Searches for Continuum and Resonant Production of Z Boson Pairs Using the ATLAS Detector Azeddine Kasmi Dissertation Defense September 30th 2009

OUTLINE

- Theoretical motivation
- The ATLAS detector at the Large Hadron Collider
 - Electronics calibration of calorimeter*
- Reconstruction and Particle Identification
 - Photon conversion*
 - Lepton ID and optimization*
 - techniques for partially reconstructed " $e^{"*}$
- Z Pair Production Search*
- Higgs Search*
- Conclusion

*My contributions

Open Question in the SM: Origin of Mass

- Origin of mass: still unresolved question
- Current explanation: based on symmetry breaking
 - SU(2)_I xU(1)_Y spontaneously broken symmetry
 - Generates masses for the weak bosons (W^{\pm} ,Z) and the fermions
 - Particles gain mass via interaction with the "Higgs field" —
 - Predicts a scalar particle: the Higgs boson
 - Fermion masses unpredicted —

LEP/Tevatron Limits on the Higgs mass m_{H}

Search for the Higgs Particle

Electroweak fits

Radiative corrections for M_W go as m_t^2 , $log(m_H)$

Higgs Production

Focus on that process

Higgs decay modes

• Z boson pair production is an important background for the Higgs searches

Z Pair Production and Final States

NLO

NNLO

q

Contribution from gluon-fusion

Boson pair production probes

trilinear gauge couplings (TGC)

gauge boson self-interaction

•Sensitive to new physics in

 $\sim 15\%$ of the total cross section

000000000

ZZZ and $ZZ\gamma$ are absent in the SM

09/30/09

• Despite the small BR, the 4 lepton channel is a clean signature BR(ZZ $\rightarrow 4\ell$, $\ell = e, \mu$) = 0.5 %

Azeddine Kasmi (SMU) Z Boson Pairs Searches

The signature of the search

- In ZZ \rightarrow 4leptons
 - 4 leptons are produced
 - Inefficiencies in electron reconstruction
 - Number of events with 3 reconstructed leptons is higher than events with 4 reconstructed leptons.
- Strategy

09/30/09

- Fully identify 3 leptons (Ryszard/Julia)
- Partially identify unfound electron
 - eg. $4e \rightarrow 3e+"e"$, $2\mu 2e \rightarrow 2\mu 1e+"e"$
 - My approach: ignore tracking, sliding window electron algorithm
 - Maximize acceptance with calorimeter
 - Try to reduce BG to acceptable level

Number of reconstructed electrons in ZZ sample

The Large Hadron Collider (LHC) at CERN

Azeddine Kasmi (SMU) Z Boson Pairs Searches

09/30/09

LHC Parton Kinematics

- Protons made of 3 valence quarks in a sea of gluons, quarks and anti-quarks
- Each parton carries only a fraction of the proton momentum
- f_a and f_b are parton distribution functions

$$\sigma_{X} = \sum_{a,b} \int_{0}^{1} dx_{a} dx_{b} f_{a}(x_{a}, \mu_{F}^{2}) f_{b}(x_{b}, \mu_{F}^{2})$$
$$\times \hat{\sigma}_{ab \to X}(x_{a}, x_{b}, \{p_{i}^{\mu}\}; \alpha_{s}(\mu_{R}^{2}), \alpha(\mu_{R}^{2}), \frac{Q^{2}}{\mu_{R}^{2}}, \frac{Q^{2}}{\mu_{F}^{2}})$$

where X=W, Z, H, high- E_T jets, ... and $\hat{\sigma}$ calculated via perturbation theory

LHC will run Nov. 2009 @7 TeV $L = 10^{31} \text{ cm}^2 \text{ s}^{-1}$

This analysis assumes 14 TeV center of mass

09/30/09 Azeddine Kasmi (SMU) Z Boson Pairs Searches

The ATLAS Detector at CERN

Inner Detector:

