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Introduction

Standard Model Extensions: bottom up approach

The most simple and appealing extensions of the Standard Model (SM)
are those in which the SM gauge group is enlarged by multiplying it by
one or several extra U(1) abelian gauge groups

SU(B)®SUR)@ U(1)y @ U(1)a® U(1)g@ U(l)c® - (1)

Additional Abelian gauge interactions arise frequently in many extensions
of the Standard Model, like in left - right symmetric models, in Grand
Unified Theories (GUTs) and in string inspired constructions.

In a bottom-up approach we study Effective Models containing extended
gauge structures (abelian extensions) that may be naturally generated
both in the case of effective string/extra dimensional scenarios and can
be searched for both at the LHC and in future low-energy experiments.



Anomalies

Anomalies, Z-primes and Axions

In these extensions, the extra abelian symmetry naturally gives rise to
extra neutral currents (Z’). A first classification criteria among the
models is the anomaly “cancellation” mechanims, then we have

@ 1) Anomaly Free Extensions: Anomalous triangle diagrams are set
equal to zero by the charge assignment.
@ 2) Anomalous Exensions: The anomalous contributions must be
cancelled by introducing a counterterm.
Some particular low energy realization of string theories (D-brane
models) are anomalous, and in the presence of a specific type of scalar
potential, they predict the existence of a physical axion.
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Ward Identities

3 Currents correlators and Ward ldentities

Associated to the triangle diagrams are the correlators of 1 and 3 chiral
currents respectively

T (6y.2) = (01T (4 ()4 (1) R (2)) [0) (2)
and
T0M (x,y.2) = (OIT () L) £(2)) [0), (3)
where
J;L = _@'V,Mw JZ = _E7u75w~ (4)
In the chiral phase the Ward Identities must be satisfied
T )\2\5\/ (x,y,2) =0 — k*Tr, =0 (5)

In an anomalous model we have
A v
k T)\ul/ = a,,s“ pakl,pkz’g (6)
where the coefficient a, is called anomaly

—i

an = ? (7)



D-Branes Models
D-Branes Models

We will focus the attention on the generic low energy action of one of
the most interesting realization of a low scale string vacua that can be
tested at the LHC. MLSOM: Minimal Low Scale Orientifold Model,
(Coriand, Kiritsis, Irges, Nucl.Phys.B 2005)

The SM gauge group and the other particles are naturally realized on the
D-branes and the gauge structure is

SUB).®SURR)® U(l)y ® U(1)s (8)

where the extra U(1)g is anomalous.

u(1)



Axions

What is an Axion?

The axion is a hypothetical elementary particle postulated by the
Peccei-Quinn theory in 1977 to resolve the strong-CP problem in QCD.
The complicated structure of the QCD vacuum allows a violation of the
charge conjugation and parity symmetries, called “CP". The effective
strong CP violating term, ©, appears as a Standard Model input
parameter and it is not predicted by the theory.

Large CP violating interactions originating from QCD — large electric
dipole moment for the neutron, but this has not been observed.

Then, CP violation arising from QCD must be extremely tiny and thus 2]
must itself be extremely small or absent.

Peccei-Quinn Solution: © is promoted to a field (particle) by adding a
new global symmetry (called a PQ symmetry) to the SM that becomes
spontaneously broken. The Axion fills the role of © naturally relaxing the
CP violation parameter to zero. Therefore, the Peccei-Quinn axion is
related to a global symmetry



A Gauged Axion

A Gauged Axion

The axion appearing in the MLSOM does not arise from a global
symmetry as in the PQ case, but it is obtained by promoting the global
U(1)pg symmetry into a local one.

The anomaly cancellation procedure and in particular the restoration of
the genealized Ward Identities in the MLSOM requires the presence of
gauged axions.

The axion field is introduced in the Lagrangean by the Stueckelbeg term
that is allowed by the the extra U(1) anomalous symmetry and is of the
type
1
Lsey = 5(0"b+ MB*)?, (9)
where b is the axionic field and B* is the Stueckelberg field. After the

EWSB, the mass of the gauge bosons are obtained as a combination of
the Higgs mechanism and the so called Stueckelberg mechanism.



A Gauged Axion

U(1)a® U(1)g: A Toy Model

For a better understanding of how a physical axion is predicted by this
class of effective actions, we start by a simplified model that we call
“AB" model, defined by the lagrangean

Lo = (9. +igsasB )¢| **FA**FBJr (8 b+MlB)

- <¢|2 N V22>2 + i (0, + ieAy + igg1° B )Y
—MYLPYR — MR Yy, (10)
where (A) is not non anomalous (like the Hypercharge) and (B) is
anomalous. It is invariant under the transformation
b — b =b-Mb
B, — B, =B,+0d,0. (11)



Charge Assignments

Charge Assignments

The charge assignment of our toy model can be read in the tables below

A B
V]a=qr=1]gg=—q’ =1

Tabella: Fermion assignments, A-B Model

S
Al ¢*=0 [0
Bl g¢E=-21hb

©-

Tabella: Gauge structure, A-B Model

¢ refers to the Higgs, while S refers to the Stueckelberg.



Electro Weak Symmetry Breaking (EWSB)

The AB model has two scalars: the Higgs and the Stiickelberg axion
fields. We assume that the Higgs field takes a non-zero vev and, as usual,
the scalar field is expanded around the minimum v

¢:%(v+¢1+:‘¢2), (12)

while from the quadratic part of the lagrangean we can easily read out
the mass terms and the goldstone modes present in the spectrum in the
broken phase. This is given by

1 1 1 1
Lo = 5(0u01)" + 5 (0ud2)’ + 5 (9ub)" + 5 (M + (dp85v)°) BuB"

1
_§m§¢§ + B,0" (M1b + vggqpp,), (13)



Physical particles: a massless
Physical particles

from which, after diagonalization of the mass terms we obtain
1 s 1 s 1 s 1 1
Ly = > (Ouxp)” + 5 (0uGg)™ + 5 (Ouh1)” + EM?BBHBH - Em%hf
+MgB"d,Gg (14)

where we have redefined ¢,(x) = h;(x) and m; = vv/2), for the Higgs
field and its mass.
We have identified the linear combinations

1
Xg = W(_M1¢2+quBVb)a
B
1
Gg = V(quBV¢2+M1b)a (15)
B

corresponding to a massless particle, the axi-Higgs x5, and a massless
goldstone mode Gp.



Physical particles: a massless

Interaction Eigenstate basis vs Physical Eigenstate basis

The rotation matrix that allows the change of variables
(¢0, b) — (x5, Gg) is given by

[ —cosflg sinfg
U= ( sinfg cosfg ) (16)
with 65 = arccos(My/Mg) = arcsin(qgggv/Mg).

The axion b before the EWSB, can be expressed as linear combination of
the rotated fields xz,Gg as

v M
9585 Yg + 1

b = = _—
a1Xp +a2GB MB B MB

Gg, (17)

while the gauge fields B, get its mass Mg through the combined
Higgs-Stiickelberg mechanism

Mg = \/ M? + (qgggVv)>. (18)



Gauge Fixing

To remove the mixing between the gauge fields and the goldstones we
work in the R gauge. The gauge-fixing lagrangean is given by

1
Ly =503 (19)
where 1
0-B—¢&MgG 20
gB \/@ ( §B B B) ( )

and the corresponding ghost lagrangeans
‘Cth = g (_D - EBVu(hl + Vu) - §BM12) cg- (21)

For convenience we report the form of the full lagrangean in the physical
basis for future reference. After diagonalization of the mass matrix this
becomes

1

1
L = - Fi—gFe+Legn+Lr+Ls (22)



Generalized Ward identities in the unbroken phase

P A
. . . B
i i i . A b _
1 1

AVY A

Representation in terms of Feynman diagrams in momentum space of the
Slavnov-Taylor identity obtained in the Stiickelberg phase for the
anomalous triangle BAA. Here we deal with correlators with
non-amputated external lines. A CS term has been absorbed to ensure
the conserved vector current (CVC) conditions on the A lines.



A Unitarty Bound

A A A A
A A
A (@ A (b)
Figura: BIM amplitude for the U(1)a x U(1)g model with the BBB anomaly

diagrams and the b exchange diagram. Similar amplitudes can be built for the
BB — AA and BB — BB sectors.
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Figura: Decomposition of the Stiickelberg axion b in a physical axion x and a
goldstone boson Gg.



a) b)

Figura: Ward identity for the restoration of gauge invariance at lagrangean
level in the toy model with a local WZ counterterm
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Figura: Ward identity with the nonlocal counterterm (gauge invariance of the
vertex)
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Introduction

The MLSOM: General gauge invariance

The MLSOM describes universal features of related orientifold vacua in
string theory. It contains, beyond the Standard Model fields, a
2HDM-like Higgs sector and three anomalous (massive) U(1) gauge
bosons. All renormalizable couplings are included as well as some
dimension-five couplings that are important, in the context of the
Wess-Zumino mechanism, to restore the gauge invariance in the general
case. As a matter of fact, gauge invariance requires the presence of an
axion that appears as an asymptotic state.

H H
G0 ‘
A z G, r» Gz
n + - + -- =0
000 000
\ \
b) c)

a)

But the theory in the presence of the Wess Zumino mechanism in 4-Dim
exhibits a unitarity bound. C. Coriano, M.G. and S.Morelli,
Eur.Phys.J.C55:629-652,2008 (Roberta’s Talk)



Higgs-axion mixing

The scalar potentialof the MLSOM

The dynamical content of the Higgs and the Stueckelberg sectors is
described by

1
Lhs = 5 (0"b+ MB") + D" Hy|* + D"yl (1)
In the scalar potential we have a PQ symmetric contribution

Veo(Hu Ha) = 3 (uﬁH;Ha + Xaa(H] Ha)2>

a=u,d
—2X\ua(HHa) (HiHa) + 2X g H) 72 Hal?, (2)

which is a pure Higgs scalar potential, while in the PQ-breaking terms we
introduce a dependence on the axion field b by means of explicit phases

. . 2
Vip/q(Hu, Ha, b) = by (HZHd e_’AqBM%) + X (HEHd e_’AqBM%>
g (HiH) (HiHa e ™75 ) 4+, (HiHa ) (HiHg e 7 5) + c.c. (3)

where Ag® = qB — g5, b, has mass squared dimension, while A;, A, A
are dimensionless couplings.



Higgs-axion mixing

The CP-even and the CP-odd sectors

In the scalar potential we can isolate three sectors, namely, two neutral
and one charged sector

Vep—even(Hu, Ha) + Vep—odd(Hu, Ha, b) + Vi (Hy, Hg) =

(4)
o H,* 0 0 ReH,’
(H Ha )G ( e ) + (ReH,%, Re®) Ny et
ImH,°
+ (ImHC, ImHg°, b) N3 | ImH | . (5)
b
After EWSB also the derivative coupling sector must be carefully
investigated in order to have under control the physical degrees of
freedom
Lpc = MzzﬂﬁuGz + MZ/Z/#(()MGZ/. (6)

The axion appears to be a physical state.



Higgs-axion mixing

Higgs-axion mixing

The symmetric matrix describing the mixing of the CP-odd Higgs sector
with the axion field b is given by

B__B

cot -1 Vg _9d

1 i

— a5 —q5

N3 = —5VuVd Cy -1 tan 3 —v, Mld
B B 2
as—as 9, —94 (a8—a5)

v, —v, vV,
d My uT My uVd M12

After the diagonalization we can construct the orthogonal matrix OX
that rotates the Stueckelberg field and the CP-odd phases of the two
Higgs doublets into the mass eigenstates (x, G, GY)

ImH? X
ImHS | =0x[ G |, (7)
b G



Higgs-axion mixing

A light axion

The mass matrix of this sector exhibits two zero eigenvalues
corresponding to the Goldstone modes G}, G and a mass eigenvalue,
that corresponds to the physical axion field x, with value

1 q8 — qB vsin23 2
2 2 u d
mx__icxv 1+( M, > ) (8)
with the coefficient
by 2
¢, =4 4A1+A3cot6+—TB+A2tan6 (9)

The mass of this state is positive if ¢, < 0. The Goldstone bosons
(Gz, GY) are obtained by orthonormalizing (G2, GY) that span a two
dimensional space.

Notice that, in general, the mass of the axi-Higgs is the result of two
effects: the presence of the Higgs vevs and the presence of the
Stiickelberg mass via the PQ-breaking potential.



Higgs-axion mixing

Here we show the Branching ratios of the axi-higgs into the various
channels.

tanp = 40, Og= 0.2, M]_: 1TeVv, f(-1,0,4)
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Higgs-axion mixing

Here we show the Branching ratios of the CP-even sector of the MLSOM
into the various channels.

B =40, gg=0.1, My=1TeV, f(1,04) @B =40, 0= 01, My=1TeV, (1.04)
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Axion Phenomenology at the LHC

Axions at the LHC

The couplings of the axi-higgs to the fermions are completely defined
through the Yukawa interactions of the model therefore, it can be
produced in hadronic collisions and there are good chances that it can be
detected.

In complete analogy to the case of the SM Higgs, the most relevant
channel for the axion production is the gluon-gluon fusion. Given the
large number of free parameters that are involved in the generation of its
mass, the axion can be searched in different kinematical domains because
the model allows for a very light axion with a mass of the order of 1 GeV
or less, and a heavy axion. The particular features of the scalar potential
render the predictions of the MLSOM slightly different with respect a
general 2HDM, due to the presence of the b field, and this of course
imposes some differences in the treatment of the experimental
constraints on the class of the free parameters of the MLOSM.



Axion Phenomenology at the LHC

Axionic interactions in the gluon gluon channel at the LHC

Q0. X
X, HO, ho X HO hO -~ =y
hO™ w — X
000 S x
000 4 ho 000 4 X
X .7 HO -
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~
N NI
000 000
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Y oxo a0, /.
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Axion Phenomenology at the LHC

Production cross section

At parton level the production cross section for the axi-Higgs boson via
gluon fusion is related to the decay rate by the following relation

2
8 5

Ugg—>X(§) = r(X - gg)6(§ - mx) = O'gg—gcd(g - mi) (10)

m, N2
where § is the squared partonic c.m. energy and N. = 8 is the color
factor for the gluons. At hadron level the total cross section for the
inclusive axi-Higgs production is given by

1
1
o(pp — 88 — x + X) = /mz s A7y (7)0g5 - (TS) = GO Peg(T)
X
(11)

where the variables S and v/ Q? stand for the squared c.m. energy of the
incoming hadrons and the invariant mass of the gluon pair respectively

2
and 7 = % .



Axion Phenomenology at the LHC

PP — x + X at the LHC via gluon-gluon fusion at LO

LHC

o(M) [pb]
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M [GeV]



Axion Phenomenology at the LHC

Some selected processes

In general, the total cross section for each process can be determined by
using the following factorization formula

1 1
0(57/&»#%):/0 dél/o d& g(&1, 17)g(&2. nE)6 (as(pR), @/ 1k, @°/1E)

where 7 = Q2/5 and, introducing the invariant mass distribution at
parton level we can write

dé MP 1 < . )
—_— = do,——6(1— — ). 12
dQ? p(%;m "66,8 &6 (12)

Here | M|? represents the square of the matrix element for the production
of n scalar particles in the final state, the variables &1, & represent the
fraction of the momentum carried by the partons in the collision and d®,
is the Lorentz invariant phase space. The invariant mass Q? is defined as
5§+ T+ 0 = Q2 while the fraction 1/(\)2 is the partonic flux. Then, we
can write
~0 2
do  5(Q )q)

2T s e(T) (13)



Axion Phenomenology at the LHC

The partonic contribution is defined

pol,spin

and the gluon luminosity is given by the following convolution product

1
dy X
We have performed the PDFs evolution by using CANDIA (See
A.Cafarella, C.Coriano, M.G. Comput.Phys.Commun.179:665-684,2008 a
code for DGLAP evolution in the x-space, see Cafarella Coriano and
M.G., Nucl.Phys.B748:253-308,2006.



Axion Phenomenology at the LHC

PP — 2y + X via gluon-gluon fusion

do/dQ [pb/GeV]

LHC

1let+06

10000 |

0.01

le-04

g - ho_. +2X ——
09 —» Hg— +2) -oeeees
gg - X - hp*+Xx - -
g9 - X - Hg*+ X -

1le-06

60 80 100 120 140 160 180 200
Q [GeV]



Axion Phenomenology at the LHC

PP — 4x + X via gluon-gluon fusion
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Axion Phenomenology at the LHC

A possible phenomenological scenario

Free parameters: {A1, A2, A3, bo, Auus Add, Aud} —

{—9 -107%,-1-107%,-1-107%,5-1073,6 - 10_2,5,0.9}, and we have
obtained the following values for the masses of the CP-even and the
CP-odd sectors: {myp, ~ 122, my, ~ 15, m,, =~ 5} (GeV). Here tan 5 ~ 40

and gg ~ 0.1.
Process Q [GeV] | do/dQOLHC [pb/GeV]
gg — hy — 4x 45 ~ 1073
gg — Hy — 4x My, 103
gg — X — 3x+ ho 50 5.10~%
gg — x — 3x+ Ho 150 2.107
gg — hy — 2x 45 26
gg — Hy — 2x My, 324103
gg — X — ho+ x 45 0.69
gg — x — Ho+ x 150 ~ 1073
gg — Hy — ho + hg — 4x M, 5.103

Table: A list of processes analyzed at hadron colliders.



