RHIC and STAR: New Tools for Studying the Proton's Spin

J. Sowinski Indiana University

- Current knowledge of the proton's spin
- RHIC and STAR
- Constraints on $\Delta G \gamma$ -jet, di-jets and $\pi^0 s$
- Transversity Collins and Sivers functions
- Spin dependent flavor asymmetry of the sea quarks

Where does the proton's spin come from?

p is made of 2 u and 1d quark

 $S = \frac{1}{2} = \Sigma S_{a}$

Explains magnetic moment of baryon octet

BUT partons have an x distribution and there are sea quarks and gluons

Check via electron scattering and find quarks carry only ~1/3 of the proton's spin!

 $S_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z^q + L_z^g$

DIS used to investigate proton structure

Gluons are neutral and hence relatively insensitive to DIS Spin structure functions

- Polarized beam and target
- Polarization along/opposite beam direction
- Measure difference between parallel and anti-parallel spin combinations
- Quark can only absorb photon of opposite helicity → Good spin analyzer

Unpolarized and Polarized Structure Functions

Small scaling violations with Q² give sensitivity to gluon distributions

Without e-p collider data, reduced range of x and Q² leaves gluon spin poorly determined

SMC Analysis, PRD 58, 112002 (1998)

Semi-Inclusive Deep Inelastic Scattering

Photon - Gluon Fusion

- Open charm clean
- Leading hadrons have backgrounds from QCD-Compton and vector meson dominance

Hermes and COMPASS

- Detect leading hadrons from jets
- Compass open charm
- Have announced results
- Kinematically difficult to cover broad x range w/o e-p collider

ΔG via partonic scattering from a gluon

The Relativistic Heavy Ion Collider

2.4 mile circ. Collider

 $\sqrt{s} \le 200 \, \text{GeV/N}$

Heavy ions

- Au-Au
- Lighter ions
- Asymmetric d-Au

4+ detectors

- STAR
- PHENIX
- PHOBOS
- Brahms
- pp2pp (p-p only) The first polarized p-p collider! $24\text{GeV} \le \sqrt{s} \le 500\text{GeV}$

Polarized Proton Operation at RHIC

AGS never designed for spin (space) Resonances handled individually For strongest ones spin flips! Solution is stronger partial snake ready for testing in coming run expect 70% pol. from AGS

How do we (know we) get longitudinal polarization?

Tools: The STAR Detector at RHIC

Endcap ElectroMagnetic Calorimeter

- Pb Scint sampling calorimeter
- 21 radiation lengths
- 720 projective towers
- Depth Segmentation
 - 2 preshower layers, e/h π^0/γ disc.
 - High position resol. SMD π^0/γ disc
 - Postshower layer e/h discc.
- L0 trigger- high tower, jet patches

Lifting lower 1/2 into place

PMTs on back of poletip

Scintillator megatile 16 ch MAPMT and miniturized electronics

Internal Fiber Harness

PMT Box

Barrel ElectroMagnetic Calorimeter

- 4800 projective towers $(2\pi, -1 < \eta < 1)$
- Shower Max Detector-gas detector-18K strips
- Pre Shower Detector (first 2 layers)
- High tower trigger & 1x1 (η, φ) jet trigger

#120 – the last one! August 2004

Quark – Gluon Compton Scattering $\overrightarrow{p} + \overrightarrow{p} \rightarrow \text{Direct } \gamma + \text{Jet}$

Extracting ΔG from γ +Jet

Separation of direct $\gamma s \ from \ \pi^0 s$

- Significant π^0 background
- Reduced to better than 1:1
 - Isolation cut
 - SMD particle ID
 - Preshower at higher energies
- Background subtraction of "π⁰" sample from "γ" sample
- Increases errors on $\Delta G(x)$ by factor of 1.5-2.0

Jet finders are currently being tested on 2004 data

And the away-side jet in central Au-Au collisions disappears!

Phys. Rev. Lett. 91, 072304 (2003).

Kinematic Reconstruction event by event

- Assume 2 body kinematics
- Neglect k_T
- Measure θ_{jet} , E_{γ} and θ_{γ}
- Extract x_1 , x_2 and θ^*
- Assume larger of x₁ and x₂ = x_{quark}
- Assume lesser = x_{gluon}
- Make cut that one x > 0.2

Expected ΔG Results –based on simulations

GS-A,B,C models of $x\Delta G(x)$ from Gehrmann and Stirling, PR **D53**, 6100 (1996).

TAR Large Analyzing Powers at RHIC

First measurement of A_N for forward π^0 production at $\sqrt{s}=200$ GeV

STAR collab., PRL **92**, 171801 (2004); hep-ex/0310058.

