) g symmetry holds at tree level [38]. Fur-
thermore, it can be embedded in a gauge mediated super-
symmetry breaking framework [39]. The custodial sym-
metry of the SCTM also automatically realizes an ‘align-
ment’ limit [42-44] allowing for regions of parameter
space which impersonate the SM without decoupling. In
addition, there are possibilities in the SCTM for gener-
ating the strong first order phase transition needed for
successful electroweak baryogenesis [45]. Finally, and as
we discuss further below, the SGM inherits the potential
(neutralino) dark matter candidates of the SCTM [46].
In this work we show explicitly how the Higgs scalar
spectrum of the GM model arises as a limit of the SCTM
and derive a mapping between the Higgs potentials of
the SGM and GM models. We then use this mapping
to show how a supersymmetric origin for the GM model
implies correlations between operators in the Higgs po-
tential which would otherwise not be present in the con-
ventional GM model. We also perform a simplified phe-
nomenological study of diphoton and ZZ signals for a
pair of benchmark scenarios to illustrate under what cir-
cumstances the GM model can mimic the SGM model
and when they should be easily distinguishable. We also
discuss other potentially interesting signals as well as on-
going and future directions for further investigation.

II. WEAK SCALE GM FROM THE SCTM

We will define the SGM as the limit of the SCTM in
which the scalar spectrum of the conventional GM model
is obtained at low energies. Thus we need to decouple any
additional scalars present in the SCTM which are not
present in the GM model. As we will see, this limit cor-
responds to taking particular soft supersymmetry break-
ing masses large. In this section we first briefly review the
relevant aspects of the SCTM model Higgs sector before
showing how it can be mapped onto the GM model Higgs
sector. We then show explicitly the limit out of which the
SGM model arises from the SCTM and show how the
mapping between the GM and SGM scalar potentials
implies correlations between the quartic couplings in a
GM model with a supersymmetric origin. The custodial
fermion superpartner sector is also briefly discussed.

Throughout our analysis we implicitly assume that the
scale M at which the global SU(2); ® SU(2)g holds is
not too much larger than the electroweak scale v in order
to neglect RG evolution effects [9, 16, 38]. This is an im-
plicit assumption in almost all GM model constructions
so that custodial breaking effects due to RG evolution are
small and do not invalidate the custodial classification of
the Higgs spectrum at the weak scale. In the SCTM the

scale M can be connected to the supersymmetry break-
ing scale and in principle much larger [38] than v due to
additional VEV ‘directions’ as a consequence of super-
symmetry. However, for present purposes it is sufficient
to take M ~ B ~ TeV and leave a more general analysis
including RG and NLO loop effects to future work.

A. Higgs Sector of the SCTM

The SCTM field content [37] possesses, in addition to
the two MSSM Higgs electroweak doublet chiral super-
fields H; and Hs with hypercharge +£1/2, three elec-
troweak triplet chiral superfields ¥y = (¢+,¢% ¢7)7T,
Z-‘r = (¢++aw+7’¢)0)T7 and ¥_ = <X07X_ax__)T7 with
hypercharges Y = 0, +1, —1 respectively. In the SU(2),
basis the electroweak doublets can be written as,

HY H
le (H1>a H2: <H2g)a (1)
1

while the three SU(2)y, triplets can be expressed? as,

X~ _.0 vt o+
o 7)(7 b wo 71/)7 b
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Note that the Y = 0 field is complex while the hyper-
charge Y = 1 and Y = —1 fields are independent de-
grees of freedom as compared to the GM model where
the Y = 0 triplet is real and only one ¥ = 1 triplet
is present along with its conjugate. The difference is of
course a consequence of supersymmetry and in particu-
lar the requirement of holomorphy of the superpotential
and anomaly cancelation. As emphasized in [38], this has
implications for the vacuum structure of the Higgs po-
tential and the p parameter as well as the ratio of the
Higgs boson couplings to WW and ZZ pairs, but will
not be relevant for present purposes.

These fields can then be organized into bi-doublet and
bi-triplet representations of the global SU(2)r x SU(2)L,

_ H\ = S
H = A = V2
(HQ)’ <—2+ %> ®)

where the bar is used as a reminder that we are now in the
SU(2)r, ® SU(2) g basis. These decompose under the cus-
todial SU(2)c as (2,2) =1®3 and (3,3) =163d5
providing a classification of mass eigenstates in the custo-
dial basis after EWSB. As a consequence of supersymme-
try, each custodial representation has both a scalar and
a pseudo scalar component in contrast to the GM model

3 Note we use a different phase convention as compared to [37].



which has only one or the other. Thus, after EWSB in
the SCTM, we have a Higgs scalar spectrum [37] which
in general is significantly more complex than the spec-
trum found in the GM model [15]. Of course there are
also the superpartner Higgsino fermions, but these will
be discussed in more detail below.

The manifestly SU(2)r x SU(2), symmetric superpo-
tential can be written in terms of H and A as?,

Wo :m.M+%ATr[MA] (@)

+ gﬁ-ﬁw %Tr[AA],

where A and Aa are dimensionless while 1 and ua have
dimensions of mass. This gives the F-term potential,

Ve = p® HUH 4+ p A Te[ ATA] + 2 (I_{TA H + c.c)

a2 (m[@fm AR+ (B - | ﬁ?)
e <Tr[AwAA] - iTr[NN]Tr[AA]) (5)

+ M (H ATAH - LT ATAT] c.c.>

+ A\ua (I_{ ATH + c.c.) + AALA ('TI‘[ATATA] + c.c.) )

The soft supersymmetry breaking terms are also con-
structed to respect the global SU(2)g x SU(2)r,

Viott = m%4 HTH + mATr[ATA]
1 - 1 o
v (§BH (H + SBaTr[AA] (6)
+ AN -AH+ %AA’H[AAA] the),

where all parameters have dimensions of mass, except
B and Ba which have dimension mass squared and can
be positive or negative. As we discuss more below, it
is B and Ba which lead to decoupling of the non-GM
spectrum in the limit they are taken large.