Axion Phenomenology at the LHC

Associate Production of a CP-even scalar

Another possible way of detecting the Higgs at the hadron colliders is
through the associate production with a vector boson. We have
calculated the LO cross section for the Hy/hgy associate production with a
W and Z at the LHC and we have made a comparison, in the same
hypothesis, with the ordinary SM Higgs. The partonic cross section can
be written as

5 — Holho + V) = =52 (Cl Y1 [(gh)? + (&) )?] =

32/\42 2887s
N §))\(/\/I%,,m,_,, §)+ 12M2 /5 (16)
S (1 M3/3)

where V represents W or Z, the couplings to the fermions are defined as
gA'f = 2Tf3L, g\f/ = 2Tf3L — 4Q,c53v for the Z, while gf\ = g\f/ = /2 for the
W.

q

N HOho
N

~

q



Axion Phenomenology at the LHC

The phase space coefficient is defined as

Ax,y,z) = (1 —x/z — y/z)?> — 4xy/z%. The total cross section as a
function of the mass of the Higgs is given by the convolution of the
partonic cross section with the PDFs luminosity of the quark-antiquark
pair produced in the initial state which is given

Poa(T, 1F, pR) / Z [£9 (%, e, 1R) L (T/x, 1E, 1iR) + {Hy < Ha}] (17)

where ufF, ug are the factorization and renormalization scales and f;,’l
represents the quark probability relative to the hadron Hi, etc. We have
performed the PDF evolution with CANDIA and we have used MRST
2001 as input distributions. Then, the total cross section is given by

1
oro(mi i 1) = / a(r. i 11r)3(rS)dT (18)

0

where 7o = (My + my)?/S and S is the center of mass energy of the two
incoming hadrons.



Axion Phenomenology at the LHC

qobar — V +H + X, LHC vS=14 TeV
100

Hoy+W ——

o(My) [pb]

0.001 : ‘ :
50 100 150 200 250 300
M [GeV]

Figure: qg — H+ V + X at LO at the LHC.



Axion Phenomenology at the LHC

CDF Multimuon events

On the basis of some recent discussions on multi-muon events observed
at the Tevatron (see Ellwanger et.al. 0812.1167[hep-ph], Giromini et.al.)
0810.5730[hep-ph], one might wonder whether the production of a light
pseudo scalar particle is a possible candidate for the explanation of such
events. As a matter of fact, in the MLSOM, the production cross section
for a light pseudo-scalar particle through the gluon-gluon fusion channel
has a large value, due to the structure of its coupling to the fermions and
to the fact that the gluons are singular when the virtuality in the s
channel is low (the parton momentum fractions x;x, = @2/S approach
small values).

hg_\/ ho ho £
ho X, 7X X )K

~N

X W‘X*rl(\”x<

/\ho/\ho)\



A supersymmetric extension: The USSM-A

The supersymmetric extension that we have investigated is called
(USSM — A). It contains an anomalous U(1) and a susy Stueckelberg
sector. The choice of a USSM-like superpotential (see Cvetic et. al.
Phys. Rev. D56 1997), with one extra singlet superfield and an extra
abelian symmetry, allows a physical axion-like particle in the spectrum.

W = XSHy b+ yehh - LR + ygHy - QDr + yufs - QUg, (19)

Unlike the NMSSM and the nMSSM W does not contain linear and
cubic terms in S in order to preserve the gauge invariance in the presence
of a non vanishing Bs charge.

Bu, + B, + Bs =0
By, +B.+Br=0
By, + Bo + Bp, = 0
Bu, + Bg + By, = 0. (20)

See C.Coriano, M.G., N.Irges and A. Mariano, Phys.Lett.B671:87-90,2009
and C.Coriano, M.G., A. Mariano and S. Morelli, arXiv:0811.3675 [hep-ph].



In the following table we report the field content of the model and the
charge assignment

Superfields || SU(3) [ SU(2) [ U(1)y | U(1)s
b(x,0,0) 1 1 0 —
5(x,0,0) 1 1 0 Bs
L(x,0,0) 1 2 -1/2 B.
R(x,0,0) 1 1 1 Bgr
Q(x,6,0) 3 2 1/6 Bo
Ur(x,6,0) 3 1 -2/3 | By
Dr(x,6,0) 3 1 +1/3 | Bp,
Fi(x,6,0) 1 2 -1/2 | By,
Fa(x, 0,0) 1 2 1/2 By,
B(x,0,0) 1 1 0 1
Y(x,0,0) 1 1 1 0
Wi(x,0,0) 1 3 0 0
G2(x,0,0) 8 1 0 0

Table: Charge assignment of the model



Susy
The susy axion lagrangean

The other fundamental ingredient that makes the difference between the
nMSSM is the presence of the axion lagrangean that contains the
Stiickelberg gauge-invariant terms and the Wess-Zumino interactions

Losion = %/d40(B+BT+2MstlA3)2
1 [ . (]1 .1 .
— 5 [ d"63 | 5b6 T(G9)b + Sbw Tr(WW)b
FhybWY WY 4 bgbWBWBE 1 bygbW.Y W&ﬂ 5(0%) + h.c.} :
(21)

See F. Fucito, A. Racioppi et.al., Phys.Rev.D78:085014,2008



Susy
The scalar potential in the supersymmetric extension

The study of EWSB in the case of these models proceeds similarly to the
USSM. The scalar potential is given by

1
V = [AH1 - Ho> + [ASP(|HL? + [Ho ) + g(gzz +g$)(HIH1 - H§H2)2
g2 g3
+§B(BH1 HJ Hy + By, Hl H> + BsSTS)? + %\H}Hzﬁ + m?|H, |?

+m3|Ha|?> + m2|S|? + (axSHy - Hy + h.c.). (22)

We introduce the following basis

o — L ( ReH?+ilmHY 4 — L ( ReH; +ilmH;
T2\ ReHy +ilmHy )0 2T 2\ ReHd +iImHY )’
1
S = —(ReS + i ImS), 23
ﬁ( ) (23)

where in correspondence of the minimum value of the potential we use
the following parametrization for the Higgs fields

= (n). =g 0). o= e



The physical axion

The key sector that is responsible for the presence of a physical axion is
the CP-odd one. Choosing the basis given by the components

(ImS, ImH?, TmHY), our superpotential with an extra singlet gives the
mixing matrix

vive

Vo Vi
2 ax vs VaVs
M odd — ﬁ 2 Vi Vs ( 25 )
v vg 4%

V2

Diagonalizing this mass matrix we can identify the orthogonal
transformation 0°% from the interaction to the mass eigenstates which
is given by

ImS G?
ImH? | =0°% [ G? |. (26)
ImHg Hfl)



The states are given by

vIm HY — vsIm S

G =
N v
co viIm H{) —vsIm S
2 \/m
1 S
HB _ vwIm S + vswIm Hf + vivsIm Hg (27)

)
VVAVE + v_%v2

where G? and G are two Goldstone modes, while HY is the physical
pseudo scalar (usually denoted by A in the MSSM). But again, from the
lagrangean density we can extract the following derivative coupling terms

1 1 1
Lpc = 58 W20" Gy — EgYAL/aH Gy + EgBBua“ G (28)
where we have defined
Gy = (vIm Hf — wim HS)

2M,
Gg = (Bp,viIm H? + By, voIm H? + BsvsIm S)+ 2 *t Tm b (29)
B




After the rotation on the basis (AY, Z,, Z},) using the OZ,, matrix to

susy
obtain the expression for Lpc in terms of physical states

Lpc = /VIZZH(?“GZ + MZ/ZIILBMGZ/. (30)

We have enough space in terms of degrees of freedom to complete the
basis {ImH?, ImHS, ImS, Imb} — {Gz, Gz, H?, 7}

1
X = Ni [2/\451.‘V1V22 ImH? + 2M5tV12V2 ImHg — 2MstV2VS ImS
X
+Bs gg(v*vé + viv3)Im b]
Ny = AMEV(2VE + P D) + BRER (v + E) (3D)

where the new identified state has a nonvanishing projection over the
Stiickelberg field.



The rotation matrix O, that rotates the physical components and the
goldstones in the CP-odd sector takes the form

HY Im H?
GZ Im HO

X Im b



The Neutralino Sector

the mass matrix is 7-dimensional because of the presence of the axino,
the singlino and the B-ino in the spectrum. In the Bs # 0 case we
obtain, in the basis, (—iAws, —i\y, —iXg, HI, H2,S, —i)y) the mass
matrix takes the form

My 0 0 —4g 28 0 0
0 My 0 %gy —%gy 0 0
0 0 Mg —3e8Bn, —%e8Bn, —5gBBs —A\/}%
Mo = -%& 2gy —3g8Bm 0 A5 A% 0
v v v Vs Vi
28 —38y —388Buy Az 0 Ak 0
_ Mst V2 V2
0 0 s 0 0 0 M

where M,,, My, Mg, M, are mass parameters and the term A vs/ﬁ
plays the role of the u-term; notice that X is a dimensionless parameter.
We have indicated with A\ys, Ay, Ag the gauginos of W3, AY B
respectively and with )y, the susy particle associated to b. The fields /:/{
and /zlé (i = 1,2) denote the supersymmetric partners of the two Higgs
doublets, while S is the susy partner of the extra singlet S.
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Conclusions

Conclusions

@ The Axionic Interactions have been analyzed in the context of
hadron colliders

@ The MLSOM provides for light axion that could be a good candidate
for dark matter searches

@ We have presented a supersymmetric extension of the MLSOM that
provides for a physical light axion and for an axino

o Current experimental bound must be investigated (Work is in
progress on this!)
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Abstract

We present a study of a class of effective actions which show typical axion-like interactions, and
of their possible effects at the Large Hadron Collider. One important feature of these models is the
presence of one pseudoscalar which is a generalization of the Peccei-Quinn axion. This can be very
light and very weakly coupled, with a mass which is unrelated to its couplings to the gauge fields,
described by Wess Zumino interactions. We discuss two independent realizations of these models,
one derived from the theory of intersecting branes and the second one obtained by decoupling one
chiral fermion per generation (one right-handed neutrino) from an anomaly-free mother theory. The
key features of this second realization are illustrated using a simple example. Charge assignments
of intersecting branes can be easily reproduced by the chiral decoupling approach, which remains
more general at the level of the solution of its anomaly equations. Using considerations based on
its lifetime, we show that in brane models the axion can be dark matter only if its mass is ultralight
(~ 10~* eV), while in the case of fermion decoupling it can reach the GeV region, due to the
absence of fermion couplings between the heavy Higgs and the light fermion spectrum. For a GeV
axion derived from brane models we present a detailed discussion of its production rates at the
LHC.



1 Introduction

The study of possible signatures of string/brane theory at lower energy has achieved a significant
strength with the development, in the last few years, of several extensions of the Standard Model
(SM) formulated in scenarios with intersecting branes and large extra dimensions [1, 2, 3, 4, 5, 6],
which are characterized by quite distinct features compared to other constructions, such as those based
on more traditional anomaly-free supersymmetric formulations. The latter include specific theories
like the MSSM but also its further variants such as its next-to-minimal (nMSSM,NMSSM) extensions,
eventually with the inclusion of a gauge structure enlarged by an extra anomaly-free U(1) gauge
symmetry (USSM) [7] (see [8] for an overview).

On the other hand, since anomalous U(1)’s are naturally produced in geometrical compactifications
and are an important aspect of brane models, the search for possible signatures of string theory
has necessarily to take into consideration the peculiarities of these anomalous extensions, which are
characterized by anomalous extra neutral currents, contact interactions of Chern-Simons form at
trilinear gauge level [9] [10][11] and several axions of Stiickelberg type. Supersymmetric extensions of
these classes of models have also been investigated recently [12, 13].

One of the most demanding feature of these formulations, in regard to possible experimental
searches, is to clarify the role of gauge anomalies on a substantial sector of collider phenomenology,
from precision measurements of leptoproduction to double prompt-photon production [14], just to
mention a few processes. These and many more are all affected by the new anomalous trilinear gauge
vertices [15] which appear in these models, although their studies are expected to be quite difficult
experimentally.

In fact, the limited accuracy of hadron colliders might reduce the expectations in regard to the
possible experimental identification of subtle effects due to the mechanism(s) which underline the can-
cellation of the gauge anomalies. Nevertheless, the presence of an axion-like particle in the spectra of
these theories is an important feature of intersecting brane models, which represents a serious depar-
ture from the typical anomaly-free formulations - both for supersymmetric and non-supersymmetric
models - and provides a natural justification for a light pseudoscalar state.

The higher perturbative order at which these effects start to appear in the perturbative expansion
and the limitations of the parton model description seem to indicate that the analysis of anomalous
effects are more likely to be the goal of a linear collider rather than that of the LHC, nevertheless the
signatures of new physics are manyfold and are not limited to collider physics, but have remarkable
implications also in astroparticle physics and cosmology.

Among the aspects that can be addressed within these new formulations are those related to the
flavour sector and the connection between these constructions and the traditional solutions of the
strong CP-problem, previously addressed with the help of global U(1) symmetries, such as in the
invisible axion model [16, 17, 18, 19, 20]. We recall that studies of the flavour sector of the SM in

the presence of gauged anomalous U(1)’s are not new, having been used in the past in a variety of



cases, for example in the construction of realistic scenarios for neutrino mixing [21]. At the same time,
the study of axion-like particles is at the center of new important proposals for their detection which
are now under an intense investigation at DESY [22, 23]. Other interesting proposals consider the
possible implications of axion-like particles in the propagation of gamma rays [24]. We believe that
these motivations are sufficient to justify generalized searches of pseudoscalars as a possible solution
of the dark matter problem. At the same time anomalous gauge interactions, in combination with
quantum gravitational effects, show puzzling features, due to the presence of phantom fields [25, 26]

in the local formulation of the trace anomaly [27] which deserve a closer look.

1.1 An axion with independent gauge couplings and mass

An axion-like particle is characterized by the usual pseudoscalar couplings to the gauge fields (the
bFF term, where b is an axion) but has a mass which is unrelated to its coupling. Different mass
ranges for the axion have quite different implications at a phenomenological level. For instance, for a
very light axion (= 107 — 107 eV), as for the PQ case, the pseudoscalar can mix with the photon
and can generate, in the presence of background galactic magnetic fields, the usual phenomena of
birifringence and dichroism for light propagation [28], with important effects at astrophysical level
[24, 29] and other experimental signatures [22, 23]. The optical activity of the intergalactic medium
due to the presence of background axions, also in this generalized case, is essentially caused by the
bEFF coupling in the equations of motion of the lagrangean [30][31].

In the invisible axion model astrophysical arguments bound the mass of the axion (and its inter-
action to the gauge fields) requiring its suppression by a large scale f. All the axion couplings and
the axion mass

1012
m=~6- 10_6eVTGeV (1)

are inversely proportional to f, where f is arbitrary (f ~ 10° GeV experimentally) and makes the
axion, indeed, very light. In general, a very light axion, being a quasi-goldstone mode of a global
symmetry, is produced copiously at the center of the sun and escapes after its production, with a
mean free path which is larger than the radius of the sun. The failure by existing ground-based
helioscopes to detect this particle in a detector of Sikivie type [32][33, 34] has been used to bound
its mass and its interaction with the gauge fields. The bound can be evaded if the axion has a mass
larger than the temperature at the center of the sun, since in this case would not be produced at
its center, mass which is not allowed for the invisible axion according to current constraints. For a
very light axion interesting effects are allowed, such as its non-relativistic decoupling, since its average
momentum at the QCD phase transition is not of the order of the associated temperature, which is
in the GeV range, but of the Hubble expansion rate (3- 107 eV), and the formation of Bose-Einstein
condensates [35].

As we have mentioned, the gauging of the axionic symmetries can lift the typical constraints of



the invisible axion model, allowing a wider parameter space, which is the main motivation for our
study. In principle, in the extensions that we consider, this pseudoscalar can be very light, while
its gauge interactions can be suppressed by a scale which is given by the mass of the lightest extra
Z' present in the neutral sector of these models. For this reason, these types of pseudoscalars are
naturally associated to the neutral current sector, with new implications at the level of the trilinear
gauge interactions.

So far, two models have been developed in which the structure of the effective action allows
a physical axion: the MLSOM (the Minimal Low-Scale Orientifold Model) [36] and the USSM-A
[37, 13], the first being a non-supersymmetric model, the second a supersymmetric one. In the first
model, motivated by a construction based on intersecting branes, the scalar sector involves beside the
Stiickelberg axions, 2 Higgs doublets. At the same time, the gauge structure of the Standard Model
is corrected by the presence of extra neutral currents due to the extra U(1).

To date, a detailed analysis of these models is contained in [38], worked out for a single extra U(1).
In the supersymmetric case the presence of a physical axion is guaranteed if the superpotential allows
extra superfields which are singlet respect to the Standard Model but are charged under the anomalous
U(1)’s. The field content of the superpotential of the nMSSM is sufficient to have a physical axion in
the spectrum [37, 13].

1.2 Gauged axions

The gauging of axionic symmetries is realized in the low energy effective lagrangeans by introducing
(shifting) axions, one for each anomalous U (1) present in the gauge structure of a given model. These
are accompanied by Wess-Zumino terms in order to restore the gauge invariance of the theory due
to the chiral anomalies present in these constructions. These axions (Stiickelberg axions) are not all
physical fields. In fact, the only physical axion, called the ”axi-Higgs” in [36], is identified in the
CP-odd sector of the scalars by a joint analysis of the potential and of the bilinear mixing terms
(B;0b;) generated by the Stiickelberg mass terms which are present for each anomalous U(1). We
are going to summarize below the scalar of the scalar potentials which allow a physical axion in the
spectrum, either massless or massive. Since the mass of this particle is expected to obtain small
non-perturbative corrections due to the instanton vacuum, as for the invisible axion, these small
corrections are described by extra terms in the scalar potential which are allowed by the symmetry.
These terms make the physical axion part of the scalar potential, but their size remains, in the class
of theories that we analyze, essentially unspecified. In supersymmetric models they are expected
to correspond to non-holomorphic corrections to the superpotential [37] which involve directly the
axion/axino superfield. The size of these corrections depends on the way the fundamental symmetry
is broken, and the appearance of the axion in the scalar potential just parameterizes our ignorance of
the fundamental mechanism which is responsible for these corrections. For this reason, we focus our

analysis on several mass windows for this particle, although the most relevant mass range for collider



studies is the GeV region.