Phys. Lett. B261(1991)201

- Sivers: spin and k_T correlation in initial state (related to orbital angular momentum?)
- Collins: Transversity distribution function & spin-dependent fragmentation function
- Qiu and Sterman (initial-state) / Koike (final-state) twist-3 pQCD calculations

Z=-620cm

Bourelly and Soffer (hep-ph/0311110):

NLO pQCD calculations underpredict the data at low \sqrt{s} from ISR s_{data}/s_{pQCD} appears to be function of θ , \sqrt{s} in addition to p_T

Do these pQCD processes apply to forward scattering at √s=200GeV ?

Forward production at $\sqrt{s} \ll 200$ GeV not well described by fixedorder pQCD calculations (Bourelly and Soffer, hep-ph/0311110)

• Run-2 STAR data at

- <η>= 3.8 (PRL 92, 171801 (2004); hep-ex/0310058)
- <η>= 3.3 (hep-ex/0403012, Preliminary)
- NLO pQCD calculations (Vogelsang) at fixed with equal factorization and renormalization scales = p_T

→ STAR data consistent with Next-to-Leading Order pQCD calculations, unlike at smaller √s

Analyzing Powers at Mid-Rapidity

Transversity

 $g_1^{p} = \frac{1}{2} \Sigma e_i^2 \left[\Delta q_i(x, Q^2) + \Delta \overline{q_i}(x, Q^2) \right]$ Helicity or A_{LL}

 $h_1^{p} = \frac{1}{2} \sum e_i^2 \left[\delta q_i(x, Q^2) + \delta \overline{q_i}(x, Q^2) \right]$ Transversity or A_{TT}

- No relativistic effects $\rightarrow \Delta q(x) = \delta q(x)$
- No gluon transversity $\rightarrow h_1$ has different Q² evolution
- 1st moment of h_1 = tensor charge \rightarrow compare to lattice QCD

Spin Transfer to Determine Transversity δq

The transverse polarization of quarks is preserved in scattering

How is the Sea Generated?

Until the 1st Measurements

NMC and

- Non-perturbative processes seem to be needed in generating the sea
- What about flavor asymmetry in the spin of u and d for different models?

Measurements by Hermes have been used to extract $\Delta \overline{u}(x) - \Delta \overline{d}(x)$

- Combined p and d data fit for all identified hadron A₁'s
 - Input unpolarized q(x) pdf's
 - JETSET fragmentation fctns.
 - Simplifying assumptions on symmetries in sea quark dist.
- Results Controversial

Future Upgrades – Inner and Forward Tracking

Requires tracking for up to

Polarized \overline{q} Flavor Asymmetry $\Delta \overline{u}(x) - \Delta \overline{d}(x)$ related to the nature of the sea

Parity violating long. asymmetry in W production allows extraction of

- Timescale and Physics
 - 2005 and 2006 ~10 pb⁻¹
 - ΔG from $\pi^0 s$ and jets
 - Sivers and forward physics
 - $-2007 100 \text{ pb}^{-1} \text{ and } P \sim 70\%$
 - $-\Delta G(x)$ from direct photon jet
 - Transversity
 - 2008 100's pb⁻¹
 - First extensive 500 GeV Running
 - $-\Delta G(x)$ from direct photon jet ... lower x
 - W's and $\Delta \text{u-}\Delta \text{d}$

From 20-Year Planning Study for RHIC 12/31/03

Fiscal Year	27 weeks/year BUP (submitted 8/03)		"Optimized Constant Effort" Scenario		32 weeks each year run scenario	
2004	5+14 Au+ Au 200	5+0 pp 200	5+14 Au+ Au 200	5+0 pp 200	5+14 Au+ Au 200	5+0 pp 200
2005	5+9 Au+	5+5 pp			6+8 Au+ Au Escan	5+10 pp 200
2000	Au Escan	200	6+11 Au+	5+12 pp 200		
20.06	5+9 d+Au	5+5 pp 200 5+9	Au Escan		5+8 d+Au 200	5+11 pp 200
2000	200		5+9 d+Au 200	5+13 pp 200		
2007	5+5 Au+ Au 200	5+9 pp 200			5+10 Au+ Au 200	5+9 Cu+ Cu 200
			5+15 Au+ Au 200	5+8 Cu+ Cu 200		
2008	5+10 Au+ Au 200	5+5 pp 500			5+10 Au+ Au 200	5+9 pp 200
∫⊥ _{max} dt pp 200	76 pb ⁻¹		88 pb ⁻¹		156 pb ⁻¹	
∫⊥ _{max} dt post-TOF Au+Au	1.4 nb ^{.1}		1.6 nb ⁻¹		2.1 nb ⁻¹	
What's missing?	Any Cu+Cu 200; 2 nd +3 rd long pp		3 rd long pp; 2 pp devel. chances		1 pp devel. chance	