Along with the D-terms?®, Eq. (5) and Eq. (6) give a
scalar potential which leads to a mass spectrum that can
be (approximately) classified [37] in representations of
the custodial SU(2)¢ after EWSB in a similar manner
to the GM model [23]. This SCTM potential leads to a
scalar spectrum that contains the same scalars as found
in the GM model. In particular after rotating to the mass
basis we have a C'P even custodial fiveplet, Hs, a C'P
odd triplet, Hs (orthogonal to the Goldstones), and three
Goldstone bosons which are eaten by the W and Z vector
bosons. There are also two real singlets, (Hy, H;) which

4 The anti-symmetric dot product is defined as XY = e“bfij Xng]
where €!2 = —e15 = 1 and the lower indices are acted on by
SU(2) g while the upper ones are acted on by SU(2)r.

5 We do not write the D-terms explicitly since they do nmot con-
tribute to the masses of the scalars in the SGM model.

in general mix leading to the SM like Higgs h and a heavy
CP even scalar H after rotating to the mass basis. How-
ever, since the spectrum has now been complexifed by
supersymmetry, there is now for every scalar in the GM
model an additional pseudo scalar and for every pseudo
scalar a new scalar. We discuss this non-GM Higgs sector
and how to decouple it in more detail below.

Using the minimization conditions [37] after EWSB al-
lows us to eliminate two parameters in the scalar poten-
tial, which we take to be the soft masses m% and m3
in Eq. (6), in favor of one electroweak doublet VEV (vg)
and one triplet VEV (va) which are defined by,

(HY) = (HY) = 71;
(O) = (¢°) = (°) = 7% (7)
v? = 20% + 8vi = 47:2W.

After rotating from the electroweak basis to the custodial
mass basis [37], this gives for the masses of the GM-like
scalars H, Hs, Hs as well as the SM-like Higgs boson h,
2
, en—pa) -4 3,
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where mq1, mi2, Mmoo are the entries of the 2 x 2 custodial
singlet mass matrix which must be diagonalized [37] and
where M2, = M3,. One of the two eigenvalues is identi-
fied with the mass of a SM-like Higgs m3, while the other
is identified with a second neutral C'P even scalar with
mass m?% and can be greater or less than m3.

To summarize, we have 10 free parameters in
the Higgs potential of the SCTM shown in Eq. (5)
and Eq. (6). These are given by 2 quartic and 2 mass
terms coming from the superpotential (A, Aa, i, ua)
and 6 soft supersymmetry breaking mass parameters
(m%, m%4, B, Ba, Ay, Ax) where we can also use the
minimization conditions to eliminate two of the parame-
ters in favor vy and va, the doublet and triplet VEVs.

md =

B. Mapping to Georgi-Machacek (GM) Model

In the GM model [13-16], only two SU(2). triplet
scalars are added one of which is complex with hyper-



charge Y = 1 (along with its conjugate) and another
with hypercharge Y = 0 which is now real in contrast
to the SCTM. Thus there are now half the number of
degrees of freedom as compared to the SCTM Higgs sec-
tor. Again the electroweak doublet and triplet fields can
be arranged into the bi-doublet (2, 2) and bi-triplet (3, 3)
representations of the global SU(2)r ® SU(2)g.

In fact we can easily obtain the GM model Higgs fields
starting from the electroweak triplet and doublet SCTM
fields in Eq. (1) and Eq. (2) (see Appendix for more com-

monly used conventions) and imposing the conditions ©,

A=A, Hy = —iooH} . (9)

Furthermore, with these conditions we not only recover
the GM model Higgs fields [23], but we can also derive the
Higgs potential of the GM model from the SCTM Higgs
potential, Vscrm = Vr + Viore (Eq. (5) plus Eq. (6)).

To see this we first apply the constraints in Eq. (9) to
Vscrum 7, after which we can write the Higgs potential as,

1 5= 1 . L
Van = 5“3 H'H + 5u?{.[‘r[AA] + M (HTH)?
1 L o o
+ (2 + 22s) (HTH)T[AA] = 2 A5 Tr[ (AD)?
4 (2A3+)\4)Tr[AA]2 N HAAHE  (10)
My -, - - -
+ %HTAH + 2M, Tr[ AAA ]
When expressed in terms of the component electroweak
fields in Eq. (1) and Eq. (2) (with the condition in Eq. (9)
enforced), Eq. (10) matches precisely the GM model
Higgs potential ® given in [23] (and Appendix).
Comparing coefficients of each operator in Vg, with
those in Vscrm after Eq. (9) has been applied allows us

to obtain a mapping between the Higgs potential param-
eters of the two models,

_3 2 _\2 __} 2
M= A% A =A% A = —0AR,
1
A = §>\2A, A5 = 20(Aa — 2)),
My = 4[A2p — pa) — As], (11)

1
M2 = g(g)‘A,uA + AA)?
w3 = 2(p* +my) + B,
p3 = 2(pa +mi) + Ba.

We can use this mapping to define the SGM model Higgs
potential in terms of Eq. (10) with Eq. (11) imposed or,

6 This then leads to the substitutions for operators in the scalar
potential: H-H — —HTH, H-AYH —» —H'AH.

7 The contributions from the D-terms to the potential all vanish
when we impose the constraints in Eq. (9) and thus only enter
into non-GM scalar masses to be discussed more below.

8 This includes the Z5 breaking mass parameters M; and Ma, thus
allowing for a proper decoupling limit to exist [23].
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equivalently, as Vsory with the constraint in Eq. (9) ap-
plied. One can also verify that imposing the relations
in Eq. (11) on the GM scalar masses in [23] reproduces
exactly the GM-like scalar masses in Eq. (8) once, us-
ing the vacuum conditions [37], m% and m?% have been
eliminated in favor of the VEVs vy and va.