1.3 Organization of this work

The analysis presented in this work concerns the phenomenology of the axi-Higgs in anomalous abelian
models with a single anomalous extra U(1) and in the non-supersymmetric case. The construction,
therefore, is the one typical of the MLSOM, formulated in the context of intersecting branes. A
similar analysis can be performed in the supersymmetric case, although it is more complex and will
be presented elsewhere. Our analysis, however, is not limited to models of intersecting branes, but to
the entire class of effective actions which are characterized by axion-like interactions at low energy,
independently from their high energy completion. Typical charge embeddings of brane constructions,
as we are going to show, can nevertheless be obtained in our approach starting from an anomaly-free
spectrum and decoupling some chiral fermions. Some differences between the two realization remain,
at phenomenological level, since the corresponding axion, in the case of decoupled fermions, does not
couple to the light fermions which are part of the low-energy spectrum.

Our motivations for working within this more general framework has been motivated by scenarios
where a heavy fermion, for instance a right-handed neutrino, decouples from the low energy spectrum
leaving one Stiickelberg axion (the phase of a Higgs field) in the effective lagrangean. We will come
to discuss these points in more detail in one of the sections below. The different completions of these
lagrangeans start differing at the level of operators whose mass dimensions is larger than 5, the five
dimensional ones being the Wess-Zumino terms.

After reviewing briefly these models in order to make our analysis self-contained, we illustrate
how their anomalous content can be obtained by requiring that only some of the anomaly equations
are satisfied, taking as a starting point an anomaly-free chiral spectrum and decoupling some chiral
fermions. Typical brane models such as the Madrid model [4] are obtained for a particular choice of the
free charges allowed by the decoupling of the heavy chiral fermions and are just particular solutions
of the anomaly equations. We then move towards a phenomenological analysis of the axi-Higgs in
the MLSOM, selecting the GeV mass range for the axion. This region is the most promising one for
collider studies of this particle, although in this range, as we are going to show, it is not long-lived. A
GeV axion can be long lived, but must have suppressed couplings to the fermions of the low-energy
spectrum, and one way of getting this lagrangean is via the mechanism of decoupling of heavy fermions
(and of the radial excitations of the associated Higgs field) from the low energy theory. We show,
using a simple toy model, how this can occur.

Production and decay rates for this particle are studied for all the mass windows in the MLSOM
for typical LHC searches. We give in an appendix a summary of the scalar sector of the lagrangean
and the determination of coefficients of the Wess Zumino terms. We have also included a section where
we present a discussion and a comparison of the effective action of intersecting brane models versus

the analogous one obtained by decoupling a chiral fermion, illustrating briefly the origin of the various



operators left in the low energy formulation, with the axion interpreted as the phase of a second Higgs

sector, partially decoupled from the 2 Higgs doublets included in the electroweak sector.

2 The model: overview of its general structure

We analyze a class of models characterized by a gauge structure of the form SU(3) x SU(2) x U(1)y X
U(1)p, defined in [38], where the U(1)p gauge symmetry is anomalous and the corresponding gauge
boson (B) undergoes mixing with the rest of the gauge bosons of the Standard Model. Details can
be found in [38, 38, 39]; here we just summarise the main features of this construction for which we
will define rather general charge assignments. As we have already stressed, the reason for keeping
our analysis quite general is motivated by the observation that effective actions of intersecting brane
models are not uniquely identified. Various completions can generate the same low energy signatures,
at least up to operators of dimension 5, which, for anomalous gauge theories, are the Wess-Zumino
terms. These points will be illustrated in a section below, where we will solve the basic equations that
characterize the charge assignments of the anomalous model, under some assumptions on the fermion

spectrum which are essential in order to make our analysis concrete.

2.1 The structure of the effective action

The effective action has the structure given by
§ = So+ Svuk + San +Swz + Scs (2)

where Sy is the classical action which is given in an appendix. It contains the usual gauge degrees
of freedom of the Standard Model plus the extra anomalous gauge boson B which is already massive,
before electroweak symmetry breaking, via a Stiickelberg mass term. The scalar potential is the
maximal one permitted by the symmetry and allows electroweak symmetry breaking. The structure
of the Yukawa sector Sy, is very close to that of the Standard Model. In one of the sections below
we identify the fundamental physical degrees of freedom of this sector after electroweak symmetry
breaking, which, in our analysis, is based on the choice of the largest potential allowed by the symmetry.
The model is a canonical gauge theory with dimension-4 operators plus dimension 5 counterterms of
Wess-Zumino type.

In Eq. (2) the anomalous contributions coming from the 1-loop triangle diagrams involving abelian
and non-abelian gauge interactions are summarized by the expression

1 1 1
San = 5 TswwBWW) + 5(T5ceBGG) + 5 (Tsps BBB)

1 1
+§<T3yyBYY> + §<TYBBYBB>, (3)



where the symbols () denote integration. For instance, the anomalous contributions in configuration

space are given explicitly by
TonwBWW) = [ dedyd T ) B WL )W) (4)

and so on, where Ty denotes the anomalous triangle diagram with one B field and two W’s external
gauge lines. The gluons are denoted by G.

In the same notations the Wess Zumino (WZ) counterterms are given by

_ Cgs Cyy Cyn
Swz = —p (bF AFp)+ = (bFy AFy) + —=(bFy A Fp)

P ABT[E A FY]) 4 DT [PS A ), )

while the gauge dependent CS abelian and non abelian counterterms [10] needed to cancel the mixed
anomalies involving a B line with any other gauge interaction of the SM take the form

Scs = +di(BY AN Fy)+do(YB A Fp)
+er (P B, O ) + co (e B, CHLD)), (6)

vpo

with the non-abelian CS forms given by

1. 1 ,

051%(2) = 5 [Wu (F;flf,p + gggs MWﬂWf) + cyclzc] , (7)
1 a 1 aoc C -

C’fVUp(S) = 5 {GH (Ffl,p + gggf b G,bij> + cyclzc] ) (8)

The only constraint which fixes the coefficients in front of the WZ counterterms is gauge invariance.
Specifically, the anomalous variation of S, is compensated by the variation of Syyz. Imposing this
condition one discovers that the scale of the WZ counterterms (M) becomes the Stiickelberg mass term
Mgy = M;. This is found in the defining phase of the model, in which the realization of the gauge
symmetry is in the Stiickelberg form. Obviously, in this phase only the B gauge boson is massive (in a
Stiickelberg phase). The breaking of the electroweak symmetry, triggered by the Higgs potential and
the transition to the mass eigenstates determines a rotation of the Stiickelberg axion b into a physical
axion y plus some Nambu-Goldstone modes. This rotation brings in a redefinition of the suppression

scale M, which now coincides with the mass of the extra Z’' gauge boson, as shown in an appendix.

2.2 The scalar potentials and their axion-dependent phases

In previous studies it has been shown that anomalous abelian models, realized in the case of poten-
tials with 2 Higgs doublets, both in the non-supersymmetric and in the supersymmetric cases, are

characterized by the presence of an axion-like particle in the spectrum. In the context of the 2 Higgs



doublets model shown in detail in [36, 38] the presence of PQ-breaking terms in the scalar potential

allows the axion to become massive. The PQ symmetric contribution is given by

Viq(Hu, Ha) = 3 (WEHEHo + Naa(HIHa)?) = 22 ua(HLH) (I Ha) + 2N, HT 2 Ha2, - (9)

a=u,d
which is a pure Higgs scalar potential, while in the PQ-breaking terms we introduce a dependence on
the axion field b by means of explicit phases
_iAgB _b_ CALB b \2
Vp @ (Hy Hab) = by (Hiﬂde 2 Ml) + A (HlHde o Ml)
—iAgB b —iAgB b
g (HEH ) (L e 27 30) 0 (B Ha) (HIH e 27 5) + e

(10)

where A¢gP = qf — qf, b, has mass squared dimension, while A;, Ay, A3 are dimensionless couplings.

In the scalar potential we can isolate three sectors, namely, two neutral and one charged sector, which

are described by the quadratic expansion of the potential around its minimum

VCP—even(Hu; Hd) + VCPfodd(Hua Hd7 b) + V:I:(Hu7 Hd) =
(11)

H,T ReH,°
H,”,H; )N, “ + (ReH,°, ReH,;") N- "
( d) 1<Hd+) (Re eHy") Na Rel,
ImH,"
+ (ImH,C, ImH,",af) N3 | ImHL | . (12)
b

e The Charged Sector

In the charged sector we find a zero eigenvalue of the mass matrix, corresponding to the Goldstone

mode Gt and the nonzero eigenvalue

2b

2 _ ! 2
mH+ = 4\ wdV — 2 <1}2511’12ﬁ

-+ 2\1 + tan B9 + cot ,8)\3) V2, (13)

corresponding to the charged Higgs mass. The two vevs of the Higgs sector are defined by vy =

v cos B;v, = vsin B, with v = v2 + vg. The rotation matrix into the physical eigenstates is

H," \ (sin3 —cosp G*
( H;t ) N (cosﬂ sin 3 > < Ht ) (14)

e The CP-even Sector



In the neutral sector both a CP-even and a CP-odd subsectors are present. The CP-even sector is
described by Ao which can be diagonalized by an appropriate rotation matrix in terms of CP-even

mass eigenstates (h°, HO) as

ReH,° _(Sina —cosa> ho (15)
ReH, | \cosa sina HO )’

with
tan o — N2(1> 1)2_/\/‘-/2\/(‘21(’227)2) B \/Z (16)

and
A = (Na(1,1))% — 2Va(2,2)N2(1,1) + 4 (Na(1,2))? + (Na(2,2))?. (17)

The definition of these matrix elements is left to an appendix. The eigenvalues corresponding to the

physical neutral Higgs fields are given by
1
mo = 3 (/\/2(1, 1)+ No(2,2) — \/A)
1
mho = 5 (M) +Mp(2,2) + VA) (18)

We refer to [36] for a more detailed discussion of the scalar sector of the model with more than one
extra U(1).

e The CP-odd sector

The symmetric matrix describing the mixing of the CP-odd Higgs sector with the axion field b is
given by N3. After the diagonalization we can construct the orthogonal matrix OX that rotates
the Stiickelberg field and the CP-odd phases of the two Higgs doublets into the mass eigenstates
(x, GY,GY)

ImH? X
ImH) | =0 &Y |. (19)
b e

The mass matrix of this sector exhibits two zero eigenvalues corresponding to the Goldstone modes

GY,GY and a mass eigenvalue, that corresponds to the physical axion field x, with a value

. 2
m2:—lc v? |1+ G —ad v sin25 :—lc v? 1+(qf—2qf)2 i ; (20)
X~ 7% M, 2 2 X ME o2
with the coefficient
by 2
¢, =4 4)\1—|—)\300tﬁ+ﬁM—|—)\2tanﬁ . (21)



The mass of this state is positive if ¢, < 0. The Goldstone bosons (G z, Gz/) are obtained by orthonor-
malizing (G, G9) that span a two dimensional space. Notice that, in general, the mass of the axi-Higgs
is the result of two effects: the presence of the Higgs vevs and the presence of the Stiickelberg mass via
the PQ-breaking potential. In the particular case of a charge assignment such that ¢% = qf , in the PQ-
breaking potential the dependence on the axion field disappears (Vp ¢ (Hy, Hg,b) — Vp ¢ (Hy, Hg))

and the rotation matrix simplifies to

ImH? —cosf sinf 0 AV
ImH? | = sinfg cosf 0 Gy . (22)
b 0 0 1 G

For this particular assignment of the Higgs charges the Z and Z’ bosons are still massive, as can be
seen from eqs. (182, 183). A brief counting of the physical degrees of freedom shows, also in this
case, that we expect only one physical particle in the CP-odd sector. Then, in this particular case,
it is easily found that the model doesn’t exhibit Higgs-axion mixing because the physical degree of
freedom A°, as identified by the scalar potential, is a combination of the imaginary parts of the two
Higgs ImH?, ImH?, while the axion is only part of the Goldstones modes Gz and Gz, identified by

an inspection of the derivative couplings.

3 Axions from the decoupling of a chiral fermion

Other realizations of these effective models are obtained by studying the decoupling of a chiral fermion
from an original anomaly-free theory, due to large Yukawa couplings [40]. The remnant axion, in this
particular realization, is the surviving massless phase of a heavy Higgs. We will illustrate briefly this
approach sketching the derivation, though in the case of a simple model, in a section below. Obviously,
in these types of completions of the anomalous theory, the challenge of the construction would consist
in the identification of a pattern of sequential breaking of the underlying anomaly-free theory in order
to generate suitable axion-like Wess-Zumino interactions, which are not part of our simple example.

For instance, considerable motivations for this reasoning comes from unified models based on an
anomaly-free fermion spectrum assigned to special representations of the gauge symmetry. Specifically,
one could consider the 16 of SO(10) in which find accommodation the fermions of an entire generation
of the Standard Model plus a right handed neutrino. The decoupling of a right handed neutrino could
leave a remnant pseudoscalar in the spectrum with axion-like couplings. While the explicit realization
of this construction and the (sequential) breaking of the original GUT towards the spectrum of the
Standard Model is rather complex, the implications of these assumptions can be grasped by a simple
model.

To illustrate these points, we introduce a simple toy model and show step by step that a specific
form of the decoupling can generate a certain dynamics at low energy which is completely described

by an effective action with Stiickelberg and a Higgs-Stuckelberg phases, Wess Zumino interactions
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and higher dimensional operators suppressed by the Stiickelberg mass. It should be mentioned that
in our example, the low energy gauge boson B, which has anomalous effective interactions, would be
massive in the Stiickelberg form. We recall that the study of the Stiickelberg construction has been
discussed recently in several works [41, 42] (see also [43]) for non-anomalous theories, with its possible
experimental signatures.

The model requires two Higgs fields, here assumed to be two complex scalars, and a potential
characterized by a first breaking of the anomaly-free gauge symmetry at a certain scale (vg4), followed
by a second breaking at a lower scale vy (vg << vg). The heavy Higgs is assumed to decouple
(partially) after the first breaking. Specifically, the decoupling involves the radial fluctuations (p) of
the field ¢, and all the interactions which are characterized by operators which are suppressed by a

certain power of p/vgy. We expand the heavy Higgs ¢ as

with 6 denoting a massless phase that may be rendered massive during the process of decoupling of

the radial excitation by some small tilting, as it occurs for the ordinary Peccei-Quinn axion (PQ). The
(almost massless) phase remains in the low energy theory. The Stiickelberg axion is identified from
f in a certain way, that will be specified below. Also we assume, for simplicity, that only one chiral
fermion becomes heavy in the course of decoupling of the heavy Higgs, and is integrated out of the
low energy spectrum. As we have already stressed, our approach can be made more realistic, but we
expect that the crucial steps that bring to its specific effective action at low energy can be part of a
more complete theory.

The Yukawa couplings, expanded around the vacuum of the heavy Higgs, show the presence of a
complex phase (6) that we try to remove by a chiral redefinition of the integration measure before we
integrate out the heavy fermion. It is this chiral redefinition of the fermionic measure which induces,
by Fujikawa’s approach, typical Wess-Zumino terms in the low energy effective theory. This theory,
obviously, admits a derivative expansion in terms of the large scale vy, which can be systematically
captured by a derivative expansion in 1/vg, or equivalently, the Stiickelberg mass, since the two scales

are related (M ~ gpvg).

3.1 Partial integration

To be specific, we consider a model with 2 fermions and a gauge symmetry of the form U(1)4 x U(1)3,

where A is vector like and B is the anomalous gauge boson. We define the lagrangean

2
1 , 1 y (i i)y, 70 i
L= —(FuFM - JELFY > (00D v + 07D vy
=1
Aol A0 ¢ ) + | DLH? + Dol — Vg, H) (24)
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field | U(1)4 | U(1)B
1 1 1
Vo d | s
1 1 1
v | 40 | )
AN
2 2 2
v | a5 | dk
H | ql
o qﬁ q}g

Table 1: Charge assignments for the A-B toy model.

where we have neglected the Yukawa coupling of the light fermion(s) 1/)22) , @bg), which are proportional
to the vev of the light Higgs vy . For simplicity we may consider a simple scalar potential function of
the two Higgs ¢ and H, such as V (¢, H), that as we have mentioned, admits vacua which are widely
separated. While this would induce a hierarchy between the two vevs, and could be the real difficulty
in the realization of this scenario, one possible way out would be to consider V' (¢, H) to be the sum
of two separate potentials. Since the phase of the heavy Higgs survives in the low energy theory as a
pseudo-goldstone mode, it may acquire a mass if the potential in which it appears is tilted.

We show in Tab. 1 the charge assignments of the model. We define

D,H = (0,+iqagpB,) H
D,u(b = <8;A + ingBBu> (25
D = <6# +ig'i g, JriQBLQBBu) i, (25)
(26)
Under a gauge transformation we have ¢ — 1)
Q/)/L(z') _ 6—iqg>930wg)

with 0B, = BL — B, = —0,0.

We assume that the charge assignments are such that the model is anomaly-free. Notice also that
B, in this realization, becomes massive via a first breaking at the large scale vy and then its mass gets
corrected by the second breaking, characterized by the scale vgy.

