



## W/Z boson asymmetry measurements at DØ

#### Junjie Zhu State University of New York @ Stony Brook

Southern Methodist University September 22, 2008







#### ◆Introduction

 $\blacklozenge Electron charge asymmetry (W \rightarrow ev)$ 

♦ Forward-backward charge asymmetry ( $A_{FB}$ ) and extraction of weak mixing angle ( $\sin^2\theta_W$ ) (Z/γ\*→ee)

### Conclusions





## DØ Detector



#### Silicon Microstrip Tracker (SMT)

#### **Central Fiber Tracker (CFT)**

2 T magnetic field





### DØ Detector



#### **Uranium Liquid Argon calorimeters**

#### **Central (CC) and Endcap (EC)**







#### DØ Detector



#### **Drift chambers and scintillator counters**

#### **1.8 T toroids**





## The DØ Collaboration





Institutions: 82 total, 38 US, 44 non-US

Collaborators: 554 physicists from 18 countries Physics: B, EW, QCD, Top, Higgs, New Phenomena



2008-09-22



## Introduction



• Electroweak group  $\rightarrow$  WZ group • W and Z boson production at Tevatron



Z (→ee, μμ) events are often used for detector calibration
 W/Z are backgrounds for many measurements and searches
 Make precision measurements of electroweak parameters
 Test high-order QED and QCD corrections
 Constrain parton distribution functions (PDFs)
 Search for physics beyond the SM 2008-09-22 Junije Zhu







# Electron Charge Asymmetry $(W \rightarrow ev)$

# Parton Distribution Functions



 $Q = 100 \, \text{GeV}$ 

U

100

 $10^{-1}$ 

х



◆ PDFs describe the momentum distribution of parton in the proton

- $\blacklozenge$  x: momentum fraction of parton, Q<sup>2</sup>: square of momentum transfer
- ◆ Cannot be calculated from first principles, extracted from experiments
- Parameterized at a fixed scale  $Q_0$  with smooth functions with many parameters
- $\blacklozenge$  Apply assumptions and constraints from theory and experimental results
- Extrapolate from  $Q_0$  to different  $Q^2$
- ◆ At least two major collaborations: CTEQ and MSTW (originally MRST)
- Well constrained PDFs are essential for all studies at hadron colliders

• Expect Tevatron Run II  $\Delta M_W < 15$  MeV, currently 15 MeV due to PDFs 2008-09-22 Junjie Zhu



## W Charge Asymmetry



2

Rapidity

• u quarks carry on average more momentum than d quarks in the proton

 $A(y) = \frac{d\sigma(W^+)/dy - d\sigma(W^-)/dy}{d\sigma(W^+)/dy + d\sigma(W^-)/dy}$ 

A(y) sensitive to u(x)/d(x) in the proton

W→ ev ⇒ A(y) difficult to measure Wasymmetry → Lepton asymmetry  $A(\eta_l) = \frac{d\sigma(l^+)/d\eta - d\sigma(l^-)/d\eta}{d\sigma(l^+)/d\eta + d\sigma(l^-)/d\eta}$ 

•  $y \approx \eta$  for leptons

• Lepton asymmetry:  $A(y) \otimes (V-A)$ 

- The V-A structure of the W<sup>+(-)</sup> decay favors a backward (forward) lepton
- ◆ Most systematics reduced due to the ratio



2008-09-22

Junjie Zhu









x = momentum fraction of parton  $Q^2 =$  square of momentum transfer

•W asymmetry measurement:  $Q^2 \approx M_W^2$ ,  $x = \frac{M_W}{\sqrt{2}} e^{\pm y_W}$ This measurement:  $|y_W| < 3.2 \Rightarrow 0.002 < x < 1.0$ Previous measurements:  $|y_W| < 2.5 \Rightarrow 0.003 < x < 0.5$ •Complementary to central and forward jet measurements at D0 and CDF •LHC will explore very different

 $x-Q^2$  region (low x and high  $Q^2$ )



## Electron Types



◆Important to determine electron charge correctly

High rapidity bins suffer from low statistics and higher charge mis-identification rate

- Splitting data into 4 electron types depending on the position of EM cluster, incident angle and the primary vertex
- ◆ Different track quality cuts applied for different electron types





## Charge Mis-identification



Charge mis-identification dilutes the asymmetry

♦ Rate measured using  $Z \rightarrow$  ee events: tight selection requirements on one electron, and check the charge of the other electron

 $\bullet \sim 0.3\%$  for  $|\eta| < 1$ , ~ 9% for 2.8< $|\eta| < 3.2$  (CDF: 18% for 2<  $|\eta| < 2.5$ )













2008-09-22

Junjie Zhu



# Electron E<sub>T</sub> Bins



• For a given  $\eta(e)$ , different electron  $E_T$  bins probe different ranges of  $y_W$ 

 $\bullet$  Higher E<sub>T</sub> bin covers a narrower y<sub>W</sub> range

• At higher electron  $E_T$ , V-A distribution smaller, A( $\eta$ ) is larger

 $\clubsuit$  Allows a finer probe of the u and d quarks with different x













Experimental uncertainties smaller than PDF uncertainties for most η bins (33 out of 36)