The mapping between the SGM and GM model Higgs
potential parameters in Eq. (11) also implies the fol-
lowing constraints between the five dimensionless quartic
couplings in the GM model Higgs potential,

M= = (12)

As = —4Xa + 24/ 224

Thus we see the five quartic couplings in the GM model
Higgs potential can be written in terms of only Ao and
Ag. This defines a ‘constrained’” GM model in terms of
the GM Higgs potential in Eq. (10) with Eq. (12) im-
posed. These constraints imply correlations between op-
erators in the Higgs potential of the GM model and
could be a signal of its supersymmetric origin. Note also
that Eq. (11) and holomorphy of the superpotential im-
plies the bound on the quartic couplings 0 < Ag4 € R.

These constraints could manifest in correlations be-
tween rate measurements as well as perhaps in differen-
tial distributions for precisely measured channels such as
the 4¢ and 2/~ final states. These may serve as useful
additional probes, over a range of center of mass ener-
gies [47-51], for distinguishing between the SGM and GM
models at the LHC, particularly once large data sets are
collected at a high luminosity LHC. As we’ll see below,
the GM limit of the SCTM also implies large p% and u3
mass parameters in the GM model. So we see the sign
of a supersymmetric origin for a GM-like model could be
correlated quartic couplings along with large M%,3-

One could of course ‘tune’ the GM Higgs potential
parameters to satisfy these constraints. This leads to a
‘slice’ in parameter space where the GM model can gener-
ically give very similar signals to the SGM model. To
ascertain a true ‘smoking gun’ signal of its supersym-
metric origin will require observing effects from the su-
perparter sector and in particular the (light) fermionic
sector. These include both tree level and one loop effects
which we examine in more detail below.

C. The ‘GM limit’ of the SCTM

The non-GM scalars in the SCTM [37], which we
will refer to as the ‘mirror-GM’ Higgs sector, are com-
prised of two (neutral) C' P-odd custodial singlet psuedo
scalars, two C'P even triplet scalars, and a C' P-odd five-
plet pseudo scalar. The three triplet scalars can in general
mix as can the two pseudo scalar singlets. The fiveplet
pseudo scalar, like its C'P even counterpart (as found
in the GM model), is prevented by custodial symmetry
from mixing at tree level. However, in contrast to the



CP even fiveplet it does not have tree level couplings?
to WW,ZZ, or WZ pairs. Note that the neutral and
charged MSSM like Higgs scalars are contained within
the custodial triplet scalars and singlet pseudo scalars,
which as we’ll see are decoupled in the GM limit.

To see how we can decouple the mirror-GM scalars
without decoupling the GM-like scalars in Eq. (8), we
examine their masses [37] after expanding around va = 0,

v [AN2u — pa) — Ay
V2ua

1
+ 5)\111%1()\A —6A) + O(va),
v A2p — pa) = A)]

Mg ~ —QBA

M2, ~ - 2B
3 V2ua °
1
+ §Av?{(3AA —2)) 4+ O(va), (13)
1
M2 ~ ivﬁ,(cﬁ +2)%) + 2B,
2 M2u — pa) — A
M2 SR pa) = ANy

V2vua
+ 22AavF + O(va),
M? ~ 2B,

where we use similar notation to Eq. (8) in order to de-
note custodial singlet, triplet !0, or fiveplet, but use M
insead of m. The small va limit is not necessary for our
analysis, but simplifies the discussion below.

What is crucial to note is that unlike for the GM-like
scalar masses in Eq. (8), the masses in Eq. (13) depend
explicitly (linearly) on the soft supersymmetry breaking
masses B and Ba. This opens the possibility of decou-
pling all non-GM scalars while ensuring the GM like
scalars remain light and around the weak scale. In partic-
ular, if we take B > 0, Ba < 0, while holding va and the
other scalar potential parameters fixed, then in the limit
|B|, |Bal — 00, all mirror-GM scalar masses in Eq. (13)
become large while the GM-like scalars in Eq. (8) are
unaffected and remain light. As in the MSSM [53], tak-
ing B — oo decouples the (custodial) MSSM like scalars
with masses M; and M3 in Eq. (13). Conversely, one can
obtain the MSSM by taking the |Ba|, |ta| — oo limit.

There are subtleties in ensuring the decoupling behav-
ior needed to obtain the GM Higgs sector at low ener-
gies. To examine this, we would like to find, purely in
terms of Higgs potential parameters (instead of VEVs),
the limit where all mirror-GM Higgs bosons decouple
while all GM-like Higgs bosons, as well as the SM-like
Higgs boson, are left light and around the weak scale. In

9 Note the physical T-odd scalar in Littlest Higgs Models with T-
parity [34-36, 52] resembles the custodial fiveplet pseudo scalar.

10 One of the custodial triplet masses, M3, depends on G = g2 + g’2
for the neutral component and G? = g2 for the charged, thus
breaking custodial symmetry at tree level, but these effects are
suppressed by the small hypercharge coupling squared [37].

taking the large |Ba| limit for the Mj, M), M5 masses
in Eq. (13) we have assumed implicitly that va does not
go to zero as |Ba| is taken large, which would cause the
GM-like scalars to decouple as well.