We parameterize the fluctuations of the field ¢ around the first vacuum in the form

'U(z) + P —iqd’gBG
= ——8 B 28
"= 28)
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from which we obtain the first contribution to the mass of the B gauge boson in the form M; = q% 9gBVg-
As we are going to show next, this mass can be taken to be the Stiickelberg mass of a reduced Higgs

system if we neglect the radial excitations. In fact we have

2
Dol = 50,07 + ("5 (ahow (-0,0+ B, (20)

and we isolate from the phase 6 of this exact relation a dimensionful field b which will be taking the

role of a Stiickelberg mass term as

o— . (30)
qdpdBUV¢
We can expand (29) in the form
1
|Dugf? = 5 (0u — MiBu)” + O(p/v), (31)

with M, = qf;gB%, defined to be the Stiickelberg mass. The decoupling of the radial excitations of
the very heavy Higgs from the low energy lagrangean generates a Stiickelberg mass term on the rhs
of (31), whose phase 6 is at this stage massless. Notice that after the second symmetry breaking, the
mass of the B gauge boson will acquire an additional contribution proportional to g qu vy, in analogy
to the first breaking, that is

Mg = \/M? + (gpaivm). (32)
Notice also that after the first radial decoupling of the heavy Higgs ¢, the Yukawa mass terms are
affected by a phase dependence that can be eliminated from the effective lagrangean via an anomalous
transformation. To illustrate this point consider the expansion of the Yukawa term around the vacuum
of the heavy Higgs

_ 1 _ .
MO0t = A (vg + )3y e ahomt (33)

V2
which is affected by a phase that we will try to remove in the course of the elimination of the heavy
degrees of freedom of the mother theory. Notice that in this case we do not take a large Yukawa
coupling (), as in previous analysis [44, 45], since the large fermion mass of 1/1(1) is instead obtained
via the large vev of the heavy Higgs, vy. For this reason, having defined the Stiickelberg mass M; in

terms of the same vev, after neglecting the radial contributions we obtain

(1 1 ~(1) (1) —ig® ano A
M oul) = Mg D) e 500w = gl (34)

V2
Before performing the partial integration on the heavy fermion ¢, it is convenient to define a change
of variables in the functional integral, in order to remove the phase-dependence on 8 present in the
Yukawa couplings. For this reason, let’s consider the part of the partition function directly related to

the heavy fermion ¢!, which is involved in the procedure of partial integration. This is given by

13



204.B) / Dy DU DY) Dyl el ] oL (35)
where
1) _ w(Ll)D ¢(Ll) + &g)m ¢g) + ﬂMllz(Ll)wg)efiqﬁgBQ + he. (36)

and we have neglected the contributions proportional to the radial excitation of the heavy Higgs. At
this point we try to remove the phase 6 from the Yukawa couplings by performing a field redefinition

in the functional integral of the heavy fermion. We set

vl = —”53393%352
wB - e—quRgB(9¢ (37)
where from gauge invariance we have
1
dp + 45 — a1 = 0. (38)

The field redefinition induces in the integration measures two jacobeans

DYDY = jpr w’m
Dy Dy = JTrDy D) (39)

which are computed using Fujikawa’s approach (see for instance [46]). We obtain
T = fzqu 321 5 (0FAF)p,

Jr = ¢~ HbR T OF AR (40)

In this case Fj,r.r = [Dy, D)), p contains both gauge fields (A4, B) and the corresponding gauge

charges of the heavy (L, R) fermions such as, for instance,
FMVLR—qu(le RFA —i—zq%%RFB (41)
The structure of the effective action after the field redefinition takes the form
zM (4, B) / DYDY Dy DD g [ ¢l DLz (42)

where

£® =y (B —igflp 0) i + 8" (B —iagihp 0) v + MU 4 he. (43)

with the Wess-Zumino (WZ) lagrangean obtained from the expansion of the 6 F' A F' terms. These
are suppressed by the Stiickelberg mass term M; (6 = b/M;).
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At this point we can perform the Grassmann integration over the heavy fermion, which trivially

gives the functional determinant of an operator, P, explicitly given by

D —id) gud 0 1
_ A
P = 1 P —id\hgsp 0 |’ (44)

Yo

where U:b = v?/+/2. The remaining terms in the total partition function of the model can be obtained

from the functional integral

Zegs ~ / DY DEP DYP DEPDHDIDE i #'rLess (45)
where ,
with ) )
0 = —JFR = g Fh D o+ oD o). (a7

The derivative expansion of the effective action can be organized in terms of corrections in the
Stiickelberg mass. Obviously, a similar approach can be followed for the integration of a Majorana
fermion, which is slightly more involved. The basic physical principle, however, remains the same also
in this second variant. In this case the functional determinant can be organized as in [47].

There are some implications concerning the two realizations of this class of effective actions, es-
pecially in regard to the possible mass of the axion as a dark matter candidate in the various models
that share the effective actions that we have presented. The first observation concerns the absence of
a direct Yukawa coupling between the heavy Higgs and the light fermion spectrum, which is part of
the effective action after partial integration on the heavy fermion modes. This feature is absent in the
MLSOM, and turns out to be rather important since it affects drastically the lifetime of the axion, as
we are going to elaborate in the following sections. We will find that a GeV axion is favoured by the
mechanism of partial decoupling but is not allowed in the MLSOM. In this second case a very light
axion is necessary in order to have a state which is long lived and that can be a good dark matter

candidate.

3.2 Parametric solutions of the anomaly equations

It is clear that the typical effective action isolated by the decoupling of (one or more) chiral fermions
can be organized in terms of the defining lagrangean plus the WZ counterterms, which restore the
gauge invariance of the model. Therefore, up to operators of mass dimension 5, the two lagrangeans are
quite overlapping at operatorial level. For this reason, we will construct a complete charge assignments
for these models, starting from an anomaly-free theory, with a spectrum that we deliberately choose

to include one right-handed neutrino per generation, and which we will decouple from the low energy
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dynamics according to the procedure described above. Of course, other choices are also possible. As
we have already stressed, the motivations for selecting this approach are not just of practical nature,
although it allows to generate effective anomalous models with ease. For instance, one could envision
a scenario, inspired by leptogenesys, which could offer a realization of this decoupling mechanism,
although its details remain, at the moment, rather general. We will not pursue the analysis of this
point any further, and leave it as an interesting possibility for future studies. However, we will discover,
by using the decoupling approach, that a significant class of charge assignments of intersecting brane
models can be easily reproduced by the free gauge charges which parametrize the violation of the
conditions of cancellation of the anomaly equations. We should also mention that the dependence of
our results on the various charge assignments is truly small, showing that the relevant parameters of
the models are the Stiickelberg mass, the anomalous coupling and the parameters of the potential,
which control the axion mass in each realization.

To proceed, we impose first the conditions of cancellation of the gauge and of the mixed gravitational-
U(1)p anomalies, thereby fixing the U(1)p charges, followed by the conditions of invariance of the
Yukawa couplings, in order to determine the charges of the two Higgs [48]. We take the U(1) 5 fermion
charges to be family-independent in order to avoid possible constraints from flavor-changing neutral
current processes. We label the generic fermion charges under the additional group U(1)p as shown
in Table 2.

QL | ur | dp | L | e | vg

B B B B B B
49, | Yug | g | 9L | e, | Dy

Table 2: Labels for the gauge charges of the fermion spectrum.

For every anomalous triangle we allow, in general, a WZ counterterm whose coefficient has to be
tuned in order to satisfy the conditions for anomaly cancellation. For the fermion charges qLB , q(]fR, qu

we find the following constraints

BSU(2)SU(2): ¢P + 3(]& — Cpww =0,
BSUB)SU@3): 48 +qB —245, — Cpyy =0,

3
BYY : 3quR + 6q5L + BqER — §CBWW — Cgyy — ChBygs (48)
where the coefficients appearing in front of the WZ counterterms are proportional to the charge
asymmetries
Ceww o Z Orr,
f
Cigg > >_ 06,
Q
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Cpyy x Y 07",
f

Cppp x Y 0775, (49)
f

which are detailed in an appendix, and with the hypercharges of U(1)y given in Tab. (3).
If we consider the charges qu , qf as free parameters of the model, Cpww ,Cggy,Cpyy can be in
principle expressed in terms of these parameters. The other three conditions coming from the gauge

invariance give the following further constraints

YBB:  =3(q},)* —3(¢5)* +3(q1)” — 3(a5,)” + 6(qu,)” — Cyse =0
BBB:  9(qf,)*+3(¢5)* —6(af)* — 18(a5,)* + 9(a2.)* — Coep =0
BRR:  9¢7, +9q¢), +3q2, — 647 —18¢5, —3Chac =0, (50)

where the condition on the BRR triangle comes from the mixed gravitational-U(1)p anomaly cancel-

lation. From the gauge invariance of the Yukawa couplings (see Lagrangian (73)), we obtain

B qf B
0, ~ o ", = 0
B QB B
qQL_'—?u_un = 0,
B
B 4 B
i = ~den = 0,
B ﬁ _

which can be used to constrain the charges of the two Higgs doublets ¢ ,qf and the counterterms
Ceww,Cpgg- Collecting the constraints in eqgs. (51), (48) and (50) we obtain a set of ten equations

whose solution allows us to identify a class of charge assignments that we call f

B B B B B B B B B B
[0, 9L, A07) = (40, Gurs Qips AL » Derp G » 94 )- (52)

These depend only upon the three free parameters qu, qf ,AgP, where A¢P = ¢B — qf . The explicit

dependences are shown in Table 3, while the related WZ counterterms take the form

Cpyy = —g(QE —5¢5,) + 244", (53)
Cyss =3(q7)* - g [18((15L)2 + 8QSLAQB + (ACIB)2] ) (54)
Cppp = —6(qr)* +78(¢5,)* + 72(¢5, )’ Ad” + 1845, (Ag”)* + g(AqB)g, (55)
CBgg = %AqB : (56)
Cpww = qr + 345, (57)
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f 1 8UB)e | SUR), | UQ)y U(1)g
QL 3 2 1/6 a5,

uR 3 1 2/3 0

dr 3 1 —1/3 | 2¢§, + 3A¢°
L 1 2 —~1/2 q?

eR 1 1 -1 2q5L + %AqB
VR 1 1 0 0

H, 1 2 1/2 -2¢3,

H, 1 2 1/2 | =295, — A¢®

Table 3: The three-parameter family f (qu,qf, AqP) of solutions for fermion and scalar charges.

where in particular, from the charge assignment shown in Table 3, we identify the counterterm for the

mixed gravitational-U(1)p anomaly with
Cpac =2(—qf + 45, + Ad”). (58)

Then the WZ counterterms, as defined in general in eqs. (194), can now be specialized in terms
of the different charge assignments f (qu,qu,AqB ), just by substituting the corresponding chiral
asymmetries. This function will appear in several of our plots.

Finally, since in the case qf — q(]f = 0 the OX matrix would become trivial, we require the following

relation between the Higgs charges

a2 —qf #0 (59)

where, in particular, g5 — qf = 4 is exactly the value implied by the charge assignment derived from
the Madrid Model (see Table 6) for the two Higgs. We will be using this value to constrain the chiral
asymmetry 9}3 by means of eq. (58), and will be taken as the starting value for all our comparisons.
Notice that the family f (qu,qLB , AgP) for the particular choice qu = —1, qLB = —1 reproduces the
entire charge assignment of the Madrid Model

f(=1,-1,4) = (-1,0,0,—1,0, 42, —2). (60)

3.3 The Madrid model

We just recall, as already mentioned, that the charge assignment for our anomalous (brane) model
that we consider is obtained from the intersection of 4 branes (a, b, ¢, d) with generators (qq, v, qc, qd)

which are rotated on the hypercharge basis U(1)x, with i = A, B,C and U(1)y, with an anomaly
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free hypercharge. The U(1), and U(1), symmetries are proportional to the baryon number and the
lepton number respectively. The U(1). symmetry can be identified as the third component of the
right-handed weak isospin, while the U(1), is a PQ-like symmetry. A detailed discussion of this
construction can be found in [4] and [49]. The identification of the generators involve the solution
of some constraint equations. In general, for a simple 7% compactification the solutions of these
equations are parametrized by a phase € = 41, the Neveu-Schwarz background on the first two tori
Bi =1—0; =1,1/2, the four integers ng2, np1, ne1, gz which are the wrapping numbers of the branes
around the extra (toroidal) manifolds of the compactification, and finally a parameter p = 1,1/3.
One of the possible choices for these parameters is reported in Table 4 which identifies a particular

class of models, the so called Class A models. The result of this D-brane construction is the charge

v | B | B2| na2 | N1 | et | Ma2
13 [1/2] 1 [nae | 1| 1 |1- 1w

Table 4: Parameters for a Class A model with a D6-brane .

S| Qrlur | dp | L |eg|vg
o | 1/6 [ 2/3[-1/3]-1/2] -1
| 1o o[ 2o

Table 5: Fermion spectrum charges in the Y-basis for the Madrid model [49].

assignment specified in Table 5 whose corresponding fermion spectrum is anomalous under the extra
U(1)p abelian symmetry. Imposing the gauge invariance of the Yukawa couplings, see eq. (73), we

constraint the charges of the Higgs doublets to the values specified in Table 6.

Y | X, | X
H, |1/2] 0 | 2
Hy|1/2] 0 | -2

Table 6: Higgs charges in the Madrid model.
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4 Trilinear and quadrilinear interactions of the axi-Higgs from the
MLSOM scalar potential

One of the objectives of this work is to quantify the decay rates in the various channels of the axi-Higgs
x and of the two Higgs bosons Hy and hg of the CP-even sector, and to explore some possible channels
in which the production of an axi-Higgs can be realized at the LHC. For this goal we proceed with
a careful inspection of the interaction lagrangian, in order to extrapolate all the relevant couplings
and interactions of the axi-Higgs and of the CP-even sector with the other particles. We start this
analysis by collecting first all the trilinear and quadrilinear interactions of the axi-Higgs that emerge
from the scalar potential and then move to the mixed vertices which involve both the CP-even and
CP-odd sectors.

Collecting the quadrilinear vertices we obtain

Lo= R+ R + B + RY | X, (61)
where we have defined
RY' = DO} + a0’
RY' = S M(O%) (0%
RY' = SA(01)2(08)° — 25 AP A1 (0% 0} 0}, + 272-Ag A1 (O})(03)°0%, + O(1/A?)
RY' = 5220008 + 32(05)°0% + 51 Aq” MO} 0K (O)? + MO} (0%
— 321 Ag® M0} 0% (03 + 2204 (0Y)] (62)

2M,

The first contribution (R;) is extracted from the diagonal part of the Higgs potential (i.e ~ )\aa(HlHa)z),
the second originates from the non-diagonal u-d terms (~ /\ud(HJ:Hu)(H:;Hd)), the third comes from
the contribution of the PQ-breaking potential proportional to A1, while Rff4 is the contribution of the
last two pieces of the same potential which are proportional to Ay and Ag.

The quadrilinear couplings of the axi-Higgs with the neutral Higgs sector involve interactions
between two axions and the two neutral states (H°, h?). We can write the interaction lagrangian as

follows
LX2HOhO _ |:R>1(2H0h0 + R%(ZHOhO + R%(QHOhO + RZCQHOhO:| X2H0h0
+ |:R¥2HOHO + R§2H0H0 + R§2HOHO + RZ2HOHO] XQHOHD
+ [szhoho + RYTM L RN Rf’“’ﬂ 2RO (63)
where the coefficients R?QHH are defined in an appendix.
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The trilinear interactions of the axi-Higgs with the neutral Higgs sector exhibit couplings with two

axions and one Higgs state H°, h?. The interaction lagrangian can be written as
£X2higgs = ‘CX2H0 + ,szho (64)

where we have defined

5 5
Lo = |Y RN CH, Lo = | DR | 200 (65)
=1 =1

270 0
Again, the R? WY Coefficients are listed in an appendix. It is important to note that these couplings
are also present in a general 2HDM, while they are absent in the MSSM due to the strong constraints

obtained by imposing supersymmetry.

4.1 Self interactions in the CP-even sector

The self interactions of Hy and hg can be described as above, by analyzing the quadrilinear and
trilinear vertices generated by the rotation of the fields in the physical basis after electroweak symmetry

breaking (EWSB). Starting from the quadrilinear interactions we can write
Lpr = Lggr + Lygs + L2 g2 + Lygmgs + Lpgngss (66)
where
L = (R + R+ RS+ R g
Ly = [RYD+ BED 4+ B+ RS

h2H2 h2H2

2772
‘Ch02H02 = [ 1 *+ R2 + RQOHO} th%

3 3
Lo = [R’fOHO + RZOHO} Hiho
3 3
Lo = [RthO + Rfohf)} h3 H. (67)

The coefficients RzH4 can be found in an appendix. Also here it is interesting to observe that R; and
Ry are in general related to the PQ symmetric part of the scalar potential, while R3 and R4 come
from the PQ-breaking terms.

The trilinear interaction lagrangian can be written as
Lys =Ly + Lys + Lz, + Ligmy? (68)
where we have defined
Lo =|RI 4+ RIS 4 RV 4 pIS) p3
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3 3 3 3
£y = [ 1 3 4

2 2 2
Logzay = |B10™ + R+ B | Hond
2 2
Lo = [R’I‘OHO + R;‘(’HO} H2hy. (69)

All the coefficients RH * are given in an appendix.