- Momentum measurement
- Solenoidal magnetic field of 2 T
- Covers region of $|\eta| < 2.5$

Calorimeters:

Absorber: lead/stainless-steel Active medium: Liquid Argon

- Energy measurement
- Covers region $|\eta| < 4.9$ Electromagnetic: γ , *e* Hadronic: jets, E_T^{Miss}

Muon Spectrometer:

- Muon identification
- P_T measurements
- Toroid B field
- Inner detector $|\eta| < 2.5$

Azeddine Kasmi (SMU)

Z Boson Pairs Searches

09/30/09

General Principle for Particle Detection

• Charged particles (µ, *e*) leave a track

09/30/09

- Colored objects can not be observed due to confinement
 - Fragmentation is when colored objects create a spray of collimated particles which is known as "jets"

Calibration of Electronics

Ramp run channel

Ramp reference channel

•A ramp run simulates passage of particles through detector by injecting a charge by DAC (Digital-to-analog converter)

• Modification the signal goes through in Front End Boards should be taken into consideration,

the ramp factor, the slope of ADC vs. DAC.

- The slope is defined as
- My task was
 - analyze the slopes and identify bad channels in crates in end cap (4 in each end cap)
 - •One Feed-through (FT) has 15 FEB's and another has 8 FEB's
 - One crate reads out 1792 EMEC outer wheel channels, 112 EMEC inner wheel channels and 704 HEC channels

Azeddine Kasmi (SMU)

Slope Ratios

Trigger and DAQ

- Level 1 (hardware) trigger
 - Event rate from 40MHz down to 100kHz
 - Uses calorimeters& muon chambers
- Level 2 (software) trigger
 - Event rate down 2.5kHz
 - Input from Level 1 trigger
- Event Filter (software) trigger
 - Event rate down to 200Hz
 - Reconstruct full event and makes decision

- Standard Electron/Photon Identification
 - Uses a sliding window
 - The space of η and ϕ is divided into a grid each of size $\Delta \eta$, $\Delta \phi$.
 - •Drawbacks
 - covers |η| < 2.5
 - Makes the assumption of the width of the cluster
 - splits the cluster in crack region

Muon Identification

- Combination of tracks from the inner tracker & spectrometer
- Minimum χ^2 between tracks from inner tracker and spectrometer

Photon Conversion

- Photon conversion occurs at the presence of material
- I found that reconstruction efficiency is 80%
 - for conversions that occur up to a distance of 800mm from the beam axis
- The effective angle range of the conversion finder is $-2.5 < \eta < 2.5$
- For the current software
 - Any electron which forms an 0 opening angle with an opposite charge electron is considered as conversion

Signal and Background Modeling

Samples	ZZ→4ℓ	H→ZZ →4ℓ 180 GeV	H→ZZ →4ℓ 200 GeV	H→ZZ →4ℓ 300 GeV	Zbb→ 3ℓ	Zb→ 3ℓ	WZ→3ℓ	tt→4ℓ
Generator	MC@NLO	Pythia	Pythia	Pythia	AcerMC	AcerMC	Herwig - Jimmy	MC@NLO
pdf	CTEQ6M	CTEQ6M	CTEQ6M	CTEQ6M	CTEQ6L	CTEQ6L	CTEQ6M	CTEQ6M
	66.8 fb (NLO)	5.38 fb (NLO)	$\sigma_{s}^{20.53 \text{ fb}}$	13.32 fb (NLO) ~10 ⁻³	12663 fb (NLO)	14000 fb (NLO)	807 fb (NLO)	6064 fb (NLO)