To gain insight for how this is possible we first note
that the vacuum conditions [37] (in the small va limit)
impose the constraint on the Higgs potential parameters,

Ui (A (20 — pia) — Ay)

~ Ba + mA + uA 14
NI A Athua  (14)

+ 2% (3A = Aa) + O(va),

where we see the ratio on the left appears explicitly in
the masses of custodial scalars which originate from elec-
troweak triplets (mpg, ms, ms, M{, M}, Ms). Substitut-
ing Eq. (14) into the masses in Eq. (8) and Eq. (13) gives
for the GM-like scalar masses (for small va),

1
m2 ~ Ba +mA + pia + EA/\AU%U

1
mi &~ Ba+mi + A+ gAEUA = Aa)oi, (15)

m3; & Ba +mA + pA + ABA — Aa)vy,

mi ~ 3 2%,
where now the doublet (and triplet) VEVs are dependent
parameters and fixed once the Higgs potential parameters
are fixed. For the mirror-GM scalars this gives,

1
M? ~ —Ba +mA + pA — 5)&%1}%,
1
Mg, = =Ba +mi + p + GAEA + Aa)viy,

1
M2~ 5uff(G2 +2)%) + 2B, (16)
M? ~ —Ba +mA + pA + A3+ Aa)v7,
M} ~ 2B.

Examining Eq. (15) and Eq. (16) we can see what is the
necessary limit of lagrangian parameters to decouple the
mirror-GM sector while keeping the GM-like scalars as
well as the (mostly) SM Higgs boson light. In particular,
by imposing the conditions Ba ~ —(m% + p%) < 0, we
can ensure the GM-like masses do not decouple along
with the mirror-GM masses in the |Ba| — oo limit.

We expect the two supersymmetry breaking param-
eters to be of the same order so |Ba| ~ |mA]| while
the Higgs triplet superpotential mass parameter pa is
a priori unrelated to the soft breaking parameters. We
take it to be at around the same scale as the doublet
mass parameter u, but below B, Ba. Thus, we find the
limit for decoupling only the mirror-GM sector to be
Ba &~ —m3 < 0 and taking m3%, B — oo with all other
mass scales fixed. This gives for the SGM scalar masses,

1
mE ~ i + 5)\)%1)%,,

1
mi ~ pi + 5A(4A — )oY, (17)

my ~ pi + ABA — Aa)vy,
mi ~ 3\%v%,



while all of the mirror-GM scalars become very heavy
and decouple. We see also that with these conditions, the
ratio on the left hand side in Eq. (14) remains finite. This
implies va can be held fixed and does not necessarily go
to zero as |Ba| — oo. We thus see it is indeed possible
to decouple the mirror-GM scalars while ensuring the
GM-like scalars remain light at around the weak scale.

We see also in Eq. (17) that the limit p% —
oo decouples the GM-like scalars and maps onto
the M, My, u3 — oo decoupling limit in the GM
model [23]. Furthermore, using Eq. (11) we see the
|Bal, B — oo limit leads to large p3 5 in the GM
model. This does not necessarily decouple the GM scalar
sector however, as these effects can be compensated for
with large M, 2 mass parameters. We also note that the
‘un-complexification’ constraint in Eq. (9), which leads to
the mapping between the SCTM and GM models, breaks
supersymmetry. This is of course consistent with the GM
limit of the SCTM defined by the large soft masses.

Finally, we point out that if we instead take Ba =
+m% > 0, we can obtain the inverted spectrum by tak-
ing the limit |Ba| — oo while keeping B at the weak
scale (see Eq. (15) and Eq. (16)). In this case now the
GM-like scalars are heavy while the mirror-GM scalars,
plus the SM Higgs boson, are light and around the
weak scale. This limit, which we refer to as the mirror-
GM model, has interesting phenomenology that can also
mimic the GM model with certain important differences
to be examined in ongoing work [54].

D. (Custodial) fermion superpartners - LSP

Of course being a supersymmetric theory, the SGM
contains fermionic superpartners which can in principle
also be light. As the masses of these fermions is taken
large their effects decouple and the SGM phenomenol-
ogy looks very similar to GM phenomenology. As they
become light they can effect the decays of all the GM-
like scalars in the SGM at tree-level and one loop.

There are three contributions to the fermion custo-
dial superparter sector, the first two of which are as
in the scalar case, from the electroweak Higgs doublet
and triplet chiral superfields. These lead to two Hig-
gsino custodial singlets, two triplets, and one fiveplet
which constitute the superpartners of the SGM and mir-
ror-GM custodial scalars. The third contribution to the
fermion superpartners comes from the hypercharge and
SU(2)r, gauge vector superfields. If we neglect hyper-
charge interactions or assume universal gaugino masses,
the electroweak gauginos decompose, like the electroweak
gauge bosons, into custodial singlet and triplet represen-
tations. Therefore, they can also mix at tree level with
Higgsinos in the same custodial representation. In the end
we are left with three (approximately) custodial singlets,
three triplets, and one fiveplet. The lightest stable parti-
cle (LSP) makes a potential dark matter candidate [46]
and is formed out of some combination of the neutral
components of the custodial fermions.

More explicitly, in the charge basis the neutral super-
partner fermions can be arranged into,

9o — (ﬁg,ﬁg,é,wg,gs‘),w,g(’). (18)
where HY, HY are the neutral components of the two elec-
troweak doublet Higgsinos, B, W; are the two neutral
components of the electroweak gauginos, and ¢°,9°, ¥°
come from the three electroweak triplet Higgsinos. This
leads to the 7 x 7 neutralino mass matrix in the SCTM
which generically is non-trivial [37]. However, since the
fields in Eq. (1) and Eq. (2) are chiral superfields, the
same rotations which take the Higgs scalars [37] into the
custodial basis, also rotate the fermion fields and greatly
simplify the mass matrices. After rotating to the custo-
dial basis which we write as,

00 = (h,b1,79,2,18,85,89), (19)
the neutralino mass matrix simplifies to the (almost)
block diagonal form given by,

TsAa — p e 0 0 0 0 0
V3\e  —vV2Xava + pa 0 0 0 0 0
0 I 0 0 0
Mp=| 0 0 O M) LMy [l 4 g on V2P F ) v 0 . (20)
0 0 0 \/2(g2+ g% vn %)\’UA-{-,U, —V2 v 0
0 0 0 V2(g2 + g% va —V2 v %)\A’UA — pa 0
0 0 0 0 0 0 J5hava + pa

where Mz and My, are the supersymmetry breaking
electroweak bino and wino masses respectively [37].