- ◆ Can improve the precision and accuracy of next generation PDF sets
- ◆ Request from MSTW group to use our data for MSTW2008 PDF fits



# $\chi^2$ between data and predictions







Implication of our results on PDFs



#### u(x)/d(x) at Q = 80.4, CTEQ6.6M





Implication of our results on PDFs



#### u(x)/d(x) over u(x,set 0)/d(x,set 0) at Q=80.4 GeV







# $A_{FB}$ measurement and extraction of $\sin^2 \theta_W^{eff}$ (Z/ $\gamma^* \rightarrow ee$ )



$$A_{FB} = (\sigma_F - \sigma_B) / (\sigma_F + \sigma_B) = (N_F - N_B) / (N_F + N_B)$$

2008-09-22

 $\cos\theta^*$  distribution using Pythia

**STNY** 







## A<sub>FB</sub> distribution









- Precise measurement around Z pole
   Difficult to reach very high energies (> 200 GeV)
- New resonance (Z', LED etc) can interfere with Z and γ\*
- A<sub>FB</sub> measurement complementary to bump search



 $A_{FR}$  in  $Z/\gamma^* \rightarrow ee$  at Tevatron







Probe the relative strengths of Z-light quark couplings
Can be used to make constraints on PDFs

STMNV



# Weak mixing angle $\sin^2\theta_{W}$



 $\mathbf{A}_{FB}$  is sensitive to  $\sin^2\theta_W$  ( $\sin^2\theta_W^{eff}$  includes higher order corrections) • LEP  $A_{FB}^{b}$  and SLD  $A_{LR}^{c}$ : off by  $3\sigma$  in opposite direction • NuTeV  $\sin^2\theta_w$  result:  $3\sigma$  away from the global EW fit

|                                              | <b>U</b> , 1 Hys. RC                 | p. 727  | , 4.             |                                          | 200               |
|----------------------------------------------|--------------------------------------|---------|------------------|------------------------------------------|-------------------|
|                                              | Measurement                          | Fit     | O <sup>mea</sup> | <sup>is</sup> –O <sup>fit</sup> ∦<br>1 2 | σ <sup>meas</sup> |
| $\Delta \alpha_{\rm had}^{(5)}({\rm m_{Z}})$ | 0.02758 ± 0.00035                    | 0.02767 |                  |                                          |                   |
| m <sub>z</sub> [GeV]                         | $91.1875 \pm 0.0021$                 | 91.1874 | •                |                                          |                   |
| Γ <sub>z</sub> [GeV]                         | ${\bf 2.4952 \pm 0.0023}$            | 2.4959  | -                |                                          |                   |
| σ <sup>0</sup> had [nb]                      | $\textbf{41.540} \pm \textbf{0.037}$ | 41.478  | _                |                                          |                   |
| R                                            | $\textbf{20.767} \pm \textbf{0.025}$ | 20.743  | _                |                                          |                   |
| A <sup>0,I</sup>                             | $0.01714 \pm 0.00095$                | 0.01643 |                  |                                          |                   |
| $A_{I}(P_{\tau})$                            | $0.1465 \pm 0.0032$                  | 0.1480  | -                |                                          |                   |
| R <sub>b</sub>                               | $0.21629 \pm 0.00066$                | 0.21581 |                  |                                          |                   |
| R                                            | 0.1721 ± 0.0030                      | 0.1722  |                  |                                          |                   |
| A <sup>0,b</sup>                             | $0.0992 \pm 0.0016$                  | 0.1038  |                  |                                          |                   |
| A <sup>0,c</sup> <sub>fb</sub>               | $0.0707 \pm 0.0035$                  | 0.0742  |                  |                                          |                   |
| A <sub>b</sub>                               | $\textbf{0.923} \pm \textbf{0.020}$  | 0.935   |                  |                                          |                   |
| A <sub>c</sub>                               | $\textbf{0.670} \pm \textbf{0.027}$  | 0.668   | •                |                                          |                   |
| A(SLD)                                       | $0.1513 \pm 0.0021$                  | 0.1480  |                  |                                          |                   |
| $sin^2 \theta_{eff}^{lept}(Q_{fb})$          | $0.2324 \pm 0.0012$                  | 0.2314  |                  |                                          |                   |
| m <sub>w</sub> [GeV]                         | $80.398 \pm 0.025$                   | 80.377  | -                |                                          |                   |
| Г <sub>W</sub> [GeV]                         | $\textbf{2.097} \pm \textbf{0.048}$  | 2.092   | •                |                                          |                   |
| m <sub>t</sub> [GeV]                         | $\textbf{172.6} \pm \textbf{1.4}$    | 172.8   | •                |                                          |                   |
| March 2008                                   |                                      |         | 0                | 1 2                                      | 2 3               |
| $n^2 \theta_W(\nu N)$                        | $0.2277 \pm 0.00$                    | 16      |                  |                                          |                   |

LEP EWWG Phys Rep 427 257 (2006)

2008-09-22

G.P. Zeller et al., PRL 88, 091802 (2002)