Simulated in GEANT-4 for the ATLAS detector

09/30/09 Azeddine Kasmi (SMU) Z Boson Pairs Searches

31 + "e" selection: Motivation

- Why channel with 1 unidentified "e"?
 - Calorimeter can find it: complete acceptance
 - Tracking available only in $|\eta| < 2.5$
 - Clustering available only in $|\eta| < 2.7$
 - Detector cracks
 - I will avoid the sliding window algorithm
- What does reconstructed lepton multiplicity in $ZZ \rightarrow 4e$ look like ?
 - 3*e* has higher acceptance than 4*e* reconstructed
- This Analysis exclusive 3l+"*e*" (4l excluded)
 - Current analysis includes $ZZ \rightarrow 3e + "e"$ $ZZ \rightarrow 2\mu 1e + "e"$, and analogous Higgs channel
 - I developed 2 different techniques for finding the unidentified electron

Pre-selection: lepton P_T and trigger efficiencies

In Zbb, the third-leading electron has low P_T

Trigger efficiencies

Require $P_T > 10 \text{ GeV}$

3e channel

Trigger efficiency is ~100%

Trigger item	ZZ	H (180)	H (200)	H (300)
EF_e10	0.997 ± 0.001	0.998 ± 0.001	0.998 ± 0.001	0.997 ± 0.001
EF_2e25i	0.869 ± 0.006	0.774 ± 0.008	$0.816 {\pm} 0.007$	$0.915 {\pm} 0.005$
2μ 1e chanr	nel			
Trigger item	ZZ	H (180)	H(200)	H (300)
EF_{e10}	0.963 ± 0.002	0.977 ± 0.002	0.975 ± 0.002	0.978 ± 0.002
EF_mu6	0.954 ± 0.003	0.967 ± 0.003	0.971 ± 0.002	0.963 ± 0.003

Can use "OR"

09/30/09

Impact parameter significance

DCA is Distance of Closest Approach.

- Zbb, Zb and tt are most likely to have tracks originating from displaced vertices.
- To select only prompt lepton
 - Reject when DCA/ σ_{DCA} is large

09/30/09

Azeddine Kasmi (SMU)

Z Boson Pairs Searches

Isolation in signal and background

- Leptons originating from the signal are isolated from hadronic energy.
- In background events at least one lepton non-isolated.
- E_T evaluated in cone of $\Delta R = 0.2$ around the lepton
 - subtraction of the energy of the lepton itself.
- I defined isolation to be the ratio of energy in cone to energy of lepton

Transverse Missing Energy

- Transverse missing energy
 - Neutrino, (real E_T^{Miss})
 - Bad measurements of jets ("instrumental" E_T^{Miss})
- The signal events, Zbb, and Zb have no v's but the low E_T^{Miss} is due to detector resolution

• BG with true E_T^{Miss} WZ and tt are have neutrinos

Use an $E_T^{Miss} < 24 \text{ GeV}$

Use Z mass as a cut

- Electrons are P_T ordered
- Require opposite sign
- I define a variable M_{Zbest}
 - Make invariant masses of M13 and M23
 - Check which one is closest to nominal Z mass \rightarrow M_{Zbest}
 - This issue of combinatorics does not appear in 2µ1e

Azeddine Kasmi (SMU)

- Consider a cut:
 - 75< M_{Zbest} < 100 GeV
 - S:B :: 1:25 (for both channels)
- Need two orders of magnitude increase in S/B
 - Need the unfound electron

09/3<u>0/09</u>

Partially reconstructed electron

- I looked for an algorithm which
 - does not assume or require a track
 - does not have a restriction in $|\eta|$
 - no shower shape requirements
 - I define the efficiency of an algorithm as

$$\varepsilon = \frac{N^{cluster} (\Delta R < 0.2)}{N^{ue}}$$

 $N^{cluster}$ (ΔR) = number of reconstructed clusters matching a number of truth unidentified electrons N^{ue}

• The p_T resolution is defined as

09/30/09

$$P_T^{resolution} = \frac{P_T^{truth} - P_T^{reco}}{P_T^{Truth}}$$

Azeddine Kasmi (SMU) Z Boson Pairs Searches

Partially reconstructed electron

- These algorithms designed for different processes
- When I started
 - Only one algorithm covering the forward region existed jet algorithm
 - Valuable proof-of-principle to show competitive result with modest rejection (i.e. don't need 10⁻⁴)
- In this talk
 - Truth is the event that happen in nature
 - three levels
 - Truth electrons
 - Jet, and electron algorithms
 - identified electrons