We see that we are only prevented from having the
mass matrix in block diagonal form by the zino-photino

(

(Z — #4) mixing represented in the 34 and 43 matrix en-
tries. Note also that, if we want to keep the p terms
around the weak scale, only the photino and zino can
be decoupled by taking the gaugino masses large while



all other contributions go to zero in the absence of
EWSB. Since they mix, decoupling the zino also decou-
ples part of the custodial triplet Higgsinos. The rest of
the custodial fermions are decoupled as p, pa — co.

In the limit we take the hypercharge coupling g’ — 0,
in which case custodial symmetry (neglecting quark and
lepton Yukawa sectors) is exact at tree level, this mix-
ing goes to zero and the neutralino mass matrix becomes
exactly block diagonal. We can then decompose the neu-
tralino mass matrix into a 2 x 2 sub matrix for the Hig-
gsino custodial singlets (h1,d1), a 1 x 1 for the custodial
singlet photino (%), a 3 x 3 for the three custodial triplets
(Z,hY,89) which in general mix, and finally a 1x 1 for the
fiveplet (69) higgsino. In particular, in this limit the sub
mass matrices for the neutral components of the custo-
dial triplets will be equal to their corresponding charged
ones as required by custodial symmetry. Note we could
have also put the mass matrix in block diagonal form by
taking universal gaugino masses Mz = M. However,
in this case one still has custodial breaking effects due
to the hypercharge couplings ¢’ entering the custodial
triplets which manifests as an O(g’ 2) splitting between
the masses of the neutral and charged components.

At tree level the custodial fiveplet Higgsino has degen-
erate neutral, singly charged, and doubly charged compo-
nents. Small custodial breaking hypercharge interactions
enter into 1-loop corrections of the custodial fiveplet mass
and break the degeneracy leading to the lightest compo-
nent being the neutral one. This is crucial for ensuring the
charged components can decay and avoid problems with
the many stringent experimental constraints on charged
stable particles. This is similarly true about the custo-
dial triplet fermions, but in addition, these have a tree
level splitting due to the small breaking of custodial sym-
metry by hypercharge interactions entering through the
D-terms [37]. These introduce the O(g’?) corrections into
the neutral component masses seen in Eq. (20). Further-
more, over large regions of parameter space, the lightest
neutral component of these fermions can make a viable
thermal dark matter candidate [46].

III. GM VERSUS SGM MODEL AT THE LHC

In this section we compare phenomenology between the
SGM model and the ‘constrained” GM model, as defined
by Eq. (10) with Eq. (12) imposed, and identify signals
which might be useful for distinguishing them. For our
analysis we go back to the scalar masses of Eq. (8) where
we have eliminated m% and m?; in favor of the doublet
and triplet VEVs, so they are again independent param-
eters. On the GM side we implicitly use the vacuum con-
ditions [23] to eliminate p3 and p3 again in favor of the
doublet and triplet VEVs, vg and v, respectively.

In what follows, we take the GM limit of the SCTM,
which also defines the SGM model, to be given by,

B=—Bx>>|M| = SCTM —SGM, (21)

where M = u, pua, Ax, Aa,v represents all other mass
scales present in the SCTM Higgs potential. As we’ll see
below, numerically it turns out that for B ~ TeV and all
other mass scales M ~ v = 246 GeV, one already begins
to obtain only the GM spectrum at the weak scale.

A. ‘Smoking guns’ signals of SGM versus GM

There are a number of possible ‘smoking gun’ signals of
the SGM which could be used to establish the supersym-
metric nature of a GM-like model. Of course more gener-
ally when Eq. (12) is not satisfied, the GM and SGM will
have very different phenomenology at the LHC. In par-
ticular, though many of the LHC signals would be sim-
ilar, their magnitudes and the correlations among them
would not be the same. This may also manifest itself (via
tree or 1-loop effects) in differential distributions which
could perhaps be observable in the precisely measured
4¢ and 20~ channels [47-49, 51]. As we’ll see, the ‘slice’
in parameter space of the GM model represented by the
constraints in Eq. (12) can closely mimic the SGM model
depending on the fermion superpartner masses.

The smoking gun of GM type models is the presence
of the custodial fiveplet [29, 30] scalar. Perhaps the most
well studied signal is the decay of the doubly charged
component into same sign W bosons [13, 19, 55, 56],
which in turn leads to a same sign di-lepton signal, plus
missing transverse energy (Er) due to the final state neu-
trinos. This decay is of course also present in the SGM,
but now there is an additional decay through pairs of
charginos which also leads to a same sign di-lepton sig-
nal plus missing Ep. In this case however, the missing Erp
includes a pair of LSPs leading to a significantly altered
missing Fp spectrum. This implies the missing Er spec-
trum in the doubly charged scalar decay could be used
to distinguish between the GM and SGM models. The
additional decay mode through pairs of charginos may
also allow for evading constraints from like-sign W bo-
son searches [27, 57]. Similar considerations hold for de-
cays of the singly charged component to W*Z leading
to tri-lepton signals plus missing E7, but we leave an
exploration of these possibilities to ongoing work [54].

Of course even if GM-like scalars are not observed, they
can affect decays of the SM-like Higgs boson at both tree
level and one loop. In both the GM and SGM models, h
and Hs have tree level decays to W*WT and ZZ vector
boson pairs while, as discussed above, the charged com-
ponents of Hs can also decay to W*Z [30] and WEW*
pairs [56]. At one loop both h and Hs have decays to
Z~ and vy while Hs can also decay to W*y [28], which
leads to an interesting mono-lepton plus photon signal
with missing Er. As we’ll see, the primary difference be-
tween the SGM and GM decay patterns comes from the
effects of the fermionic superpartners. These can affect
the total decay widths of h and Hs once the LSP is light
enough for 2 (or three) body scalar decays. In addition,
their effects can be important at one loop and in partic-



ular for the loop in induced W*~, Z~, and ~v decays.
With these considerations in mind, we examine in par-
ticular decays of the custodial fiveplet Hs and the SM-like
Higgs boson h focusing on decays to the well measured
vy and ZZ final states. We examine a pair of simpli-
fied benchmark scenarios to compare between the SGM
and GM models. A more in depth study, including other
possible decays and a more general scan to find allowed
regions of parameter space, is left to future work.