4.2 Trilinear interactions of the CP-even sector with the W* and Z gauge bosons

Since, in general, the branching ratios for the decay of the Higgs into a pair of vector bosons W+
or ZZ are relevant in a certain kinematical regime, it is important to quantify the tree level decay
rate for this channel, and to give an estimate of the coefficients of the trilinear interactions of Hy and
hg with two gauge bosons W+TW ™ and ZZ. For the charged W+ it is straighforward to obtain the
corresponding coefficients

2
CcHY, = 952 (sinaw vg — cosa vy),
g2
o = 52 (sina vg + cosa vy,) . (70)

The calculation of the coefficients for the analogous interactions with the Z’s is more complicated

because of the structure of the model. For this purpose it is useful to introduce the following coefficients

f1 = 2M7} — ¢*v® + Nps,

B i+ h (\/ f?+4g%a% — 293Q%$B) +2xp [ngz + gBq%, (ngBxB —/J P+ 4923323)}
e 23 (1528 + 1 T2+ 4°2%)
2+ 1 (\/fl2 + 4g%2% — 2ng}§xB) +2xp [ngz + 9BqY% (ngjéwB —\/fE+ 4g2m23>}
“ 2V2 <492sz + fin/ R+ 49%23)
(71)
and the interactions H-Z-Z at tree level - summarized by the coefficients ng - are given by
C’gg = \}5 (vd g* Elsina — v, g* &3 cosa) ,
cr, = L (vu g? & sina + vy g* € cos @), (72)

V2

where ¢° = 932/ + g3.
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5 The Yukawa couplings and the axi-Higgs

The couplings of the two Higgs and of the axi-Higgs to the fermion sector are entirely described by

the Yukawa lagrangian. The Yukawa couplings of the model are given by

£yt —  _1Q, Hydp — T dpH QL — 1" Qp (iooH} Jur — T ur(icaH:) QL
-I° fHdeR —-Te ERH;L - I Z(iUQH;)I/R - T PR(iUQHZ)TL
= —T9dHYPrd — T¢dHY Prd — T GHY* Pru — T wHC Pru
~T°eHYPre — T¢eHY* Pre — TV UHY* Prv — TV DHL Pru, (73)
where the Yukawa coupling constants I', T, T'¢ and I'V run over the three generations, i.e. u = {u,c,t},

d={d,s,b}, v={ve, vy, v7} and e = {e, p, T7}. Rotating the CP-odd and CP-even neutral sectors

into the mass eigenstates and expanding around the vacuum we obtain

ReHY +iImH)]

H = v, + NG
hOsina — HY cosa) +i (O} x + O5LGY + O5GI
_ vu+( ) ( 11X 12471 13 2) (74)
V2
5o N ReH) +iImH]
= v
d d \/i
(W cosa+ HOsina) +i (O3 x + O%GY + 0%;,G?)
= g+ (75)
V2
so that in the unitary gauge we obtain
1 . .
HY = vu+$ [(h° sina — H° cosa) +i0y; x]
1
= vy + — [(h’ sina — HY cosa) — i N cos 76
1
HY = v+ —= [(ho cosa+ H° sina) +i0) x|
V2
1
= vu—i-ﬁ[(ho cosa+ HY sina) +iNsing x|, (77)

where the vevs of the two neutral Higgs bosons v, = vsin 3 and vy = v cos § satisfy

tanﬁzv—u, v =/vi+ 02 (78)
Vg

We have also relied on the definitions of OX introduced in a previous work [38]

Of, = —N cos 3, (79)
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O3, = Nsin 3, (80)

that we have reported in an appendix. For convenience we have introduced the following normalization

coefficient
N = ! . (81)
\/1 N (qEA—J??)? ik
The fermion masses are given by
My = U, I, my, = v, I,
mg = val'?, me = vgl'°, (82)

where the generation index has been suppressed for brevity. The fermion masses, defined in terms of the
two expectation values v, vg of the model, show an enhancement of the down-type Yukawa couplings
for large values of tan 8 while at the same time the up-type Yukawa couplings get a suppression. The

couplings of the h? boson to fermions are given by

- cos & _ sin « _ COos (¢
Lyac(hY) = —T%dpdg <\/§h0> —T“Trup < 7 h0> —Te° eLeR< 7 ho)
IV LR (Sl\%)‘ h0> +ee. (83)
The couplings of the H® boson to the fermions are
Ly(HY) = —T%d.d (SinO‘H0> . (—COSO‘H0> —T¢%Le <Si”aH0>
yuk (H) rdr =75 LUR 7 rer \ 75
—I"vrvr <—C(\)/S;HO> + c.c. (84)
For later reference we group together the couplings of the axi-Higgs x with the fermion sector
- N sin _ .N cos _ N sin
Lyvuc(x) = —T%d;dg <z 7 6)() —T"%rugr <—z 7 ﬁx) —T%erer (z 7 6x>
N
T vrvR (—i :f/();ﬁx> +c.c. (85)

We have listed these couplings in Tab. (7) where the normalization coefficient N is defined in (81).
From the Yukawa couplings of eq. (73) and relations (74), (75) we can extract the coupling of the

Goldstone boson GY to the fermions

0 d 3 0363 0 d3 053 0 U~ Oi<3 0
;CYuk(G2> = —I%d Z%GQ PRd—F d —’L%Gé PLd—F u —Z%Gz PRU

O5; 0} 0OX
—Tu <Z\/1§G(2)> Pru—T°e <Z\/2§3Gg> Pre —T°e (z\/%?’Gg) Pre

V= Oic?) 0 V= OiCS 0
-T"v —Z%GQ Prv —T"v Z%GQ Prv. (86)
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up-fermion down-fermion
Higgs SM e —
Lighter Higgs h° —? sin o/ sin 3 —% cos a/ cos 3
Heavier Higgs H° | L cosa/sin | ==L sina/ cos 8
axi-Higgs v z% N/tan 3 —i% N tan g

Table 7: Couplings of the neutral MLSOM Higgs bosons to up- and down-type fermions, and comparison with
the fermion couplings of the SM Higgs boson.

Using the expression of OX we can compute the coupling between the Goldstone boson GY and the

down-like quarks that takes the form

d 570 d 5170 md (QB—QB)U2 5.5 340
~T9dHYPrd —TYdHY PLd = ﬂ{—N [—"Mldvg]}idy dGS (87)

and similarly for the other generations. These expressions have been used in order to fix the explicit

form of the Wess-Zumino (WZ) counterterms using the condition of gauge invariance.

6 Decay rates of the axi-Higgs

We proceed to compute the partial decay widths and the branching ratios of the axi-Higgs for different
decay modes in the CP-odd sector of the MLSOM, taking the mass of the axion as a free parameter.
As we have already mentioned, in the case of the MLSOM, there is an interesting window in which
the axion acquires a lifetime typical of a good dark matter candidate. This mass value, which is the
same as that of a traditional Peccei-Quinn axion (~ 10~* eV, or in the ultralight mass window), is
not the most interesting one for studies of this particle at the LHC. The reason of this result has to be
found in the fact that the most relevant channels for the production of a particle of this mass are 1)
the pseudoscalar vertex with a top or bottom quark loop (the dominance of one or the other fermion
contribution depends closely on the value of tan3); 2) the direct WZ vertex in which the axion is
radiated off by a gauge field. The WZ term is quite small compared to the contribution from the
fermion loop, which is instead dependent on the mass of the axion. For an ultralight axion the loop
contribution is rather small and the chances of producing a particle of such a mass by gluon fusion or
in ¢q annihilation of light quarks are quite small. For this reason, if we are interested in the study of
a GeV axion, which is the goal of the numerical sections that follow, we are automatically excluding
a long-lived particle. On the other end, in this mass region, we are instead analyzing a particle whose
behaviour is Higgs-like but with a direct (although small) direct coupling to the gauge fields. At the
same time, the Higgs-like nature of the axion can be investigated by taking its mass in the several
GeV region, say in the 100-120 GeV range. Our results, however, are quite general, in this respect,

and can be used for direct studies of this particle in any mass range. As we have already stressed,
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what makes a distinction between a ”standard” CP-odd Higgs state and the axion of the MLSOM are
the WZ interactions, which are, in any case, subdominant compared to the triangle diagram in any
mass range.

In the case of fermion decoupling one can proceed with similar considerations, although the con-
clusions are rather different and will be addressed below. We will describe in a final section the main
properties of the axion if its origin is to be traced back to a decoupled Higgs sector, which show, in
this second realization, that the axion can be long lived and with a mass in the GeV range.

The relevant parameters which appear in the decay are the following coefficients

.m m,, N .m m
XM = =0 =i— , Xt = _;d 03, = —i—% N tan 3,
Uy v tan( vy v
.m .m, N .m .m
X = —i—LOf =i—~% ——, X =——2 0% = —i—= Ntanf3, (88)
» v tanf vy v

which will be essential in order to establish the size of the various decay channels.

Since we are interested in a relatively light axi-Higgs, we have focused our study on a kinematical
mass range going from 1 to 100 GeV. The fermionic decay channels that we consider are the bb, cc,
s§ for the tree level decays into quarks, 77 and uf for the decays into leptons. At one-loop order we
consider the decay into two photons, two gluons and in one photon and one Z boson. We have added
both the massless contribution coming from the WZ counterterm and the fermion loop contribution

from a pseudoscalar triangle. The total decay rate of the axi-higgs in this approximation is given by

X _ X X X
Ftot_r§g+r§v+FvZ+ Z thi+ ZFli' (89)
q=s,c,b l=p,7

e The tree level decays into fermions: y — ff

At leading order, for the tree-level process x — ff, we obtain the decay rate

2
M 1) = Qe - () (90)

for a value of the fermion mass below the pair production threshold (4mfc < mi) The pseudoscalar
couplings to the fermions (¢X*/) have been defined in Eq. (88).

The leading decay is xy — bb, due to the suppression of the fermion couplings of the up-type
fermions (clearly shown in Table 6). We show the variations of the branching ratio (BR) of the
pseudoscalar for different charge assignments f(—1,—1, A¢?), and as observed before, there are no

substantial differences induced by the selection of different assignments.

e One-loop decays into photons and gluons: y — vy and x — gg
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We now compute the partial decay width of the axi-Higgs boson into two photons x — ~7. The
invariant matrix element considered for the process is the sum of the two contributions shown in

Fig. 1. The first amplitude (Fig. 1a) is a massless WZ vertex

MWZ(X - ’V’Y) - 49%(75[/1’7 v, kl) k?]; (91)

where the coefficient g¥, comes from the counterterm given in formula (192). The second amplitude

(Fig. 1b) is a pure massive contribution

MY (x = 77) ZN £ iCo(m2, myp)eXlelu, v, ky ko], f ={u,d,v,e} (92)

where N.(f) is the color factor, 1 for leptons and 3 for quarks. In the domain 0 < m, < 2my the

pseudoscalar triangle when both photons are on mass-shell k% = k3 = 0 is given by the expression

—_

m m 1
C’o(mi,mf) = ——_ arctan? = ——_arctan?

2,2 2,12 ’
Tm 2 T“m / 2
X 2my 1 X —pfx
TTLX

(93)

with

while in the domain 2my < m, it becomes

C'()(m2 f) = ReC’o(m mf)—i-zImC’o(m ,My). (95)
Here we have set
_oomy (1 s (e
ReCo(m2,my) = 2 Llog (1—Pfx Tl (96)
1+p
my |7 fx
ImC; = —1 —= . 97
m o(m M) m? [2 0g<1_pfx>] (97)

In the numerical analysis presented below, we have introduced the function f(7), defined in any

kinematic domain, whose real part is given by

Rels)] - { i[lgl/(ﬂp) ] e %)

while its imaginary part is

0 ifr>1
el ] = { 5 [log (222=)] itr <1 (59)
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where 7 = 4m? /m2.

x Finally, the 1-loop decay x — 7~ is given by the following amplitudes
M (x — vy) = My, + MYY (100)

and the rate computed from the two contributions shown in Fig. 1 is

2
m 71 ()
T - X N( IS 202 0x0f
x=) = 5 Z ity © Qe
Tf f(7y) 202:6)
+ 4QWZN L mcy QX! 5. (101)

In Fig. 1a we have isolated the massless contribution to the decay rate coming from the W7 counterterm

xF, F, whose expression is

my 2
Ly z(x — 7)) = E(Q%) . (102)
}/ b
,X, — + ,X, —
Y Y

(a) (b)

Figure 1: Massless plus massive contributions to the xy — v~ process.

We should notice that the massive contribution from amplitude (92) is completely independent
of the anomalous coupling g, which does not appear in the coefficients ¢Xf, as can be seen from
Eq. (88). For the decay into two gluons we proceed in a similar manner (see Fig. 8) and the amplitude

is given by

MWZ(gg - X) = 492%6[/1,7 v, k17 k2]7 (103)

where the coefficient g%, is given in Eq. (192). The second amplitude (Fig. 8b) is a pure massive

contribution

M (g9 — x) =Y iCo(m3, mg) Te[TT ) e, v,k kal, g = {u, d} (104)
q
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Figure 2: Study of the branching ratios of the axi-Higgs. We analyze the dependence on the free parameters
gp,tan g.

with u = {u, ¢, t} and d = {d, s, b}, and the coefficients X7 are defined in relations (88). The decay

rate is then given by

2
m3 1 Nty f(T
P(x—g9) = 125 |80+ 5|1 ny%»fff)masqu
q
Nty f(75) ’
+ 4gggz e — L L aracot] (105)

while the expression of the isolated contribution from the corresponding WZ counterterm is instead

given by
3
mX X \2
Twz(x — g9) = g(ggg) : (106)
e The decay y — 2
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Figure 3: Branching ratios for the CP-odd scalar Ag of the MSSM

The partial decay rate computed from the corresponding WZ counterterm and fermion loop, anal-

ogously to Fig. 1, is

m3

T(x —=72) = 240X + D] Na(f)iCo(m2,m%, my)e?QFcl s |
f

8w
m2 3
+ 4922 > No(f)iCo(m2,m%, my)e? Qi ( —mg) ., (107)
f X

(2 = Z,7') which is well defined only for a mass of the Z boson under the threshold production

(Z;CZ = !]le‘r CX . ( )

The vector and axial-vector couplings of the Z bosons to the fermions in the physical basis are related

to the charges of the chiral fermions by the expressions

z, 1, R, L, z, 1, R L,
gl =5QzT+ Q2"  gi' =@ -ez), (109)

which are obtained, as detailed in [15, 38], starting from the interaction basis (W?3,Y, B) by means of

the following rotations

R, R,
9zQ% I = gy Y09 + 9pYp fogz
L L
QZQZJ = 92T3L’f0113/32 + oy Y109 2 + QBYB’ngz- (110)

The Y]g / R, YL/E and T3L are the generators of the gauge group of the model in the chiral basis.

The pseudoscalar triangle Co(mi, m%, my) involved in the decay x — 72 with both external lines on
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their mass-shell, k? = 0 and k3 = m%, is given by (see [50])

1
——— [mxCo(my, my) = mZCo(mz, my)] (111)
X zZ

CO(mia mz%mf) =

where the structure of Co(m3,my) has already been studied in (93, 95). In complete analogy, the
unction Co(m%,my¢) can be obtained trom Cp(ms, m¢) just by replacing the first argument m; wit

function Co(m%, my bb'dfC’if'bl'hﬁ i'h
mQZ. Then, the study of the decay rate is closely related to the behaviour of the three-point function
(111) in the various physical domains of its definition. In the domain 0 < mz < m, < 2my the

expressions for Co(m3, my) and Co(m%,my) can be read from eq. (93), in particular we obtain

1

Co(m%,my) = —% arctan® ———, (112)

2 7

tz

with
2my 2

=y/1—-(—1. 113
Pz (mz ) ( )

As m, grows we can have two possible cases. If 0 < mz < 2my < m,, while the function Cy (mi, my)
develops real and imaginary part as shown in eq. (95), the function Co(m%,my) is still well defined.

But finally if 0 < 2m; < mz < m, also Cy (mzz, my) develops real and imaginary parts, in particular
Co(m%,my) = ReCo(m%, my) +iImCo(m%, my), (114)

in analogy to eq. (95). The massless WZ contribution to the decay rate is

mi 2 m% ’
Twz(x = 72) = 5 X(92) (1 - > . (2=22). (115)
X

We just remark that in the calculation of I'(xy — ~7) and I'(x — 7Z) we have neglected the contribu-
tions coming from the loops generated by the scalar Hy and hyg.

In Fig. 2, for a given value of the Stueckelberg mass M; = 1 TeV, we study the dependence on
the free parameter tan 3 = {10,40} and on g = {0.2,0.6}. The dependence on tan g strongly affects
the branching ratio for the decay into a c¢ pair, which appears to be suppressed for a large value of
tan 8 (tan 8 = 40). The plots clearly show the presence of 3 different main regions in which the decay
channels of the axi-Higgs are rather different. In the region 0 < m, < 2.8 GeV the dominant decay is
in the ss and pji channels, with a sizeable gluon channel which becomes very relevant around m, = 3
GeV.

For 2.8 < m, < 8.5 GeV the dominant decay channel is the 77, followed by a third region with
m, > 8.5 GeV in which the bb channel opens up. The 4 plots describe different charge assignments.

One can notice rather straightforwardly that the leading behaviour in each mass region remains the
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Figure 4: Study of the leptonic and the quarks branching ratios of the axi-Higgs. We analyze the dependence
on the function f(qSL,qu, AgP).

same in each plot, while the subleading channels get reshuffled in their separate contributions. We
show in Fig. 3 for a comparison, the branching ratios for the CP-odd scalar of the MSSM as a function
of its mass. In this case the dominant regions are two, divided approximately into the two regions by
my = 5 GeV and the where the dominant decays are into s5 (in the lower region) and into 77 (in the

higher mass region).
e Total rates and dependence on the charge assignments

We show in Fig. (4) plots which illustrate the behaviour of the (inclusive) branching ratios of the
axi-higgs into quarks and leptons as a function of the mass of the physical axion, obtained by varying
the charge assignments of the model. The enhancement of the lepton decay channels for a light axion
mass between 4 and 8 GeV, respect to the quark channel, is very stable against these variations.
These changes are described by the function f (qu,qu, Ag¢P) and in the various cases are are almost

coincident, and this is due to the fact that the differences in the smaller than 1073,

7 CP-even sector: decays and associated production

We now move to discuss the CP-even sector of the model which involves the two states Hy and hg.
We include all the relevant channels, such as the ff, the WW, ZZ and Z~ and diphoton channels.

e Decays into ff
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We start by calculating the tree level decay rate into fermions, which is given by

& W/H | pHf2 4m?‘ i
I'(h/H — ff)= . |MHEIEN(F) (1 - - (116)
h/H

where the scalar couplings to the fermions ¢/*:f have been defined in Egs. (120,119). The decay for
the SM scalar Higgs is obtained from Eq. (116) just by substituting the coupling ¢/ with the SM
one, that is —my /v, where v is the vacuum expecation value of the SM Higgs field (v ~ 246 GeV).

e Tree level decays of the scalar Higgs bosons into W* and ZZ

The tree level contributions to the total decay rate of the two Higgs due to the decay into a W* pair
and a ZZ pair are computed similarly. These are found to be relevant in the case of Hy for a mass
mp, greater than 100 GeV. In particular we have added the contributions due to Ho/hg — Z*Z and
Hy/hog — W*W that could be significant when the mass of the scalar is close to the thresholds for
77 and WW pair production.