Jet algorithm

Nearness in angle =>Cone Algorithm $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} \quad (\text{Use } \Delta R = 0.4)$

Advantages for identifying electron

- No assumption on the shower shape
- No eta limitation
- No cluster splitting

<u>Disadvantage</u>

- Not tuned to give electron ID info.
- No shower shape info. is available (except EM fraction)

Topological cluster algorithm

Arbitrary units

120

100

80

60

40

20

3D nearest neighbor algorithm

- Designed for single particle
- Seeded algorithm
- Includes all neighboring cells in 3D if above threshold

Similar P_T spectra for topological cluster algorithm and truth

η of electrons reconstructed with topological cluster matched to the unfound Z electron.

.2

2

Wide range in eta coverage

09/30/09

Summary table of performances for ZZ Sample

Efficiency in finding the unfound "*e*" of different clustering algorithm

Algorithm	Sliding Window	Jet cone algorithm	Topological cluster	Topological cluster (EM)	Tau
Efficiency (%)	60± 1.1	92 ± 0.4	96 ± 0.3	75 ± 0.6	54 ± 1 .1

P_T resolution and position resolution for best algorithms compared to sliding window

Algorithm	Jet cone algorithm	Topological cluster	Sliding Window
P _T resolution	0.25	0.22	0.19
∆\$ Resolution	0.02	0.02	0.009
Δη Resolution	0.028	0.023	0.018

Similar performances to sliding window

09/30/09

For a better background rejection

- Apply particle identification on partially reconstructed "*e*"
- Need set of criteria to identify partially reconstructed electron candidates

b-jet Rejection

- Only with jet algorithm
 - The secondary vertex SV2 measures the likelihood of a jet to be a *b*-jet or not using a track

If SV2 < 0, the jet is a light jet

09/30/09

Shower Shape Parameter

- Jet algorithm
 - EM fraction : the fraction of the energy left in the Electromagnetic calorimeter
 - EMF > 0.8 (barrel)
 - EMF >0.85 (end cap)
- Topological cluster
 - Longitudinal moment
 - Short showers (0)
 - Long showers (1)
 - Isolation

09/30/09

Azeddine Kasmi (SMU)

Z Boson Pairs Searches

Longitudinal moment vs. Isolation

- The signal and background are found in different areas
- It is difficult to design an efficient 2D cut with these two variables
- For optimal discrimination power, I combined various variables and use the likelihood method.

Shower shape variables in topological cluster

Lateral moment Normalized distributions (0-1) 1 wide showers 0 narrow showers

Max Energy fraction

09/30/09

Energy fraction in cells of a segmented calorimeter

The topological likelihood

I used theses distributions to assign a probability for a given topological cluster to be signal or background

$$P_s(x)$$
 from Z ightarrow ee sample and $P_b(x)$ from ttbar sample

Multiplication of these variables gives the overall probability for the event.

$$P_s(x) = \prod_i P_{s,i}(x_i) \quad \text{and} \quad P_b(x) = \prod_i P_{b,i}(x_i)$$

i = {longitudinal, lateral, isolation, Max energy fraction}

I defined the likelihood discriminant as

09/30/09

$$L(x) = \frac{P_s(x)}{P_s(x) + P_b(x)}$$

Azeddine Kasmi (SMU) Z Boson Pairs Searches

Likelihood: Signal is ZZ and Background is Zbb

09/30/09

Azeddine Kasmi (SMU)

Z Boson Pairs Searches

Likelihood dependence on $\boldsymbol{\eta}$

• The pdf's are strongly η dependent (ϵ + fake rate are not)