B. Parameter space and benchmark scans

For our parameter scans we will also in the following
assume a gauge mediated supersymmetry breaking sce-
nario [39] in order to fix A = Ax = 0. This leaves us with
a dependence on only the four superpotential parameters
(see Eq. (4)) and two VEVs. This gives a 1-to-1 mapping
between the six Higgs potential parameters in the GM
and SGM models, which we represent schematically as,

()\v )\Av M, NA»’UH/UA) 4 ()\Qa )‘47 Mlv M27 Ve, ’UX), (22)

where the sets of parameters correspond to SGM <
GM. The constraint A = Aax = 0 is not strictly neces-
sary and other supersymmetry breaking scenarios could
be considered, but this assumption simplifies our cur-
rent analysis without qualitatively changing the discus-
sion. We will utilize this mapping below to analyze and
compare some of the phenomenology in the GM and SGM
models for a pair of benchmark scenarios.

We also use measurements [10] of the Higgs and W
boson masses as well as electroweak gauge couplings to
impose the pair of additional constraints,

v =246 GeV, my, = 125GeV, (23)

which, using Eq. (7) and Eq. (8), allows us to eliminate
vy and one other Higgs potential parameter which we
take to be va. This reduces the six dimensional parame-
ter space in Eq. (22) to the four superpotential parame-
ters (A, Aa, p, pa) which in turn maps onto the four GM
potential parameters (A2, Ay, My, Ms) using Eq. (11).
For the pair of benchmark scenarios considered here
we impose the additional constraints,
point1l: A= —AaA, u=pa, (24)

point2: A= AA, p= —pa,

leaving us finally wth two degrees of freedom. For our
scans we trade these in for the custodial fiveplet and
triplet masses (ms and ms) in terms of which all other
Higgs potential parameters are then determined. The
fermion superpartner masses are then also fixed (after
also fixing the gaugino masses). After using Eq. (11), this
then also determines the Higgs potential parameters in
the GM model in terms of m3 and ms.

The top Yukawa coupling is fixed once va is deter-
mined by the requirement of reproducing the observed
top mass [37, 38]. Larger values of va require larger top

Yukawa couplings which in turn induces sizable radiative
corrections to the Higgs mass from stop loops. However,
for the A ~ O(1) cubic couplings considered here, these
corrections are subdominant so we neglect them for sim-
plicity since the SM-like Higgs boson mass is not the
focus of the present study. However, it may be interest-
ing to consider if these 1-loop corrections give additional
possibilities for distinguishing between the SGM and GM
models. We also note that, while it is increasingly disfa-
vored experimentally [49], a negative top Yukawa cou-
pling could in principle be generated [58] in the SGM,
but we do not consider this possibility here. Effects from
the rest of the Yukawa sector are neglected.

C. Fiveplet decays to yy and ZZ pairs

Diphoton searches have been shown to be a power-
ful and robust direct search probe for (light) fermiopho-
bic Higgs bosons [59-62], of which the custodial fiveplet
found in GM-type Higgs models is a particular exam-
ple. This is particularly true when combined with Drell-
Yan Higgs pair production [60, 63, 64] which can be siz-
able for Higgs scalars below ~ 250 GeV, especially at the
LHC [60, 65]. Four photon searches have also been shown
to be useful [66, 67] in the case where the pair of Higgs
bosons produced are not degenerate.

Assuming the fiveplet is the lightest non-SM Higgs
scalar, we show in Fig.1 contours of the branching ra-
tio into two photons as a function of ms versus ms for
a mass range ~ 100 — 250 GeV in both the GM (blue
solid lines with background color) and SGM models (red
solid line). While it is the light charginos which give the
loop contributions to the diphoton width, we show in
the black dashed lines various contours of the neutralino
LSP mass in the SGM. As discussed above, which neu-
tralino makes up the dominant component of the LSP de-
pends on the parameter point chosen. Whether we have a
light or heavy LSP (and by extension other fermionic su-
perpartners) largely determines the qualitative behavior
seen in the diphoton branching ratios.

This can be seen in Fig.1 where for benchmark point
1 (top), which leads to larger LSP masses, the GM and
SGM contours are approximately alined. This is particu-
larly true as we go to larger LSP masses where Hy can no
longer decay to the LSP and its 1-loop effects are negligi-
ble. We also see that in this range of mg, ms < 250 GeV
the LSP mass depends more strongly on mj3 and generi-
cally is 2 100 GeV. This is because for point 1 there are
partial cancelations between different terms in the custo-
dial triplet mass which requires larger u terms to satisfy
the constraint from the input mgs masses. Since, apart
from the gauginos, the fermion superpartner masses are
largely determined by the p terms when they are large,
this leads to heavier LSP masses. In this heavier LSP sce-
nario, where we find the LSP is composed of the custodial
singlet or the neutral component of the fiveplet, we see
it may be challenging to distinguish the GM and SGM



models by simply measuring diphoton decays of Hs.
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FIG. 1. Top: Contours of the fiveplet branching ratio into
photons in the GM model (blue solid lines with background
color) and SGM model (red solid line) with contours of the
LSP mass (black dashed lines) and inputs defined for Point
1 in Eq. (24) with A = —Aa and p = pua. Bottom: Same as
top, but for Point 2 in Eq. (24) with A = Aa and = —pa.