Comparison of Three Proposed STAR 5-Year Run Plans

Background slides follow

abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWX	YZ
<pre>`1234567890-= ~!@#\$%^&*()_+ []\{} ;':" ,./ <>>></pre>	abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ `1234567890-= ~!@#\$%^&*()_+ []\{}
<> <u>;</u>	

STAR Spin Physics Program – Near and Long Term

- Proton Spin Structure
 - Gluon contributions to the proton's spin
 - + < Δ G> jets and π^0 s
 - q + g → γ + jet, ΔG(x)
 - Heavy flavors
 - Spin/momentum correlations
 - Sivers Functions dijets
 - Collins Functions Leading particle correl. in jets
 - Transversity
 - Flavor separated q, \bar{q} Origin of the sea
- Standard Model tests
 - Parity violation in jet production

STAR Simulations of W Prod'n

By L.C. Bland • Separate ud from du by detecting the e⁺ and e from ud $W^+ e^+$; du $\overline{W} e^-$

- Sensitivity to u vs. d comes from which beam spin is flipped and η distributions
- W momentum in direction of higher-x parton (usually q as opposed to \overline{q})
- PV decay of L-handed W[±] CP in W rest frame: e⁺ (e) emitted pref'ly along (opposite) W⁺ (W) spin
- e focused in q direction while e⁺ is more spread out
- W prod., e in endcap strongly emphasizes $d_{toward} \overline{u}_{away}$ collisions
- Less clean separation for W⁺ e⁺
- Separation of antiquark and quark polarizations is kinematically cleanest in endcap region

A_L for leptons from W production

Leptonic kinematics, no detector simulation other than acceptance

What can be done before tracking upgrade?

- Restrict to $-1 < \eta < 1$
 - Not so many counts lost
 - But lose the range with best separation between flavors
 - Δd and $\Delta \overline{u}$ reasonable
 - Δu and $\Delta \overline{d}$ look hard to separate
 - First run likely to have low luminosity
- Extending range to 1.? needs detailed simulation expect 1.5
 - Add EEMC SMD point
 - Add vertex from other tracks
 - Displace vertex away from EEMC?
- First 500 GeV run w/o full tracking upgrade would still be a good start

Good Tracking is Essential

- Need to determine sign of p_T = 20-40 GeV/c electrons (minimum requirement)
- p_T/E_T^{cal} would help e/h discrimination
- Has to be done in high density of tracks
- Need TPC design resolution

These are all crucial for
 tracking in the region
 -1 < η < 1 as well, where
 tracking upgr. also of use

Upgrade: STAR Forward Tracking for W¹ vs. W

100

80

40

20 0

- Simulations by N. Smirnoff for uniform 30 GeV π^- illumination of endcap region show added detectors can eliminate sign misidentification (sagitta =2.5mm)
- GEMS as fast detectors can help with pile up

Pt, GeV/c, simulated

40

بوسابة ومقاط

x Sensitivity and Possible x Dependence Extraction

One may approximately reconstruct $x_{1,2}$ from (e), $p_T(e)$ event-by-event from 2-body fusion + 2-body decay, i.e., neglecting W width + transverse mom.

Works best in Endcap and for W⁻

$W^{+(-)}$ Production in p-p at s = 500 GeV/c²

Dressler et al. predict large sensitivity

-0.2

-0.4

-0.6

 (\mathbf{h})

- V-A coupling
 - only LH u and RH \overline{d} couple to W⁺
 - Likewise LH d and RH \overline{u} to W⁻
 - Only LH W's produced
- Neutrino decay gives preferential directionality in decay

Parity violating single spin asymmetry A_L (Helicity flip in one beam while averaging over other)

A_L^{W⁻} ~

$$d(x_1)\Delta \overline{u}(x_2)$$

 $\overline{u} = \Lambda a$

Allows kinematic separation especially for W⁻ in EEMC

Ø One may approximately reconstruct $x_{1,2}$ from (e), $p_T(e)$ event-by-event from 2-body fusion + 2-body decay, i.e., neglecting W width + transverse mom.

 $\overline{Ox_1x_2} = M_W / s = 0.16 @ s = 500 \text{ GeV};$ $(\tilde{x_1x_2})/(x_1+x_2) = tanh [e^{meas} e^{rest}] = tanh [e^{meas} cosh^{-1}(M_W / 2p_T^{meas})]$

Bjorken x Sensitivity of STAR W Prod'n

 \emptyset 1 e 2 probes either asymmetric $\mathbf{q}_{toward} \ \mathbf{\overline{q}}_{away}$ or symmetric $\mathbf{\overline{d}}_{toward} \ \mathbf{u}_{away}$ collisions.