Eta range	Signal efficiency (%)	Zbb fake rate(%)	WZ fake rate(%)
η < 0.7	84	20	18
η > 0.7 and η <1	83	16	16
η >1 and η <1.375	86	18	17
$ \eta > 1.375$ and $ \eta < 1.9$	83	21	21
η >1.9 and η <2.5	90	13	12
η >2.5 and η <3.2	95	4	2
η > 3 .2	89	7	2

Signal efficiency and fake rates for L > 0.5

Second Z and 2 Dimensional cut

- Second Z peak :
 - The electron that did participate in M_{Zbest} forms with partially reconstructed "e"
 - In $2\mu 1e$, M_{Zbest} is from 2 μ 's
- 2D cut
 - 2 Z's are required in the event

09/30/09

Azeddine Kasmi (SMU)

Z Boson Pairs Searches

Final Selection cuts

Electrons	Medium
Muons	combined
IP significance	<5 for electrons, <3 for muons
Isolation (etcone20/et)	0.14
E _T ^{Miss}	24(GeV)

Cut	Jet cone $DR = 0.4$	Topological Cluster
anti b-tagging SV2	<0	N/A
EMF	0.8 B 0.85 EC	N/A
likelihood	N/A	0.5
M _{Zbest}	75-100 (GeV)	80-100 (GeV)
M _{Zsecond}	85-110 (GeV)	80-100 (GeV)

09/30/09

Results (1fb⁻¹) for the Jet Algorithm and Topological Cluster (14 TeV)

Jet Algorithm

Channel $2\mu le + X$	ZZ	$Zb\overline{b}$	Zb	WZ	$t\overline{t}$
Selection efficiency %	4 ± 0.13	$(1\pm1)\times10^{-3}$	$(2.5\pm2.5)\times10^{-3}$	$(6\pm 6) \times 10^{-3}$	$(2.5\pm2.5)\times10^{-4}$
Number of events	$2.67{\pm}0.1$	0.1±0.1 ×	0.3 ± 0.3	$0.04{\pm}0.04$	$(1.5\pm1.5)\times10^{-3}$

Channel 3e+X	ZZ	$Zb\overline{b}$	Zb	WZ	$t\overline{t}$
Selection efficiency %	2.5 ± 0.11	$(3\pm3)\times10^{-3}$	$(2.5\pm2.5)\times10^{-3}$	$(2\pm1)\times10^{-2}$	$(2.5\pm2.5)\times10^{-4}$
Number of events	1.67 ± 0.07	0.3±0.3*	0.3±0.3 *	$0.1 {\pm} 0.08$	$(1.5\pm1.5)\times10^{-3}$

 $N_{ZZ} = 4.4 \pm 0.1 \qquad N_{BG} = 1.1 \pm 0.5$

Topological cluster Algorithm

Channel $2\mu 1e + X$	ZZ	$Zb\overline{b}$	Zb	WZ	$t\overline{t}$
Selection efficiency $\%$	4.3 ± 0.13	$(1\pm1)\times10^{-3}$	$(2\pm 2) \times 10^{-3}$	$(6\pm 6) \times 10^{-3}$	$(2.5\pm2.5)10^{-4}$
Number of events	2.87 ± 0.1	0.1±0.1×	0.3±0.3×	$0.04{\pm}0.04$	$(1.5\pm1.5)\times10^{-3}$

Channel 3e+X	ZZ	$Zb\overline{b}$	Zb	WZ	tī
Selection efficiency %	$2.7{\pm}0.11$	$(3\pm3)\times10^{-3}$	$(2.5\pm2.5)\times10^{-3}$	$(2\pm 1) \times 10^{-2}$	$(2.5\pm2.5)\times10^{-4}$
Number of events	$1.81{\pm}0.07$	0.3±0.3×	0.3±0.3 <mark>*</mark>	$0.1 {\pm} 0.08$	$(1.5\pm1.5)\times10^{-3}$

 $N_{ZZ} = 4.7 \pm 0.1 \qquad N_{BG} = 1.1 \pm 0.5$

•0 event passed, assume 1 event

•BG may be overestimated

09/30/09

Azeddine Kasmi (SMU)