For point 2 (bottom) with A = —Aa, leading to smaller
1, we have drastically different contours and a much
lighter LSP < 45 GeV. The LSP is now composed of the
neutral component of the lightest custodial triplet, while
its charged components give the dominant contribution
to the diphoton width. Here we see clearly effects of the
fermionic superparters which enter at both tree level and
1-loop. In this case, simply measuring the fiveplet branch-
ing ratio (or partial width) into photons would allow us

to distinguish between the SGM and GM models.

We also see that at such light LSP masses, the large
invisible decay width into the LSP suppresses the branch-
ing ratio into photons to be < O(1073). This would also
allow to potentially avoid direct search constraints from
diphoton searches [62] even for masses below the SM-
like Higgs mass (but above half the Z mass) which, for
small enough triplet VEVs, are still allowed [60, 61]. At
the same time, utilizing the Drell-Yan Higgs pair produc-
tion mechanism present in all models of extended Higgs
sectors [60, 64], it may be possible to explain excesses
in diphoton searches. For instance the recently observed
~ 30 excess in the diphoton spectrum at ~ 95 GeV by
the CMS collaboration [68] may be explained by a cus-
todial fiveplet Higgs, but we leave an exploration of this
interesting possibility to ongoing work [54].

In contrast, for the GM model where there is no de-
cay to an LSP available, fiveplet masses in this range are
ruled out by diphoton searches at the LHC [60, 61]. This
is true largely independently of the triplet VEV assuming
the loop induced coupling to diphotons is dominated by
the W boson contribution, which is often the case in the
absence of large couplings in the scalar potential. One
could in principle cancel the W boson loop contribution
with charged scalar loops to reduce the diphoton branch-
ing ratio and evade these constraints.

We show in Fig.2 the same as in Fig.1, but now for
the ZZ branching ratio. Again we see the same quali-
tative relationship between the SGM and GM model as
found for the diphoton channel. In particular as the LSP
masses becomes large, it becomes more difficult to dis-
tinguish the SGM from the GM model. Furthermore, we
see that when the LSP is light, the branching ratio for
the fiveplet into ZZ, which occurs at tree level for non-
zero triplet VEV, can be highly suppressed as the decay
width into the LSP becomes dominant. In particular, we
see that a highly suppressed branching ratio for custo-
dial fiveplet decays into ZZ pairs, even for sizable triplet
VEV, may be a distinguishing feature of a GM-like model
with supersymmetric origin.

Finally, we have not examined the dependence on the
triplet VEV va in detail here since the focus of this study
is on how the SGM arises from the SCTM and how it
maps onto the GM model. The dependance on v is the
same in both the SGM and GM models so it does not
serve as a useful probe for distinguishing them.

D. The Higgs golden ratio

Next we examine decays of the SM-like Higgs boson
into vy and Z Z pairs. More precisely we examine a quan-
tity dubbed the ‘Higgs golden ratio’ defined as [69],

GM(SGM) GM(SGM)
B h—~yy /BTh—)ZZ

SM SM
Brh—>'y’y/BTh—>ZZ

SGM(GM) —
D¢ = (25)
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FIG. 2. Top: Contours of the Hs branching ratio into ZZ
pairs in the GM model (blue solid lines with background color)
and SGM model (red solid line) with contours of the LSP mass
(black dashed lines) and inputs defined for Point 1 in Eq. (24)
with A = —Aa and g = pa. Bottom: Same as top, but for
Point 2 in Eq. (24) with A = Aa and g = —pa.

SM — ; SM —
where we have DZJJ = 1 wusing BrpZ =

0.228%, BryM,, = 2.64% for the SM branching ra-
tios [10]. In addition to being precisely measured final
states, this ratio benefits from the fact that many un-
certainties coming from production effects cancel. This
should allow for measurements of D, to eventually reach
O(1%) precision [69] at a high luminosity LHC.

In Fig. 3 we show contours of D.,, as a function of ms
versus mg for a mass range ~ 100 — 250 GeV in both the
GM (blue solid lines with background color) and SGM
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models (red solid line). The black dashed lines indicate
contours of the LSP mass in the SGM. We again see a
similar relationship between the SGM and GM model as
found for the custodial fiveplet decays. In particular, as
the LSP masses are taken larger, the GM and SGM pre-
dictions for D, begin to converge while when the LSP
is light there can be striking differences. We also see that
potentially observable deviations from Dﬁf,‘/[ =1 may be
possible at the LHC over a range of custodial fiveplet and
triplet masses or conversely, that large regions of parame-
ter space can be ruled out as measurements of Dgfyw =1
become more precise. We leave further investigation of
this ratio as well differential studies in the h — 4/ and
h — 20~ channels to future work.

IV. SUMMARY AND CONCLUSIONS

We have shown that the well known Georgi-Machacek
(GM) model [13, 14] can be realized as a limit of the
recently constructed Supersymmetric Custodial Higgs
Triplet Model (SCTM) [37, 38] and have dubbed this
limit the Supersymmetric GM (SGM) model. In doing
so we have realized a weakly coupled origin for the GM
model at the electroweak scale, in contrast to the more
commonly envisioned strongly coupled composite Higgs
scenarios. A supersymmetric origin for the GM model
comes with many theoretical and phenomenological ben-
efits, including a possible dark matter candidate, which
we have discussed. As part of demonstrating this limit,
we have also derived a mapping between the SGM and
GM model which we use to show that a supersymmetric
origin for the GM model implies constraints on the Higgs
potential which are otherwise not be present in conven-
tional GM model constructions. We have also discussed
the superpartner fermion sector and LSP of the SGM as
well as derived the custodial fermion mass matrix.