For the case of a ZZ pair we obtain

2
I, = (ngo/ho 92 ) (7—@33,+ 160%) muFMyg/mu) 36 vpo< oy < 2My

cw 3 9 o 204873
F(H — ZZ) =
HO/hO\? 1=z, :

where the coupling ngo/ "0 has been defined in the previous sections and x, = 4M % / m%{. Sw, Cy Are
short notations for sin fyy, cos Oy respectively.

For the case of two charged W’s we have

2 _
T, = (CV@%’ZO z\%v) LI E(My fmp) it My < my < 2My

I'(H—WW) =

64mmpy z2, Ty

2
(CVI{/(‘]/{/hO) M<3+i_i)+rh’*w if my > 2My

Here the coefficient n is equal to 3 if W* — tb is not allowed, while is equal to 4 if W* — tb is allowed.
Again, we have defined the coefficient x,, = 4ME, /m?,.
In the region 1/2 < x <1 the function F(z) is defined as follows

4 1 1
F(z) = —|1 - 27 (27302 - ; + :U2) +3(1 — 622 + 42| In(x)|
3(1 =822 +202%) | (322 -1
+ cos — |-
422 — 1 223

(117)

e Two photon decay of the scalar Higgs bosons h’, H' — vy
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The computation of the decay rate of a CP-even scalar of the MLSOM into a pair of photons is similar
to that of the SM. It includes the contribution of the spin 1/2 particles (the fermion loop), of the spin
1 (the W loop) and the spin 0 (H™ loop) and it is given by

H,f
D(H —~yy) = 1024 Tem Z Ne( ( 2)7p[L+ (1 —7p) f(7y)]
Clly ) 2
+ <92M5V> [24 37y + 370(2 — 7)) f(Tw)] (118)

where H represents Hy or ho, 7f = 4m§ /m?%, T = 4MZ,/m3, and the function f(7) has been defined
previously. The scalar couplings of the lighter Higgs boson h" to the fermions are shown in Ly (h)

and their expressions are

My my, sin mq Mg COS
o = —Meinag=——2"— od = —Ceosa = ——2——
Uy v sinf’ V4 v cos 3’
my my sin a Me my sin «
hov — _Ygnag=-——% hoe — _ "€ eosq=——2-—— (119)
Uy v sinf3’ Vg v cos 3’

while the scalar couplings of the heavier Higgs boson H° to the fermions are shown in Ly (H) and

are given by

My My, COS Qv my myg sin «
Hou  — M ogq = —2 = , Ho’d:——sma———i
Uy v sin( Vg v cosf3’
my ™, COS & Me . Me SIN ¢
Hov — Yeosa = —2L———, Hoe — _ Cging = ——= . (120)
Uy v sinf V4 v cosf3

Here we have used the relations for the expectation values v, = vsin and vy = vcos (3 to express
these couplings in terms of the couplings of the Higgs boson o the SM. The calculation of the rate into

gluons is similar but we have only the fermion loop

T(H — gg) = Zch T2y 1+ (=) f(rp))| - (121)

512 3

e 7~ decay of the scalar Higgs bosons

The last contribution that we consider in the computation of the total decay rate of Hp/hg is the
decay into Z~. Also in this case we include only the contribution of the fermion loop and of the spin-1
loop and we neglect the contribution coming from other loops of scalars

m3 aem A (—2)Q5 T}”L —2Qs?,
(i - 20) = 0 (1 ) N (Swa ) oy 30 Bt

Qem

4M2

T Kl + TW) (tan Oy )* — (5 + Tiv)] Il(Tun)\W)}
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where Ay = 4m?/M% and Ay = 4ME, /M2, while the functions I » are given in [51] [52]. We report

them here for completeness

ab a’b? a’b
h(ah) = 5 + g alf @) — 10 + s lo(a) — o)
h(ah) = 5 (@) = FO)L (123)

The function f(7) has been defined in a previous section while g(7) is given by

VT — laresin(1/4/7) if 7>1
g(r) =

LWT=7 [ (B) —in] it r <1

It is important to observe that in the first line of Eq. (122) we have neglected the contribution to the

the fermion-boson couplings due to the presence of an extra anomalous U(1). As a matter of fact, in

our hypothesis (M; =1 TeV and gg = 0.1 — 0.2), this contribution is found to be very small and for

this kind of study these couplings can be considered substantially coincident with those of the SM.
Finally, the total decay rate for Hy/ho will be given as follows

i = erf_‘_r’w+Fgg+FWW+FZZ+FZ~/- (124)
!

7.1 Numerical results

We shown in Figs.(5-6) a comparative study of the branching ratios of the scalars Hy and hg in the
CP-even sector of the MLSOM and those of the Higgs of the SM. While the Hy and the SM Higgs
appear to be dominated in their decays by the bb channel only below the W W region, the preferential
decay of the hg is entirely into this final state for all mass ranges. Both the Hy and the hg appear to
have a more sizeable decay into 77 compared to the SM Higgs. The branching ratio for the decay into
~v7y appears to be rather small for the hg in all the mass range, while the Hy and the SM Higgs show,
for this channel, a similar behaviour. The two-gluons channel also appears to be more significant
for both states of the MLSOM compared to the SM Higgs, over the entire mass range, while the c¢
channel appears to be rather suppressed in the case of the hg compared to the SM Higgs. Smaller c¢

rates are also found for the H respect to the ordinary Higgs.

7.2 Associated Production of the CP-even states with vector bosons

Another possible way of detecting the Higgs at hadron colliders is through its associated production
with a vector boson. Here we calculate the LO cross section for the Hy/hg associated production with
a W and Z at the LHC and Tevatron and we have made a comparison with the corresponding rates

for the ordinary SM Higgs.
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Figure 5: Study of the branching ratios of the CP-even sector.
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The partonic cross section can be written as

2
ayo— _ 92 g2 1 72 2
7(aq = Ho/ho + V) = gt (O 52 (6 + (6] %
MNME,m%, 8) + 12M2 /3

(1—ME/3)"

AV2(M, my, ) (125)

where V represents W or Z, the couplings to the fermions are defined as gf; = QT})’L , g‘f/ = 2TJ§’L —4Q fs%u
for the Z, while 9,{1 = g‘j; = /2 for the W. The phase space coefficient is defined as A(z,vy,2) =
(1 —x/2z—1vy/2)%? — 4xy/2%. The total cross section as a function of the mass of the Higgs is given by

the convolution of the partonic cross section with the PDFs luminosity of the quark-antiquark pair
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Figure 7: q¢ — H +V + X at LO at the Tevatron.

produced in the initial state which is given by
1 dx q q
Dog(T pip, pir) = [ > —~ [le (@, pr, wr) for, (T/%, pps pr) + {H1 < H2}} (126)
T oad

where pp, ug are the factorization and renormalization scales and fgh represents the quark probability
relative to the hadron Hjp, etc. We have performed the PDF evolution with CANDIA [53] and we
have used the set MRST 2001 as input distributions, evolved up to ur = ur = Q. The total cross
section is given by

1
oro(mu, pr, 1R) :/ Quq(T, pr, ur)o (1S)dr (127)

70
where 79 = (My +mpg)?/S and S is the center of mass energy of the two incoming hadrons. In Fig. (7)
we have shown the plots of the total cross section for the LHC and the Tevatron. In the W-channel
the cross section of the SM Higgs is smaller that the similar one of the MLSOM due to the Hy, while
the same cross section for the hg is more suppressed. A similar behaviour is found both at the LHC

and at the Tevatron. The cross section in the case of the Z follows a similar pattern in all the three

cases.

8 Axi-Higgs production at hadron colliders

The study of the production of the axi-Higgs at hadron colliders is particularly interesting, especially
for the possibility of having sizeable branching ratios of the two Higgs Hp and hg into final state
axions. Before we come to this study, we pause for some observations regarding the scalar potential
of the MLSOM, stressing on the similarities and on the differences respect to the 2-Higgs doublets
Model (2HDM) of type II, which is sufficiently general to describe most of the scalar extensions which
can be envisioned for LHC applications, and to the potential of the MSSM (see ref. [54]).
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Naturally, the most problematic feature of the 2HDM is the presence of a large number of free
parameters that affect the possibility of unique and specific predictions, due to the different scenarios
that may emerge at future experiments in regard to the scalar sector. The MLSOM potential is also
affected by the same problem. In the case of the MSSM instead, the presence of supersymmetry allows
some relations between the masses and the couplings and between the mass of the gauge bosons and
their interaction parameters, which provide further constrains on the allowed parameter space. In the
scalar sector, in this case, there are only two free parameters, which can be identified with tan 8 and
with the mass of one of the two Higgs bosons [52]. As a result of this, for instance, in the MSSM, some
Higgs-to-Higgs decays (see ref. [55]) which are possible in the MLSOM, are avoided. Other features
of the C'P-odd sector of the MLSOM are, for instance, the independence of the mass of the axi-Higgs
from the parameters of the C' P-even sector and the existence of a sum rule relating Hy and hg with
the vector bosons (V), which is also typical of the 2HDM

%

8.1 Axion-like interactions

As we have discussed above, in the MLSOM the specific feature of the CP-odd sector is the presence of
axion-like interactions which are not found in the 2HDM and which are the true novelty of the entire
construction. It is important to remark that while in models containing CP-odd scalars effective
interactions such as Agvyy induced by the fermion loops are indeed present, they turn out to be
proportional to the mass of the fermion running in the loop. This mass-dependence, obviously, is
completely absent in the MLSOM, since the origin of the Wess Zumino terms, which provide these
interactions, is related to the restoration of the gauge symmetry of the anomalous effective theory and
not to a mechanism of symmetry breaking.

In complete analogy to the case of the SM Higgs, the most relevant sector to look for in the
production of an axion-like particle is the gluon-gluon fusion channel. It is important to point out
that given the presence of free parameters that are involved in the generation of its mass appearing
in the PQ-breaking potential, the axion can be searched for in different kinematical domains because
the model allows both a very light axion with a mass of the order of 1 GeV or less, and a heavier one.
As stated before, the particular features of the scalar potential render the predictions of the MLSOM
different respect to the general 2HDM, due to the presence of the b field, and this of course imposes

some differences in the treatment of the experimental constraints on the allowed parameter space.

8.2 The parameters

The free parameters of the scalar potential can be identified by the coefficients (Ayu, Add; Aud, Al;) that
are contained in the PQ potential and by (b1, A1, A2, A\3), that are contained in the PQ-breaking poten-
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Figure 8: The two contributions to the gg — x production channel.

tial. The other free parameters are the ratio of the higgs vevs, identified with tan 3, the Stueckelberg
mass M; and the coupling constant gp.

We start our analysis by considering a scenario in which the mass of the Z boson is exactly re-
produced at My = 91.1876 GeV and the bounds on the mass of the extra Z’' are required to be
compatible with the current Tevatron data. These conditions can be obtained by fixing the value of
the anomalous coupling gp ~ 0.1, the value of v, ~ 246 GeV, the value of the Stueckelberg mass M;
in the TeV range and tan § = 40. These requirements induce also a small mixing parameter between
Z and Z' (below 1073), which is also in agreement with current data. Thus, the mass of the particles
of the scalar sector are identified by the eight parameters listed above. The value of the mass of the
axi-Higgs is completely governed by the P@Q-breaking sector of the potential and one can always find
a combination of its parameters so that the axion is very light. The other parameters enter in the
structure of the mass of the two neutral Higgs and the eigenvalues are found to be very sensitive to
the selection of these parameters. In our case, these have been chosen as follows:

{1, A2, A3, b1, Awus Addy Auat = {—9107°,-1107%, -1 107°,5 1072,6 1072,5,0.9}, and we have ob-
tained the following values for the masses of the CP-even and the CP-odd sectors:
{mp, =122, mpg, = 15,m, ~ 5} (GeV).

8.3 The invariant mass distribution

To quantify the cross section of the processes that we are considering, we introduce the invariant
mass distributions that must be convoluted with the gluon luminosity in order to obtain predictions
at hadron level. In general, the total cross section for each process can be determined by using the

following factorization formula

1 1
0(87 M%«?vﬂ%) = A dgl /0 dé-Q 9(@%#%)9(527M%‘)&(as(ﬂ?%)sz/ﬂ%%aQ2/M%«“) (129)
where 7 = Q?/S, g(&2, %) is the gluon density, function of the Bjorken variable ¢ and of the factor-

ization scale pp. A similar expression holds for the invariant mass distributions for the production of

a pseudoscalar with an invariant mass @), which is given at parton level by
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dé |M|? 1 < T >
— = dd o(1——]. (130)
2 Z 2 “Fn

Q* . 29 SIS §162
Here |M|? represents the square of the matrix element for the production of n scalar particles in
the final state, the variables &1, & represent the fraction of the momentum carried by the partons
in the collision and d®,, is the Lorentz invariant phase space. The invariant mass Q? is defined as
5+t + 4= Q2 while the fraction 1/Q? is the partonic flux. Then we can write at hadron level

d A~ 2
i 6@, 31
where
pol,spin

and the gluon luminosity is given by the following convolution product

Ly T
By oid) = [ Loty sioCui). (133)
z Y Y
The computation of this cross section for the production of the axi-Higgs pp — gg — x + X via
gluon fusion involves two contributions: the fermion loop correction and the direct (contact) decay
due to the Wess-Zumino term, as shown in Fig. 8, with the WZ counterterm suppressed as 1/M; and
therefore quite subleading respect to the first.
At parton level the production cross section for the axi-Higgs via gluon fusion is related to the
decay rate by the following relation
872 9

Ogg—x(8) = WF(X — 99)6(8 — mx) = Jggﬁxé(é - mi) (134)

where § is the squared partonic c.m. energy and N, = 8 is the color factor for the gluons. At hadron
level the total cross section for the inclusive axi-Higgs production is given by
1 1, Q*
olpp — 99— x+X) = /mi/s A1 @4g(7)099—-x(T5) = 50093 Pgg(T)lr=mz/s 7= o
(135)

where the variables S and \/@ stand for the squared c.m. energy of the incoming hadrons and the
invariant mass of the gluon pair, respectively. In Figs. 9 we show the plots of the total cross section
at LO at the LHC and at the Tevatron respectively, for the production of the axion and of each of the
CP-even Hy, hg Higgs, and the corresponding plots for the SM Higgs. Notice that the result shows a
ratehr sharp rise of the production cross section with a decrease of the axion mass, larger by a factor
of 10 compared to the case of other CP-even scalars. A similar rise is found also for the CP-odd sector
of the 2HDM, being typical of the CP-odd sector.
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Figure 9: Cross section for the production of the two Higgs hg and Hy and the axi-Higgs via gluon-gluon fusion
at LO at the LHC (left panel) and at the Tevatron (right panel).

9 Axion plus photon production

In this section we compute the production of an axion plus one photon at the LHC in leading order
(LO), given by the diagrams in Fig.10. The computation of the amplitude requires the three-point
correlator between two photon and one axion, with one off-shell photon and with m; # 0. This can
be achieved by using the parametrization of the trilinear vertex with two off-shell external legs and
away from the chiral limit (see [26]).

Denoting by T the correlator with outgoing momenta k', kY and incoming momentum k, the

generalized WI gives the following relation
ExTM = 2m T + ane [k, ko, p, V] (136)
where the tensor T"" is defined by

iCo(k?, k3, m%)m%

Apy
T = =

e [k1, ko, p, 1] - (137)

Performing the change of the momenta ki — ki,ke — —q,k — ko, we obtain the expression for
the three-point correlator between two photons (one off-shell) and one pseudoscalar, suitable for our
calculation. The function Cy has the following expression

2
A 2 .2 0 9 (a2 +1 5 (a3 +1
=T g2 (2T 1
Co(s, my, m¥) 2057 — i) [og (ag — 1> og < )] , (138)

X a3—1

where we have defined

4m?c 4m?c
ag=14/1—- —= ag =[1——". (139)
s ms

We can identify four kinematic regions in which the function Cy can be analytically continued:
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Figure 10: Production channel for a single axion plus a photon

Region I ¢% > 4m?c, mi > 4m?, where a2 — 1 < 0 and a3 — 1 < 0 and

.9 2 2
~ 2 9 (2 az +1 . as + 1 ,
- rin| - |1 n 14
Co(s,mx,mf) 202 i) { [log (1 a2> ZTl':| [og (GB 1 i (140)

Region II ¢% < 4m?c7 mi < 4mfc where as — i«/—a% and ag — i\/—ag

2

2 2
- i , 1 , 1
Co(S,mi,m?) = m [_QZ arctan (\/_70%)] — [—2Z arctan (-a%)] (141)

Region III ¢? > 4mfc, mi < 4m? where ao — 1 < 0 and a3z — i/ —a%

im? as + 1 2 1 ’
S 2 2\ . .
00(37 mX’ mf) = m I:]Og <1 — az) + 717T:| — [—2Z arctan (_a%)] (142)

Region IV ¢2 < 4m?, mi > 4m?c where a2 — 1 < 0 and a3 — i\/—ag

im? 1 ’ as+1 2
C 2m?) = ———— —24 arct — 1 ) . 143
o(s,mx,mf) Q(SQ_mi) [ rarc an(\/_ia%>] [Og <a3—1> +z7r] (143)

The squared and averaged partonic contributions are given by

1 }‘ m}
2 /
Z |M1| = 76 |: :| ZQfle — X2,m§,)?
spin
1 [ +u
> Izl = oo [ S et
spin
% 1 t2 —+ 'LL2 OX/ m2/
Z2Re [Mlez] = % |: :| Qf€2g'Y’YZQf/e2Re CO(S mX27m%/):| ’[)f{ ﬂ_ﬁ (144)
spin

where O, 47 Jvpr is Oy /vy for an up type quark, while O}, /vg for a down type quark.
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Figure 11: Invariant mass distribution for the associated production of an axion plus one photon at the LHC.