Z Boson Pairs Searches

Higgs Searches in High mass range

- At high mass Higgs ($m_H \ge 180 \text{ GeV}$)
 - Many Models predicts high mass Higgs
 - Top color model (Higgs is made of top and anti-top)
 - Little Higgs model does not restrict the mass of the Higgs
 - H→ZZ→41
 - Use the same selection criteria as in ZZ analysis
- Higgs analysis, consider 3 mass points
 - $M_{\rm H} = 180 \; {
 m GeV}$
 - $-M_{\rm H} = 200 \; {\rm GeV}$
 - $M_{\rm H} = 300 \, {\rm GeV}$

Selection Efficiencies

Selection	Selection efficiency (%) Jet algorithm	Selection efficiency (%) Topological cluster
180 GeV		
3e+X	2.1	2.3
2m1e+X	3.3	3.4
200 GeV		
3e+X	2.62	4.05
2m1e+X	4.17	4.95
300 GeV		
3e+X	3.1	4.3
2m1e+X	4.4	4.7

The efficiency is mass dependent, we emphasize the high mass region

09/30/09 Azeddine Kasmi (SMU) Z Boson Pairs Searches

Higgs: invariant masses

Events/(5GeV)	$ \sum_{i=1}^{25} 200 \text{ GeV} $	210 220 230 240 <i>M</i> ,, <i>/</i>	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$			
	Mass (GeV)	<i></i>	180	200	300	
	Selection (to gauge relative sensitivity)		175-187	190-210	290-310	
	3e+"e"& 2μ1e+"e"	Higgs	1.55	14	6.2	
		BG	2.53	8.26	2.46	
	S::B		1::1.5	2::1	3::1	

09/30/09

Azeddine Kasmi (SMU)

Z Boson Pairs Searches

Normalization

- Theoretical uncertainties : pdf uncertainties
 - Cross section: 4% difference in ZZ production
 - 14.74 pb in CTEQ6M
 - 15.32 pb in MRST03
- Luminosity
 - Precise determination of the luminosity is to use the W and Z production and leptonic decays.
 - Luminosity uncertainties ~5%*

*(M. Dittmar, F. Pauss, D. Zuercher, Phys. Rev. D 56 (1997) 7284-7290)

Experimental Systematics

- Lepton uncertainties
 - Lepton energy scale
 - arises from EM calibration
 - To estimate its impacts, varied E_T by $\pm 1\%$
 - Lepton energy resolution
 - Reconstructed electron energy are smeared using a Gaussian
 - $\text{smearE}_{\text{T}} = 0.1 \text{*a.Gauss}$
 - $E_{T}^{new} = E_{T} (1 + smear E_{T})$
 - Material effects in electron efficiency
 - direct effect on shower shape discriminants
 - found to be small 2%

Impact (in %) of lepton uncertainties on my selection criteria

	H (200 GeV)	H (300 GeV)	ZZ	Zbb
Energy scale (1%)	± 2.2 %	± 0.2	± 2.9%	$\pm 4.7\%$
Resolution (%)	-6.6%	-5.3%	-2.2%	-2.1%

The significance of ZZ analysis for 1 fb⁻¹

- Run pseudo-experiments
 - Poisson distribution
- 31 + X channel
 - 4.7 signal event and 1.1 BG event
- 4l channel
 - 13.3 ±0.09 signal events and 0.2±0.07 BG event

- Significance
$$\frac{S}{\sqrt{S+B}} = 3.6$$

- 3l+X & 4l combined
 - Acceptance gain of 38%
 - Significance = $4.07 4.11 (\sim 4.09)$