We then discussed using diboson signals to distinguish
the SGM from the GM model at the LHC focusing in par-
ticular on diphoton and ZZ decays of the custodial five-
plet scalar and the SM-like Higgs boson. We have studied
a pair of benchmarks scenarios to demonstrate that along
the ‘slices’ of parameter space in the GM model where the
supersymmetric constraints are satisfied (see Eq. (12)),
the GM-model can appear to be very similar to the SGM
model depending on the mass scale of the fermion su-
perpartner sector, which we characterize with the (neu-
tralino) LSP mass. In general we find that when the LSP
is light in the SGM, there are striking differences between
the SGM and GM model phenomenology while when the
LSP is heavy, the two models can appear very similar.

We have not performed a comprehensive parameter
space scan, but results from previous studies suggest
parts of the parameter space considered here are still al-
lowed by experiment [60, 62]. A detailed scan to establish
the allowed parameter space including all relevant experi-
mental constraints as well as a more comprehensive study
of possible signals is left to ongoing work. An NLO analy-
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FIG. 3. Top: Contours of the ‘Higgs golden ratio’ DE,IYV[ for
the SM-like Higgs as defined in Eq. (25) for the GM model
(blue solid lines with background color) and SGM model (red
solid line) with contours of the LSP mass (black dashed lines)
and inputs defined for Point 1 in Eq. (24) with A = —A\a and
1 = pa. Bottom: Same as top, but for Point 2 in Eq. (24)
with A = Aa and p = —pa.

sis including custodial breaking RG evolution effects may
be important in some cases, but is left to future work.

The GM model has long been a phenomenologically
interesting possibility for an extended Higgs sector with
potentially striking LHC signals. The SGM gives a su-
persymmetric possibility for this model with particular
and potentially striking differences that can be searched
for at the LHC. We hope that this will encourage current
LHC experiments, which have dedicated searches for sig-
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nals of the GM model [27], to augment their analyses to
also generally include signals of the SGM model.
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V. APPENDIX

To facilitate comparison, in this appendix we give the
necessary details to derive the mapping in Eq. (11) uti-
lizing the Higgs fields and SCTM potential in a basis
that is more commonly used in conventional GM model
constructions [15, 16, 23]. The electroweak doublet and
triplet Higgs superfields in the SCTM [37] can be ar-
ranged as,

XO ¢+ ¢++
@—(Hﬁ H%),X— o | @)
Ay H X e W

Under the global SU(2),®SU(2) g symmetry these fields
transform as ® — UL<I>UIT% and X — ULXUIT%.

The manifestly SU(2) ® SU(2)g symmetric superpo-
tential can then be written in terms of these fields as,

Wo = 2ATr[0.7;®7;)[UX U
A
- ?ATT’[Xctith][UXUWU (27)

- gTr[<I>c<I>] T %ATT[XCX],

where 7; = 0;/2 and t; are the two and three dimensional
representations respectively of the SU(2) generators and
are defined in [23] along with the matrix U. We have also
defined X, = CXTC and ®, = 02,070y respectively,
where the symmetric matrix C' is given by,

0

C= 1 (28)

— o O
OO =

0
With these definitions, X, and ®., have the same tran-
formation properties under the global SU(2);, ® SU(2)r



symmetry as X and ®' respectively. The F-term contri-
bution to the Higgs potential can then be obtained from
the superpotential following the usual procedure or by
listing all the possible SU(2);, ® SU(2)g invariants of

J
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dimension four or less that can be built using the fields
(®, P, X, X.) and their hermitian conjugates. The re-
sult of this procedure gives,

Ve = @ Tr[®Td] + pA Tr[ XTX | 4 A2 (mqﬂ@]? - im@c@] Tre[ @07 ] + Tr[ X1, XT; | Tr[ @0, B0, |

+ Tr[ XTX | Tr[@T®] — Te[ X7, X | Tr[®T0;® ] — Tr[ XITi X, ] Tr[(I)iai@C]>

YN
2 i
Az

+ 22 (Tr[fbccn(l)crj} vxtvi] o+ c.c.) - )‘g (Tr[ XTXXTX] - Tr[ XTX]?)

(29)

Aspia
- S8 (T XTTXI T Tr[ 00,0001 ] 4 ) — 22 (Tr[X*TiXTj] vxvi),, + c.c.)

~ A (e[ ooy ] [VXVT], +ec),

%

where the notation, relative signs, and numerical factors
are arranged so that Eq. (29) agrees precisely with Eq. (5)
when both are written in component form. The soft su-
persymmetry breaking potential is given by,

Viott = m3; Te[@T®] +mi Tr[ XTX]

; (Bj e[ XX ]~ 5 T[]

A (30)
+ 5 Tr[Beo,00; [(UXUT),

Aa

e Tr[ Xot; Xt; |(UXUT); + c.c.>,

where again the signs and conventions are chosen so
that Eq. (30) matches Eq. (6) exactly when written in
component form.

With these conventions the ‘un-complexification’ con-
straint in Eq. (9) takes the following form,

X, =Xt &.=af. (31)

Imposing these conditions * on Eq. (26) leads to the GM

(

model fields as defined in [23]. Furthermore, as found
in Sec. IIB, after imposing these constraints, the ex-
pression for the potential Vi + Vios, given by Eq. (29)
plus Eq. (30) again reduces 12 to a Higgs potential of the
same form as found in the GM model [23],

1 13
Vou = 72'I‘r[<I>T<I>] + fi‘r[XTX]

+ M Te[®TD]2 + N Tr[®T0 ] Tr[ XTX ]

+ T XTXXTX ]+ \Te[ XTX)? (32)
— A Tr[ 7078 | T X Tt X 10 ]

— M\ Te[ @707 [(UXUT) o

— MyTr[ X Tt XtP (UXUY) g

Again by matching coefficients of common operators in
Vr + Viore (after applying Eq. (31)) and Vg we arrive
at the same mapping between scalar potential parame-
ters as given in Eq. (11). Note that the second and third
terms of the second line in Eq. (29) reduce to zero upon
imposing Eq. (31) and do not appear in Eq. (32).
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