## Event selection



| • Integrated luminosity: $1065 \pm 65 \text{ pb}^{-1}$ | Mass range  | nge CC  |          | CE      |          |
|--------------------------------------------------------|-------------|---------|----------|---------|----------|
|                                                        | (GeV)       | Forward | Backward | Forward | Backward |
| $\bullet$ Two electrons satisfy:                       | 50 - 60     | 69      | 78       | 15      | 16       |
|                                                        | 60 - 70     | 104     | 158      | 51      | 91       |
| $\bullet p_T > 25 \text{ GeV}$                         | 70 - 75     | 96      | 117      | 64      | 93       |
| Lolated with large EM fraction                         | 75 - 81     | 191     | 235      | 172     | 293      |
| ▼ Isolated with large Elvi fraction                    | 81 - 86.5   | 749     | 763      | 843     | 970      |
| $\bullet$ Shower shape consistent with that            | 86.5 - 89.5 | 1388    | 1357     | 1860    | 1694     |
| f an ale stars a                                       | 89.5 - 92   | 2013    | 1918     | 2543    | 2214     |
| of an electron                                         | 92 - 97     | 2914    | 2764     | 3132    | 2582     |
| 450 < M < 500 GeV                                      | 97 - 105    | 686     | 549      | 867     | 470      |
| $\checkmark$ 30 < $M_{ee}$ < 300 GeV                   | 105 - 115   | 153     | 97       | 243     | 88       |
| $\bullet A_{rp}$ measured in 14 mass bins              | 115 - 130   | 101     | 39       | 167     | 61       |
| FB                                                     | 130 - 180   | 91      | 33       | 202     | 69       |
| Bin size chosen by detector resolution                 | 180 - 250   | 31      | 13       | 53      | 16       |
| and available statistics                               | 250 - 500   | 14      | 15       | 17      | 4        |
| and available statistics                               |             | 1       |          | 1       |          |



## $M_{ee}$ and $\cos\theta^*$ distributions





♦ QCD multijet background estimated using collider data (0.9%)
 ♦ Electroweak backgrounds estimated using Geant MC simulation:
 >Z/γ\*→ττ,W+X, WW, WZ, ttbar



# A<sub>FB</sub> Unfolding



#### $\blacklozenge \text{Raw } A_{\text{FB}} \rightarrow \text{Unfolded } A_{\text{FB}}$

>Detector resolution:

- >Events migrate from one mass bin to the other
- >Especially important for mass bins near Z pole
- >Acceptance and efficiencies

#### ◆ Iterative matrix inversion method

- >Migration matrix measured using Geant MC simulation
- >Procedure tested by comparing the truth and unfolded spectrum generated using pseudo-experiments
- $\clubsuit$  Systematic uncertainties on the unfolded  $A_{FB}$ 
  - >Unfolding bias
  - >Electron energy scale and resolution
  - >Backgrounds





# $sin^2 \theta_W^{eff}$ Result



• Extraction of  $\sin^2\theta_W^{\text{eff}}$  using PYTHIA:

 $\bullet$  Obtained from backgrounds-subtracted A<sub>FB</sub> distribution

• Compared with  $A_{FB}$  templates according to different values of  $\sin^2\theta_W^{eff}$  generated with PYTHIA and GEANT-based MC simulation

• Fitted results (for 70<M<sub>ee</sub><110 GeV):

 $sin^{2}\theta_{W}^{eff}$  = 0.2326 ± 0.0018 (stat.) ± 0.0006 (syst.)

• Mainly dominated by statistical uncertainty

- ◆ Systematic uncertainties:
  - ◆PDFs (0.0005)
  - ◆EM energy scale/resolution (0.0003)







- Our  $\sin^2\theta_W^{\text{eff}}$  result agrees with the global EW fit
- Uncertainty comparable with the uncertainties from
   Combined Q<sup>had</sup><sub>FB</sub> from four LEP experiments (0.0012) (better than OPAL/DELPHI results, close to L3 result, worse than ALEPH result)
   NuTeV measurement (0.0016)

♦ Approach world average uncertainty (0.0003 for 8 fb<sup>-1</sup>, e + µ, with CDF)
2008-09-22 Junjie Zhu
38





## Conclusions



#### • Electron charge asymmetry $(W \rightarrow ev)$

- > Measured in three different electron  $E_T$  bins
- Experimental uncertainties smaller than PDF uncertainties for most η(e) bins
- > Useful for future global PDF fits
- > Best lepton charge asymmetry measurement to date
- $A_{FB}$  measurement and extraction of  $\sin^2 \theta^{eff}_W$  (Z $\rightarrow$  ee)
  - > Unfolded  $A_{FB}$  distribution agrees with SM predictions
  - $\Rightarrow \sin^2 \theta_{\rm W}^{\rm eff} = 0.2326 \pm 0.0018 \text{ (stat.)} \pm 0.0006 \text{ (syst.)}$
  - Sensitive to Z-u and Z-d couplings
  - > Most precise  $A_{FB}$  and  $\sin^2 \theta_W^{eff}$  measurements at the Tevatron
- More data (> 4 fb<sup>-1</sup> so far) collected, better understanding of the detector, more high precision electroweak measurements expected!