Ø Sensitivity generally good for x_q 0.1, where chiral soliton model predicts largest flavor dep. of $\overline{q}/\overline{q}$

EMC Shower-Maximum Detectors / ⁰ Discrimination

Fit Residual Sum $(R_{0,u} + R_{0,v})$

EMC's Facilitate Triggering on Jet Events

Or p+p at full luminosity with TPC pileup?

Algorithms developed to filter out pileup tracks -- by demanding consistency with vertex from tracks leading to prompt EMC hits, and/or with EMC hits themselves – work well in simulations. Unfortunately, pp luminosities obtained to date not high enough to test in real data!

What pp Spin Observables Does QCD Allow?

 \emptyset L- and R-handed q sectors are separate (chiral symm.) but equal (parity). \emptyset Parity $a_L^{(1)}(1 + 1) = 0$ (0, 0, 0, 0) = 0

 $(S no q helicity flip upon g emission/absorption (e.g., <math>q_L g + q_L; q_L + q_R \overline{g}) a_T ()/(+) 0$ at leading twist

left need 2-spin observables: probe g pol'n with highly polarized quarks!

World data on g_1^p

What I am not going to tell you each is a seminar in itself

- More accelerator physics Classical mechanics
- Polarized ion sources Atomic physics
- Polarimetry diffractive processes
- Polarization calibration polarized targets and atomic physics
- Heavy ion program
- Phobos, Brahms, pp2pp, much about Phenix

Installed During 2003 Shutdown:

- Upper half mechanical structure
- All remaining active elements –2/3rds
- All clear fiber bundles from detectors to rear of poletip
- All remaining PMT boxes and electronics – Full tower coverage

- 1/3rd of MAPMT boxes (16) and associated electronics – SMD and pre/post-shower
- Diagnostics LED and laser for all installed detectors
- HV system for full detector

- 12 PMTs per box, one 6° sector of towers
- PMT housings built in Dubna
- CW bases from Dubna
- Box structure Texas A&M
- MAPMT testing and LEDs at KSU
- Assembly of PMT boxes to Valpo. U.
- All 720 channels installed
- ~97% fully functional

PMT Boxes

Box lifter for installation and repair

(MA)PMT boxes and electronics on back of poletip

MAPMT, CW base and 16 ch. FEE □ SMD and pre/post-shower

- •12 MAPMTs (16 ch) per box
- 192 ch. FEE internal to box
- 4 Sectors ~3000 ch. inst.
- 99.5% working

Internal Fiber Harness

PMT Box

Megatile Production Line

- There are 120 different versions of megatiles
- 1/3rd of megatiles installed. Another 1/3rd complete.
- Also machine SMD modules and parts of mechanical structure
- Will run through next summer to complete all megatiles at present rate. Machining two shifts.

9/21/03 Εφεν τορναδοσ χαν[]τ στοπ υσ!

Ι νεφερ τηουγητ ανψτηινγ ωουλδ μακε τηε ΕΕΜΧ λοοκ σμαλλ. Βυτ

0.2 δεγ φρομ σερτιχαλ. Ροτατε το σερτιχαλ ον στρονγβαχαν χουλδν τ ψου δο βεττερ?

Αλμοστ τηερε. 10/1/02

Φιβερ ρουτερ λαψερ ατταχης ανδ φιβερσ ινσταλλεδ

Στριπσ ωραππεδ ιν αλυμινιζεδ μψλαρ ανδ γλυεδ ον ΦΡ4 συβστρατε

Φιβερσ τερμινατε ιν χοννεχτορ

SMD Construction

Strips have hole down middle for wls fiber

 $2 \Sigma M\Delta \lambda a \psi \epsilon r \sigma$ in $3 \pi \lambda a \nu \epsilon \sigma = \nu \sigma \gamma a \pi \sigma$

PMT Boxes

- 12 PMTs per box, one 6° sector of towers
- PMT housings built in Dubna
- CW bases from Dubna
- Box structure Texas A&M
- MAPMT testing and LEDs at KSU
- Assembly of PMT boxes to Valpo. U.
- 4 sectors installed

(MA)ΠΜΤ βοξεσ ανδ ελεχτρονιχσ ον βαχκ οφ πολετιά

MAΠMT, XΩ βασε ανδ 16 χη. ΦΕΕ

ΜΑΠΜΤ Βοξεσ

ΣΜΔ ανδ πρε/ποστ-σηοωя
12 ΜΑΠΜΤσ (16 χη) περ β
192 χη. ΦΕΕ ιντερναλ το β
Φιναλ τεστινγ βεφορε προ

Ιντερναλ Φιβερ Ηαρνεσσ ΠΜΤ Βοξ

Some Assembly Required!

Upper half mounted 8/1/03