Integrating over the two-particle phase space we obtain

2
. 11 (s=m})*(s+mi) "G mi
01(s: 1) = Jg N, e ZQf'@ 9 |, Cols,my nmg) |
1 1 (s—m2)? (s+m)
2 X
owz(s,my) = 48WN3?8 2 Q (Qw) )
1 1( —m2)? (S—I—m) O} m
2 2 !
Gint(s,my) = 187NZ2s X82 QfeQQWZQf,e Re [Co(s,,my2,m})] A
f/
(145)

where 6;,; denotes the interference term. Introducing the invariant mass distribution at hadron level,

we have

= 0 D45(T) (146)

where the parton luminosity ®,; has been previously defined and @) represents the invariant mass of
the final state.

We show in Fig. 11 a plot of the cross section for the production of an axion and one photon at
the LHC as a function of the mass of the x. The mass dependence of the result is quite small, except
for a larger mass of the particle, in a region where it is Higgs-like. For an ultralight axion the value
of the cross section is around 1072 pb. We have shown the contribution from the triangle and the
Wess-Zumino terms combined and separately, in order to show the dominance of one channel respect

to the other. The Wess-Zumino term is indeed strongly suppressed (by a factor of 1019).
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Figure 12: Channels for multi axion production from gluon gluon fusion.

10 Multi axion production

One of the peculiarities of a light axion-like particle is its possibility to generate cascade decays with
multi-lepton final states which are more sizeable especially for a mass of x in the GeV range. We
have indeed seen that for m, around few GeV’s, the largest contribution to the branching ratio of
its decay is predominantly into leptons, and for this reason we are going to investigate systematically
this particular interval in parameter sace. OQur analysis will include two types of vertices, the trilinear
xxHo, ho vertex and the y* vertex. As we are going to see, multilepton decays will be sizeable even in
the presence of a considerable phase space suppression and we will quantify them rather accurately.

We consider both the production of axions in combination with a scalar of the CP-even sector of the
MLSOM, and final states made entirely of several light axions which branch primarily into leptons. We
consider the gluon fusion channel, in which the production of the CP-even scalars (hg, Hp) is mediated
by the top and bottom loops. The sizeable values of the multi-axion cross sections for the invariant
mass distributions are related to the large production cross sections which are typical of pseudoscalar
channels and to the large values of the reduced couplings - normalized to the SM ones - of the trilinear
interactions of the scalars. The leading contribution to the production cross section comes from the
fermion loop graph with a final state axion. In the model, each contribution is accompanied by the
corresponding WZ counterterm, which is suppressed by a factor of 10° compared to the loop graph
(see Fig. 8).

Channels involving several final state axions can be built rather easily. list of several diagrams
contributing to these channels is given in Fig. 12. For instance, the simplest process involves a gg — hg

production channel combined with the hg — xx vertex. In this case the WZ counterterm is absent. A
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similar process is the gg — x triangle vertex, followed by the xxhg vertex, which gives the combination
of a x and of a CP-even Higgs (hg) in the final state. In this case the channel is accompanied by
a WZ term gg — x describing the direct interaction of the two gluons of the initial state with the
axion. Cascading channels can be easily obtained by combining trilinear (xxho) and quadrilinear (x*)

vertices, which are more involved and that we will study below.

10.1  Hy, hy — 3x decay

The amplitude for the on-shell production of three xy and one scalar Higgs - through the process

— hO - is given l)y the sum of a part C()ntaining the fermion triangle [)1l]S the counterterm
99 XXX g
M = Mloop Mcount . (14‘)

Defining s = ¢ = (k1 + k2)2 we can write the square of the matrix element as

47ra (980)2 C? 2hi C’2
Z |-/\/lh,3x|2 = S 2 Z 2hzggs 02 f N2 |f(7_f)|2 + 8(N2 zggs
c

spin,pol.

4dmas Re[ N, gggf(Tf)] mfcféf szhiggs CX4 1
(NCQ ) 7r2q2 (q _m2)2(1_x2_|_P12P2)27

(148)

where z2 = p’ - ¢/q*. The coefficient 7 is defined as 4m?c /q?, while p1 = 4m3 /¢?, and py = 4m>2( /4%
The coefficient g,qg of the counterterm is defined in the previous sections and the couplings of the

axion to the up-type and down-type quarks are given by

wi . Mu x _ MyYq dd _ M4 x _ MdUy

= = — = — = .
X V2, V2 XV, P V2

The details of the computation can be found in an appendix.

C

(149)

10.2 4 — x decay

We move to discuss the possibility of producing four axions in the final state mediated by a CP-even
higgs (Hp, ho). At parton level, the squared amplitude for the process gg — H — 4y is given by
02 C2, 4m

47ra5 CH 2hz s
2 M= s 2 p—— W4£N2\1+<1—Tf>f<ff>\2 (150)
spin,pol.

where H = Hy, hg and the couplings of the higgs to the quarks are given by

= my, = o
Ul Ul
Cg = 7,0 R12 Cg = T} R22

Rio = —cosa Roy =sina. (151)
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Figure 13: gg — 2-scalar reactions mediated by trilinear vertices.

The coefficients R12, Roo are the matrix elements for passing from the interaction eigenstate basis to
the physical basis, already defined in the previous sections.

The plots for the production of four scalar particles via gluon-gluon fusion are shown in Fig. 14.
Notice that the production of four axions and that of three axions and one hy show invariant mass
distribution which are rather similar in their sizes. This is due to the fact that in this study we have
chosen hg to be not too much heavier than x (myp, ~ 15 GeV). Details on the computation of the
4-particle phase space can be found in an appendix. We have performed a direct computations of
the phase space integrals, which have been reduced into a 2-dimensional form and then have been
integrated numerically. The results of this study are shown in Fig. 13 for the Tevatron and the LHC
respectively. The plots presented in the two figures show sizeable rates which become large on the
Higgs (Hj) resonance, chosen to be at 120 GeV. At the LHC the peak value of the cross section for
pp — xX, mediated by the Hy is larger by a factor of about 10 — 100 compared to the Tevatron and
would be significant. In the same figures, the same production channel, mediated by the hg, is also
resonant at 15 GeV, but is not shown in our study since it involves an extrapolation of the parton
distributions towards the small-x region, which we have not included in our analysis.

Coming to the 4-axions final state, the numerical values of the various distributions are shown in
Fig. 14, where they appear to be down by a factor of approximately 10* compared to the analogous
ones with 2 x’s or with one x and one CP-even Higgs in the final state. We have summarized in
Tab.(8) the numerical value of the cross sections at a representative value of @) at which they appear
to be sizeable, within the parametric choices used in our analysis. The largest values shown are those
on the resonances of the two neutral Higgs. The multilepton channels, for a GeV axion, appear to be
rather small even on the largest production resonance, which is on the peak of the Hy, due to a large
phase space suppression. Typical resonant rates are 10~° pb/GeV for 4 muons and 10716 pb/GeV

for the production of 8 muons. For final states with 8 muons mediated by the hg in the non-resonant
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Figure 14: Production of 3 and 4 scalars from gluon gluon fusion mediated by trilinear and quadrilinear

vertices.

region and coming from the pairwise decays of 4 axions, the rates are much smaller (~ 10729 GeV
pb/GeV).

Process Q |do/dQ (LHC) | @ | do/dQ (T)
gg — hg — 4x 45 ~ 1073 22 4.107*
g9 — Ho — 4x My, 103 M, 1.56
g9 — X — 3x + ho 50 5-1074 40 2.107°
g9 — X — 3x + Hy 150 2.1077 150 ~ 1078
g9 — ho — 2x 45 26 20 2.5-103
g9 — Hy — 2x Mpy, 324 -10° 20 4.9-10°
99 — X — ho+ X 45 0.69 20 2.5-103
g9 — x — Hy +x 150 ~ 1073 150 ~ 1075
g9 — Ho — ho + hg — 4x | My, 5-103 150 82

Table 8: A list of processes analyzed at hadron colliders at the LHC and at the Tevatron (T). @ is in GeV and
do/d@ in pb/GeV.

11 The light mass region of the axion and its lifetime

One obvious question to ask is whether the axi-Higgs, which takes the role of a valid example of a
gauged axion, has any chance of being a dark matter candidate, with properties which remain quite
distinct from those of the axion of the PQ model.

As we have already remarked in the introduction, axion-like particles originate from the gauging
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Figure 15: Lifetime for an ultralight axion as a function of tan

of anomalous symmetries, and take the role of phases in the scalar potential, which is characterized
by a small curvature in these variables. We have seen that for a particle mass in the GeV range the
branching ratios for its decay into leptons appear to be too large for the particle to be long lived. We
can pause for a moment and try to understand the origin of this result.

The axion interaction with the fermions is generated by the ordinary Yukawa couplings, being the
particle part of the scalar sector of the model. In particular, the CP-odd contributions are re-expressed
in the physical basis by the elements of the rotation matrix O, together with other parameters, the
most significant of them being /3, as shown by Eq. (85). Notice that the matrix elements of this matrix
are O(1), which means that we can’t expect a large suppression of its coupling to the fermions just
from its mixing with the other CP-odd components of the Higgs sector.

If we look more closely into the two contributions which appear in the decay of an axion, the
triangle diagram and the WZ term, one finds that the contribution from the triangle is O(m¢/v),
where v is the vev which represents the symmetry breaking scale of the symmetry to which the axion
is associated as a phase of a complex scalar. Consider, for instance, the mechanism of chiral decoupling,
that we have described in the previous sections. In this case, the only interaction of the axion with
the gauge fields takes place through the WZ terms, since there are no Yukawa couplings between the
light fermions and the pseudoscalar. Then, if we assume that the decoupling scale Mp = ggMg is
around 10'0 GeV, which is the decoupling scale of a right handed neutrino in a typical leptogenesis

scenario, the decay rate is simply given by the relation

m3
Ly = [(93)7 +2(93)°] (152)



where gX, and gj; are proportional to Mp*

9B
-1
My,

Gy X (153)
and is dominated by the 2-photons and 2-gluons channels. For a very weakly coupled axion, with a
small value of the coupling constant (¢gp ~ 107°), we have indeed a long lived particle of around 1

GeV with a rather long lifetime

Ty = ri ~ 10% s. (154)
X

In the MLSOM instead, the suppression comes from the Stiickelberg mass M; while the Yukawa
couplings remain unsuppressed. Therefore, in this model, the structure of the axion-fermion-fermion
interaction is proportional to mys/v x OX, where v is of the order of the electroweak scale and OX is
of order 1 if M is in the TeV region. In these conditions, the MLSOM allows a long lived axion only

if this is very light, with a mass m, ~ 107 eV, which is again, specific of this construction.
We show in Fig. 15 plots of the lifetime of a very light axion (10=* — 107> eV) of the MLSOM as
a function of tan 8, which shows that in both cases the particle is very long lived, with features which

resemble quite closely those of the traditional Peccei-Quinn axion.

12 Conclusions

In this work we have an analyzed the phenomenology of the physical axion that emerges in several
extensions of the Standard Model and which include an anomalous U(1) gauge symmetry. We have
focused our study on a mass window characterized by an axion of a light-to-intermediate mass, which
is probably easier to detect at colliders, although windows for a particle of even lower mass can be
analyzed in a similar fashion. One of the most appealing features of the class of models that we have
presented consists in the possibility to justify in a natural way a particle in the CP-odd sector of such
a small mass, which would be more difficult to motivate at theoretical level in other constructions. We
have shown that the origins of the class of effective actions that are characterized by the presence of
such a state could be quite different. For instance, in the case of brane models, the small mass of the
axions is parameterized by extra terms in the potential which are identified by the symmetry of the
low energy model and in which the axion appears as a complex phase. These terms may induce a small
tilting on the scalar potential, giving a small mass to the physical axion, extracted after electroweak
symmetry breaking. A similar tilting is induced by the instanton vacuum in the case of the Peccei-
Quinn axion, and as such, it is possible, given the strong analogy between our case and the PQ case,
to borrow most of the results - well known in the case of the invisible axion model - and extend them
to this more general model. A very light axion would be, with no doubt, a good candidate for dark

matter.
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We have also shown, although in a simplified model, that effective actions which resemble quite
closely the MLSOM, can be obtained by a completely different approach, using the decoupling of a
chiral fermion - due to a large vev of a Higgs to which this fermion is coupled - from the effective
theory. The charge assignments of generalizations of the MLSOM can be obtained by this approach.
In this second case our analysis has to be considered rather preliminar and needs further extensions,
although we expect that most of the features of the special form of chiral decoupling that we have
proposed can be worked out more closely in the context of a Grand Unified Theory. The generalization
of this analysis to the supersymmetric case appears to be rather interesting as are the cosmological
implications of the presence of a gauged axion (with or without supersymmetry) in the low energy
spectra of these theories which deserve further studies.
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13 Appendix A: The Lagrangean

The classical lagrangean of the model is explicitly given by
1 1% 1 14 v v
Lo = - STr [FG,FCr] — §TT[FXZFWM = 4F£,FB“ — 4F3’VFY#
7l o s Y AY | Qu 2
+ (O +igo5 Wi + igyay Ay + 1957 By Hal
o7 J i Y AY | qf 2
+ |(Ou+ 1925 Wi + 19y 4 A, + ZgBjBu)Hd\
= X T Q1) 4v QL)
+ Qrity 6u+29370M+2925W +igyay A, +igp qB B, ) Qri

+ Tup;iy? <<9 +zqu§/R)

. —_ G e
A/): + ’LQBQJ(;R)B#) uRi + dpi iy" (@L + zquyR)AZf + Zng(B R)Bu> dri
- . T L . L
+  L;iy* <8M + zngWL{ + zqué )AZ + ngq](B )Bu> L;
+ epiY (8 + lng%zR)AZ + inggR)Bu) eRi + VRi iy" <8u + iqug/R)AZ + inggR)Bu> VRi

1
+ 5(8ﬂb+ MStBN)Q
+ V(HuaHdab)ﬂ (155)

which generates Syp. We have summed over SU(3) index a = 1,2, ..., 8, over the SU(2) index j =1,2,3

and over the fermion index ¢ = 1,2,3 denoting a given generation. We have denoted with F fy the
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field-strength for the gluons and with FXK the field strength of the weak gauge bosons W,,. FL and
F ;ﬁ are the field-strengths related to the abelian hypercharge and the extra abelian gauge boson, B,

which has anomalous interactions with a typical generation of the Standard Model. The fermions are
either left-handed or right-handed Dirac spinors fr,, fr and they fall in the usual SU(3)¢ and SU (2)w

representations of the Standard Model.

14 Appendix B. Matrices of the potential

The mass matrix in the CP-even sector is given by

MNo(1,1) = —2(—4v2>\uu sin? 3 4+ v\ cos? B cot  — gUQ)\g sin 23 + b ot 3)
No(1,2) = 2(3v°Agcos® B+ 3v*Aasin® B + 2071 8in 28 — 20°Aygsin 23 + b)
Na(2,2) = —2sec3 (—4Agqv® cos® B — 3A3v” sin Bcos® B+ Agv? sin® B+ bsin 3) .

In the CP-odd sector we have

au—a}
cot 3 —1 Va5, d
1 al—q}
N3 = — 50l Cy -1 tan 3 —Uu
I_ I I_ I I_ I\2
vy qiM qu —u, ql}w qu ey (unthd)
In the charged sector, the mass matrix elements are
M(1,1) = —2cotf (/\3 cos? B+ (A1 — N yuq) sin 26 4 Ay sin® B) v? — 2bcot

Ni(1,2) = 2(Azcos® B+ (A — Nya)sin 28 + Ay sin® B) v* + 2b

M(2,2) = =2 ()\3 cos? B+ (A — N yq) sin 26 + Ay sin? ﬁ) v tan 8 — 2btan 3.