Significance for Higgs

For $L = 10 \text{ fb}^{-1}$

Higgs mass (GeV)	200	300	$d_{1} = 5 - m_{\rm H} = 200 {\rm GeV}$
Significance (3ℓ+" <i>e</i> " channel alone)	2.96	2.11	ling a start a sta
Significance (4ℓ channel)	6.19	4.88	χ^2 / ndf 144.6/57 p0 -0.1787 ± 0.0084
Significance (4 <i>l</i> and 3 <i>l</i> +" <i>e</i> ")	7.07	5.45	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

When one can reach 5 " σ "

• To reach 5σ with 4l channel, need a luminosity of 6.8 fb⁻¹

Combination of 31 & 41 channels: Significance: 5.06-5.11 (~5.10) @ 5.4 fb⁻¹

21% less data needed

Conclusion

- An exclusive $ZZ \rightarrow 3l+"e"$ and $H \rightarrow ZZ \rightarrow 3l+"e"(m_H \ge 180 \text{ GeV})$ analysis conducted on MC @ 14 TeV
 - Two approaches with clustering and particle identification
 - Substantial improvement over 4 lepton channel
 - Topological cluster is slightly better than the jet algorithm
- Results
 - In ZZ analysis,
 - A gain in acceptance of 38% (from 13 signal events to 18 for 1fb⁻¹)
 - Significance (31+X and 41 combined) from 3.6 to 4.1 for 1fb⁻¹
 - ATL-COM-PHYS-2009-433 (in referee process)
 - Higgs analysis (if 31+X and 41 are combined)
 - m_H =200GeV, 5 σ can be reached at L= 5.4 fb-1 instead of 6.8 fb-1
 - m_H =300GeV, 4.88 σ increases to 5.45 σ at L = 10fb⁻¹
 - Searches in low mass Higgs range require more BG rejection
 - This work shows
 - topological clusters valuable for electron identification
 - Used to justify this algorithm (Leysin August09)
 - Default algorithm beyond $|\eta| > 2.5$

BACK UP SLIDES

09/30/09 Azeddine Kasmi (SMU) Z Boson Pairs Searches

• Splitting of cluster in crack regions

Release 12, (3x5, 3x7 and 5x5, thus leading to 3

cluster collections) \ egamma candidates

The ATLAS standard electron definitions

- ElectronLoose: had + middle, no refined tracking
- ElectronMedium: had + middle + strips + calo Iso + tighter tracking
- ElectronTight: had + middle + strips + calo Iso, even tighter tracking

Muon reconstruction

- Stand-alone: Spectrometer info. only
- Combined: combination of track from the inner tracker & a track from spectrometer
- Combination with minimum χ² between a track from the inner tracker and the spectrometer (STACO)

- Origin of Transverse Missing Energy E_T^{Miss}
- Neutrino, LSP, gravitino (real E_T^{Miss})
- Bad measurements of jets (fake E_T^{Miss})
- E_T^{Miss} measurement: Cell Based method
- - $P_T^{miss} = S P_T(cell) + SP_T(m) + SP_T (loss in cryostat (dead material))$

Dead/hot/noisy cell, Energy calibration (nonlinearity, resolution)

Jet cone reconstruction algorithms

Nearness in angle =>Cone Algorithm $D\mathcal{R} = \square \square \square 2 \square \square \square 2$ Possible to produce

overlapped cones, Needs a Split-Merge step.

K_T jet

Cone jet

It's clustering algorithm.

Advantages for identifying electron

- No assumption on the shower shape
- No eta limitation
- No cluster splitting

<u>Disadvantage</u>

- Not tuned to give electron ID information.
- No shower shape information is available

Historically, hadron collider use cone algorithms :easier calibration

Use DR= 0.4 cone Algorithm

04/23/09

Azeddine Kasmi (SMU)

ZZ \Diamond 3I +X

3D nearest neighbor algorithm (Topological Cluster)

• Seed Threshold:

 $| \text{energy} | / \sigma_{\text{noise}} > 4$

- <u>Neighbor Threshold (2D)</u>: Cells with $|energy| / \sigma_{noise} > 2$
- <u>Cell Thresholds (3D)</u>: Cells with |energy | /σ >0
- Some shower shape information are

Longitudinal moment I is the distance of the cell from the shower center along the shower axis

- long₂ = <l²>, with l = 0 for the two most energetic cells
- long_{max} = <l²>, with l = 10 cm for the two most energetic cells and l = 0 for all other cells

 $longitudin al = \frac{long_2}{(long_2 + long_{max})}$

Lateral moment In a similar fashion, but lat_{max} is at r = 4 cm from the shower axis

$$lateral = \frac{lat_2}{(lat_2 + lat_{max})}$$

Max Energy fraction Energy fraction of the most energetic cell

Isolation

The layer energy weighted fraction of non-clustered neighbor cells on the outer perimeter of the cluster

04/23/09

ZZ \Diamond 3I +X

B tagging

d_o is the track impact parameter in the

transverse plane (r-f).

z_o is the track impact parameter in the longitudinal plane (r-z).

- B tagging means identification of jets which contains a b quark.
 - •Lifetime ~ 1.5 ps i.e. flight distance ~4mm for 50 GeV particle.

Possible b tagging methods

• Lifetime tag (impact parameter)

Secondary vertex:

1) The invariant mass of all tracks associated to the vertex.

2)
$$Energy_{ratio} = \frac{\sum E^{tracks of vertex}}{\sum E^{all tracks in the jet}}$$

3) Number of two-track vertices

B-tagging Secondary vertex

• Comparison of measured value S_i to a pre-defined smoothed and normalized distributions for both the b- and light jet hypothesis, $b(S_i)$ and $u(S_i)$.

- 2D or 3D pdf are used
- The ratio $\bar{b}(S_i) / u(S_i)$ defines the track or vertex weight.
- SV1 : 2D distribution of the two first variables and a 1D distribution of the number of two-tracks
- SV2 : 3D-histogram of the three properties

$$W_{jet} = \sum_{i=1}^{N_T} \ln W_i = \sum_{i=1}^{N_T} \ln \frac{b(S_i)}{u(S_i)}$$

ZZ \diamond 3I +X

17/40

04/23/09

Azeddine Kasmi (SMU)

P_T resolution of topological cluster and jet algorithms

Jet C4 algorithm

09/25/09

Z Boson Pairs Searches

Z second

09/25/09 Azeddine Kasmi (SMU) Z Boson Pairs Searches

Higgs in mass window and systematics

Mass (GeV)		180	200	300
Selection		in (175-185) GeV	in (190-210)GeV	in (290-310) GeV
	Higgs	1.55	14	6.21
	ZZ	1.98	7.54	2.08
3e+cluster	$Zb\overline{b}$	0.18	0.11	0.3
&	Zb	0.27	0.24	0.36
$2\mu 1e$ +cluster	WZ	0.1	0.03	0.06
	Total BG	2.53	8.26	2.46

Event yields for 10 fb⁻¹ in signal events and backgroundsS:B1:1.52:13:1

	H (200 GeV)	H (300 GeV)
Energy scale (1%)	+/-2.2 %	+/-0.2
Resolution (%)	-6.6%	-5.3%

For $L = 10 \text{ fb}^{-1}$

Higgs mass (GeV)	180	200	300
Expected signal events (4lepton channel)	13.2	56.6	31.5
Expected background events (4lepton channel)	8.9	26.77	10.1
Significance (4lepton channel)	2.80	6.19	4.88
Combined significance (4l and $3l+"e"$)	2.88	7.07	5.45

When one can reach 5σ ?

For $L = 6 \text{ fb}^{-1}$

- 4 lepton channel: 33.96 signal events, 16.06 BG events, Significance: 4.8
- 3 lepton channel: 8.4 signal events, 4.95 BG events
- Combination of 31 & 41 channels: Significance: 5.3 @ 6 fb⁻¹ instead of 7 fb⁻¹

THANK YOU

04/23/09 Azeddine Kasmi (SMU) ZZ \diamond 3I+X

40/40