15 Appendix C. Matrix OX and quadrilinear interactions

We report for completeness the matrix O,, which is given by

1
(Ox)n = =
—(q{?—qf) M12 v2 + 1
My Vu\| (gB—gP)? v202
1
= — — N =—-Ncosf
Uy Vy Vg
1
(OX)21 =
_(qg_qu) ]\412 w2 +1
My Yd\| qB—qB)? v203
1
Vd Vu Vg
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The coefficients appearing in the quadrilinear vertices are given by
R?Hoho = sin a cos a [)\dd(O%(l)Q - )\uu(Oﬁ)Q]
2770 170 1
R = 2 cos” a [Aaa(O3)? + MO}
21,030 1
R~ Lo a a0 + A0
R%CQHOhO = sinacos adyg [(05)? — (03)?]
2770 170 1
RY H°H™ _ -5 cos? adyg [(O§1)2 + (Oi(l)ﬂ
27050 1 .
RYMM = -3 sin® adua [(0X))? + (077)?]
A B
R%(?Hoho = sinacos ahr [(03)* — (01})?] — 4sinacos a/\lMLIO?fl (051 + 0%y) + O(1/M})

2 [0 (0 1
R?,f =3 cos® a; [(051)2 + (Oﬁ)z + 401610%(1]
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(161)

(162)

(163)

(164)

(165)

(166)

(167)



B

+cos” aky [va(401,031 + 203,0%)) — vu (403,05 + 201,0%)] + O(1/M7)

1
21070 1 .
R = =2 sin o [(0X) + (O1)? — 403,05

B
) [va(—403 0% + 205,0%) — vu(—405,0%; +205,0))] + O(1/M7)

+sin? a);
B

A
RfHOhO = sin a cos 0% 07 (A3 — A2) + sin a cos aMLO:,)fl [040%;, (A2 — 3A3) + v,05, (A3 — 3X2)]
1

2 170 170 1
RY = ) cos® a {)‘2 [O%(loﬁ - (Oﬁ)Q] + A3 [O%(loﬁ - (051)2]}
A B
+ cos? aﬁO;ﬁ {0 [0X, (X3 + 3A2) + 2200Y] — va [0 (A2 + 3X3) + 2A30)]}
1

R~ Lsinta {30 [05,0], + (0% ]+ % [03,0} + (03]}

o AgP
+sin? aﬁO%ﬂ {04 [0X, (A3 + 3X2) — 2000),] — v4 [0 (A2 + 3)3) — 2230}
(168)
16 Appendix C: Axi-Higgs Trilinear Interactions
R¥2H0 = cosa [(051)*varad — (039)*vuruu] ,
Ri‘%O = sina [(0%)*varaa + (019)*vudua] ,
2770
RY ™ = cosadg [(05) %0, — (0)))vd] ,
R;‘Qho = —sinal,g [(O%‘l)%u + (Oi‘l)%d] ,
A B
R?,szo = —bj cos aO%‘lL (0, + 0%)),
My
A B
R?fho = by sin aO%‘lML (0, — 0%,
1
REfQHO = cos a1 [0, (207 + O3;)vy — 011 (07; + 203, )vd]
A B
+2 cos aAlMLO?))‘l [0X va(vg — 2v,) + OX vu(vy — 20q)] + O(1/M?),
1
Y™ = —sina; [0} (0}; — 20} )ua — O} (20} + Oy Juu]
A B
+25sin a>\1MLO§1 (05,04 (204 + v,) — O va(vg + 2v,)] + O(1/M?),
1
2 170 1
Ry H = 5 cosa (03123 (207 va + O3 (vu — va)) — O3 A2 (O (v4 — vu) + 203,v4))]
A B
+ cos OZT]\(ZO?”% [—vuA2 (303,04 + OF (V4 — 204)) — Va3 (301 V4 + OF (vg — 2vy,))]
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1
R%(2ho =3 sina [0F5 A2 (20310 + OF (v + va)) + 05123 (03 (va + vu) + 207504)]

A B
+ sin aﬁO%‘l [vaAs (O3 (vg + 2vy) — 307 va) + vuAa (3050, — OF (2v4 + vy))]
1

(169)

17 Appendix D: Quadrilinear self interactions in the CP-even sector

For Hé we have

R{{g’l = (cos 04)42 (Auw + Add)

ng = —(cos oz)4%)\ud,

R:,I,{al = (cosa)‘%)\l,

ng = (cos a)‘% (A2 + A3), (170)

while for hg we have

1
R® = Z(Sin )* Ay + Mad) 5

1
R;é = _i(Sin a)4)\ud7
1
Rgé = i(sin )i,
1
R = S(sna)! (e + Ag) (171)

For the interactions of the type ho?>Hy? we obtain

3
Rflghg = 5(sin @)?(cos a)? Ay + Ndd) »
nghg = (sin @)?(cos @)?Aug,
ngh% = —(sin a)2(cos a)Q)\l. (172)

For the interactions of the type ho>Hy we obtain

Rll'fohg = (sin@)? cos a (Mg — M) »
Hoh} . 3
R,"™ = (sina)’ cosa (A3 — A2), (173)
while for hoHo* we obtain
R?OHS = (cos a)3 sina (Agg — Auw) 5
RSOHS = —(cos a)3 sina (A2 — Az), (174)
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18 Appendix E: Trilinear self interactions in the CP-even sector

For Hg we have

while for hg we have

For the case h%HO we have

R{{g (COS a)3(vd)‘dd u)\uu)7
H3 3
= (cos @)°(vg — Vu) Aud,
H§ _ 3
R3° = (cosa)’(vqg — vu) A1,

%(cos @) [y (3X2 + A3) — va(A2 + 3A3)]

R = (sina)®(vadda + vuduu),
R2O (Sln Oé) (Ud + Uu) uds
(

R;° = (sina)?

Vg + Uy A1,

1
R,° = (Sln @) [vu (32 + A3) + va(Aa + 3A3)] -

2
R?OHO = 3cos a(sin a)?(vghag — Vuruu),
th() . 2
Ry = cosa(sina)*Ayq(vg — vy),

2
R;ZOHO = cos a(sin a)2/\1 (Uu - Ud)’

hHO

3
R, = —5 cos a(sin a)2(vu +va)(A2 — As),

while for the case hng we have

19 Appendix F. The axion Lagrangian in the physical basis

2
R}ILOHO = 3sin a(cos a)?(Vghad + Vuruu ),
2
R;“)HO = sin a(cos @)*Aya(vg + ),
RhOHg B . 2
5 = —sin a(cos @)A1 (vy + vg),

R, d gsina(cos )2 (vg — vy) (A2 — A3).

(175)

(176)

(177)

(178)

We have seen that after symmetry breaking, in the scalar sector we isolate a physical axion, Y,

also called the axi-Higgs.

Here we present the axion Lagrangian rotated on the basis of the mass

eigenstates. In particular, the W3, AY and B gauge bosons become linear combinations of the physical

states A, Z,Z'. Indeed, the mass-matrix in the neutral gauge sector is given by

W3
Emass = (W?n Y7 B) M2 Y
B
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where B is the Stiickelberg field and the mass matrix is defined as

1 922U2 —99 gYU2 —92Tp
M? = 1 — G5 gyv2 gY2v2 IyTph (179)
—92%p gyrtp  2MP+ Npp
with
B2 2, B2. .2\ .2 B.2, B.2
Npp = (q;%vi+ai’vi) 95, 2= (a/vi+aivi) 95 (180)

Here v, and vg denote the vevs of the two Higgs fields H,, Hy while ¢ and qf are the Higgs charges
under the extra anomalous U(1)p. We have also defined v = (/v +v2 and g = (/g5 + g3-. The
mass-squared eigenstates of the mass matrix corresponding to one zero mass eigenvalue for the photon

A, and two non-zero mass eigenvalues for the Z and for the Z' vector bosons, are respectively given
by

1
MZ = 1 <2M12 + ¢%v? + Ngp — \/(2M12 —g%v? + NBB)2 + 492x23> (181)
N N S W YR
T2 M2 4 MP o8 VBB ’
1
M2, = i (2M12 + g*v* + Ngp + \/(2M12 — g0+ Npp)° + 4g2a;23> (182)
~ Mf—i—%.

The mass of the Z gauge boson gets corrections of the order v?/M;j converging to the SM value as
M, — oo, while the mass of the Z’ gauge boson can grow large with M;. The physical gauge fields

can be obtained from the rotation matrix O4

A, W
Z | =04 4Y (183)
z' B

which can be approximated at the first order as

Iy 92 0
g9 g
Ot~ [ 24+0(f) -2 +0(e}) Ze1 : (184)
~%e e 1+ 0(})

Moreover, after symmetry breaking, as we have already shown in eq. (19), the Stiickelberg field b is

rotated by means of the matrix OX as follows

b = Ofx+O%GY + 0%Gs, (185)
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where the elements of the rotation matrix have the following expressions

1 1
O:)'f?) =

M7 2 7 B _ B2 42 P
\/(qf—‘llé?)zvgzﬁ 1 \/ 1+ % v
Then, starting from eq. (185), the Goldstone modes GZ and GZ' in the ~-basis are obtained by the

combination

o), = 0%, = 0. (186)

Gy = CL,G%7 + CL G (187)
More details can be found in [25]. Starting from the WZ Lagrangian in the Y-basis
arion . = DbTr[FE ANFO + FbTr[FV A FY)
+Cyy bFY NFY + CppbFBANFP + CypbFY AFB (188)
and rotating into the physical mass eigestates using eqs. (183) and (185) we obtain the axion-like
terms of the WZ Lagrangian
L£omon(y) = Gag X T [F¢ A FY) +g¥_xTr [FWH A FYT] + g X FTANFY
+ gEyxFZNFZ 4 g%, xFZ NFZ + g%, x FY NF?
+ ngz/XFV/\FZ/—FQéZ/XFZ/\FZ/, (189)
LOONG?) = L GPTr[FONFO + G _GPTr[FVT ANFV )+ 5, GPFT A F?
+ £y GEFINF? + 5, GEFZ NFZ 4 2, G® FY NF?
+ ZHGEFIANF? + 5, GEFENFY (190)
where Z stays for Z, Z’'. Finally the WZ Lagrangian in the physical basis is given by the sum of three

contributions
= LU () 4 L (GE) 4 Lo (G, (191)

where we have identified the physical couplings of the axi-Higgs x to the gauge bosons as

93 = D O3

gy = FOj3

Gy = (FO{?VB’YOG/SW + CYYO{}WO{}”/) O3

9y, = (FOIf‘VgZOf;‘wZ + Cyy 0y ;08 5 + Cpp05,08, + CYBO}éZng) 0%,

93 = (FOR, 201, 2 + Cyy 03 .09 51 + Cp0% 2057 + Cy 03 7:05,) O3

9, = (2FOfy,, Ol + 2Cyy 03,0, + Cy O3, 03 5) O

9%y = (2FO{,, Oty 70 + 2Cyy O304 5 + Cy O3t O ) O

9%, = (2FOf, 20,7 + 2Cyy 03,08 5 + 2CpO3, 054

+Cy 0% ,05, + Cy 03, 05,) OX (192)
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and the interactions of the NG bosons G# (Z = Z, Z') with the gauge bosons

= DO3C%

Ci— = F O30z

W (FOW3’YOW57 + CYYOY’YOY’Y) 033C%
%7 = (FOiy, 70,7 + Cyy Oy ;09 ; + CpO ;0% + Cy 03 ,05;) 0%C%
C%Z’ = (FO{i, 20,2 + CyyO3¢ 203 2 + Cp0p 2052 + Cy O3 205.2:) O3,C%

cfy = (2FOiy, O,z + 20yy 07, 0¥, + Cy 5031, 0335) 055C%
c7 = (2FOfy, Oy, 7 + 2Cyy 0y, 0% 1 + Cy Oy O 1) O%C%
Zy = (2FOf, 20, 2 + 20yy O3 ;0% 5 + 2005503

+Cy O3 ;05 + CypO3 2 ng) 03,C%.
(193)

where Z stays for Z, Z’. We also summarize for convenience the coefficients of the WZ counterterms

F = gB nD(L)

M 29
9B J (@)
D= M 55 Dy,
3 .
1
Cpp = ]g\z/}g 30 1% DBBB;
:3
Cyy = M, igt e 5 “Dpyy,
Cyp = 9B 4q % 194
YB = Mlgy 9 ZYBB: (194)
with a, = —# and the chiral asymmetries have been defined, for brevity, in the following way
po _ 1 93__12 B
B~ g Z fL=73g qfr,
f f
@ _ 1 p_ 1 B B
Dy’ = gZQQ =35> _[93, —ad1]
Q
Dppp = *ZQBBB *Z (JfR QfL) ]7
Dpyy = ZOBYY = Z lafr(afr)® — afila},)?]
!
1
Dypp = 3 ZQYBB 3 Z [Q}/R(Q}BR)Z - CJ}/L(Q?L)Q] : (195)
f
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20 Appendix G. Three- and Four-particle phase space

The three and four body phase space in the case of massive particles can be computed directly in four

dimensions since there are no soft and collinear divergences. The reactions that we are considering

are g(k1) + g(k2) — x(¢*) — x(p) x(r) x(p) H(p )and g(k1) + g(k2) — H(q*) — x(p) x(r) x(¥') x(P),

where the on-shell conditions are glven by 12 =12 = p? = my2 and p? = qu for the first reaction,

while for the second we have r? = =p? = p = m,e.

some modifications due to our speciﬁc case, given the three axions and one higgs boson in the final

The computation follows closely [56], with
state.

20.1 Phase space for the three axions and one scalar higgs final state

In four dimensions we can write the most general formula as follows

3 3/ 3 3./
d<I>4—1/ d°p d°p d°r d°r

- ) dede 1) 1
2! | 2po(2m)3 2ph(2m)3 2rp(2r)3 27’6(277)3( )6 (g—p—p —r—1'), (196)

where 1/2! is a statistical factor that takes into account the fact that a pair of identical particles are

produced in the final state. The reference frame in the CM of 7,7’ can be chosen as

r = (ro,|7]sin 0 sin ¢, |7 sin 6 cos ¢, || cos 0)
r = (ro, —|7] sin @ sin ¢, —|7] sin 0 cos ¢, — || cos )

m2

p=po(1,0,0,4/1= -5

P =pi(1 Ul——sma \J1- —1 cos ) (197)
5 s

We introduce the following variables

. / r+r
x1:2¥7 x2:2qépa y—2( 2)7 97 ¢7
q q q
Yy
n=VEL, = \g-m,
2 2
m m
1= Tfa /)2:47;- (198)

From the momentum conservation equations (¢ — p)? = (p/ +r +7') and (¢ —p )2 = (p/ +r +1') we

derive the expression of py and pf, as a function of the variables (1, z2,y, \/¢2, my, my) as follows

(L—w2—y)Va® my; — mi
2y 2\/ 2y
, (1 —2x1—y)\Vq mH mi

Po= 2\[ 2\/>\f

99

bo =

(199)



Using the equation ¢ = (p+ p’ +r +7')2, we obtain the expression of cos « in terms of the kinematic

variables defined above

4+ 2 _2_m2_12_m2_2
cosq = PO TPt VPV (p5 —my) — (0o — miy) ‘a (200)

2\/p3 - mi\/p’g —m?

In order to integrate the expression given in Eq. (196) it is useful to introduce the following identities

4
/ (;lﬂ§4(27r)454(t —r—y=1, / (57%)(2%)5(’52 Py =1 (201)

which allow us to incorporate r and r’ in the t state. Thus, we obtain

]. d3t d3p dgp/
ddy = — VS (g —t—p— o
79l / 2to(2m)3 / 2po(2m)3 / 2p6(27r)3( m)~6(q p—1p)

374 37"/
7 / (;lg)@(y) / 2rod(27r)3 27":(27r)3 (2m)*6t(t —r — '), (202)

where ©(y) is the Heaviside step function. In this way we have factorized the expression of d®4 phase

space as a product of dP3 x d®o

d3r d3r!
APy = 2m) 6t (t —r — o/
: / 2o (2P 2ramp ) O =)

d3t d3p d?’p/ ,
s = / 2to(2)3 / 2po(27)? / o0 (27)3 (2m)*a(g—t—p—p). (203)

Integrating over d®-> we obtain

1 1 02 /1 /27r
ddy = — 1-——= dv d 204
27 4 (2n)2 V v Jo 0 ¢ (204

where we have defined v = 1/2(1 — cos ), while the integration over d®3 brings us to

4O :/(27T) [pl*dlp|€s [p'[Pd]p'| sin 3d By
’ 200 2po(2m)3  2p/o(2m)?

where ty and 8 have been computed below
to = 172 + ¢y = \/I92 + 2 + 201l cos B + g2,
[(2 — 21 —22)® — dy] — (2] — p2) — (a3 — p1)

8(go —to —po —Po)s (205)

cos 8 = . (206)
2\/a% — p2/23 — p1
Finally we obtain
q2
db; = ——— [ dzr1d 2

and the final result for the d®4 phase space is given by

q4 Yt 02 T14 Tot 1 2
v = gt [ 2 [ [T [ [T s (208)
2!(4m)5 J,, Yy N/ T 0 0

where the integration limits are discussed in the next section.
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20.2 Integration limits

At this stage we need to define the integration limits of the integrals appearing in the four body phase
space. From the definitions of z1, 2 it is clear that 0 < x1,x2 < 1, but imposing the reality condition

of the square root we obtain

x1>\p2  x2>+/p1. (209)
Solving the condition —1 < cos 8 < 1 with respect to s we obtain a bound on this variable which is
given by
1
Tot = {[(z1=2)(p1 —4(z1 +y — 1)) + (z1 — 2)pa]

8z1 —2(p2 +4)

i\/(w% — p2)[1627 + 81 (4y + p1 — p2 — 4) + 16y + (p2 — p1 +4)? = 8y(p1 + p2 + 4)]} :
(210)

Again, we have to impose the condition Zo4 > ,/p1 which gives us a condition on the variable x;

—dy+p1+p2—4p1 +4

x < , 211
) < v (211)
but 21 must be such that the square root in Eq. (210) is real
1
z1(y) < Z(_4y —4/p1vy —p1+p2+4)
1 > \/p2. (212)
From these three conditions we can extrapolate some conditions on the y variable
p2 <y< (\/ +/p2 — 2)? (213)

20.3 Phase space for a four axions final state

In the case of a four axions final state we have a simplification in the computation since py = p1 = p.

Thus, the four body phase space is computed exactly as in [56] and the final result is given by

ddy = 47T /y+ de/ d:cl/ da;Q/ du/%dqb (214)

where the factor 1/4! is a statistical factor that takes into account the four identical particles in the

final state and the integration bounds are defined as

Tas = 4(1—:161)+p [(2 —21)(2+p— 2y —2m) £ 2\/(51?? = p)l(x1 = 1+y)> = py]
r1<1—y—+/py
e = (1= vp)" (215)

These integrals have been computed numerically.
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