Operational Monitoring of ATLAS Trigger and Automatic MC Tuning for Minimum Bias Events at LHC.

Sami Kama DESY

Southern Methodist University 15/12/2009

Outline

~Introduction to LHC, ATLAS and ATLAS Trigger Trigger Monitoring Operational Monitoring Display Minimum Bias Events Monte-Carlo Tuning for Minimum Bias ~Genetic Algorithms in MC Tuning ~Results ~LHC predictions ~Conclusions

Large Hadron Collider

- LHC is the pp collider at CERN accelerator complex.
- ~It is designed to produce 14TeV center of mass collisions with a luminosity of $10^{34}cm^{-2}s^{-1}$.
- It contains 2 general purpose and 3 specialized detectors.

ATLAS Detector

ATLAS is a general purpose detector with a diverse physics program ranging from Standard model and Higgs physics to SUSY and BSM.

 It offers precise tracking and calorimetry information with fast triggering support.

- At 14 TeV and full luminosity LHC will provide pp bunch crossings at 40MHz.
- Only very few of these crossings will result in interesting events.
- At each bunch crossing about 18~20 soft interactions called minimum bias collisions are expected.
- These events must be filtered while interesting events are stored for studying.

ATLAS Trigger

- Filtering and event selection is done at three levels
- Level 1 trigger is implemented in hardware.
- Reduces interaction rate to ~75kHz

ATLAS Trigger

- Level 2 and Event Filter are implemented in software running on commodity PCs.
- Level 2 reduces event rate to ~3kHz, working on partial event information.
- Event Filter does final event selection, reducing event rate to ~200 Hz

- Both levels contain many applications running in parallel.
- Events move through trigger PC farms at different detail levels.
- ~1500 multi-core PCs, running ~10000 applications.
- Final size ~3000 PCs running ~25000 applications.
- We need to make sure that every thing is working as expected

Trigger Monitoring

- Complicated structure requires constant monitoring in order to verify that trigger is filtering common events while keeping interesting ones
- Each application publishes information about its status to Information Service(IS) Servers either as data structures (IS Objects) or histograms containing trigger rates or physics distributions.
- Most of the applications publish several different information types processing them is a challenge itself.
- Several tools provide means for monitoring and presenting different aspects of the trigger systems in compact yet representative way.

Operational Monitoring Display

- It is tool for displaying information on IS servers in (quasi)real-time in various detail levels.
- Its configuration is done in real-time through dragand-drop approach.
- ~It is composed of two parts *Core* and *GUI*.
- Core retrieves IS Objects, calculates statistics, classifies and converts them to histograms. It generate alerts when configured criteria are met.
- ∼GUI displays the information in the form of timeseries, bar charts, distributions or tables.

Push

S

C

bjects

IS Gatherer

OH Servers

 Retrieves the IS Objects through subscriptions Converts them to the internal data type **ISGObject**, making it independent of IS sifier ISG Obje Object types. •When an update cycle is completed it Pul calculates the global averages, standard deviations, and sums Signals the Storage informing the availability of the update.

Histogram

Producer

Pull

Histograms

Servers

Push

IS

S

Objects

Signal IS Gatherer

Keeps the configuration information for the GUI and the Core.
Configures all items in the core and establishes the connections between them.
Can combine several configuration files into one file.
Manages the subscriptions to IS Servers

S. Kama

15/12/09

S. Kama

22

S. Kama

_ 8 ×

File Configuration Help

>

File Configuration Help

2 Ô.

Save As Edit Subscriptions Help Add New Tab Change Tab Layout AddExpertTable Add CustomTable Add Histo to OH

E.

~ ~

Statistics Objects Classification		4	5 Bu	sy EMON StarRates	lar_ros_SF	O Rates To Disk L	BN L2PU Segmen	nt 1 L2PU Segment 2	L2PU Segmer	nt 3 L2PU Segment 4 EFD	Table Ros Rat	es 🖣
Display Criteria	.*			Name		requestRateHz	requestsQueued	requestsDequeued	deltaTimeMs	numberOfQueueElements	Last Update	
Objects 👻		•	1	ROS Average		944.4898	1692725.4966	1692721.8639	5000.3197	0.1020	02:51:29	
H-DE ROS ROS-LAR-			2	ROS DF.ROS.ROS-F	WD- Average	e 196	890602.5000	890601.5000	5000	0	02:51:29	
			3	ROS DF.ROS.ROS-L	AR- Average	186.4412	890491.7500	899490.8088	5000.2059	0	02:51:29	
			4	ROS DF.ROS.ROS-M	IDT- Average	102.4375	890989.8750	85 588.9375	4999.4375	0	02:51:29	
			5	ROS DF.ROS.ROS-P	IX- Average	4809.1667	5748630.9167	574 628.6667	5001.3333	0.7500	02:51:29	
			6	ROS DF.ROS.ROS-R	PC- Average	197.2500	891649.5000	89:648.5000	5000.5000	0	02:51:29	
		7	ROS DF.ROS.ROS-S	CT- Average	4803.7500	5749130.1250	574: 128.6250	5000.2500	0.1250	02:51:29		
DF.ROS.ROS-TDQ-	bi.ito3.ito3-16Q-		8	ROS DF.ROS.ROS-T	DQ- Average	195	890837.5556	89 836.6667	4998.2222	0	02:51:29	
Toolbar bu	itto	ne for		DS DF.ROS.ROS-T	GC- Average	191.5000	890679	89 678.5000	5002.5000	0	02:51:29	
showing online help.			DS DF.ROS.ROS-T	IL- Average	2491.2500	3313141.1250	3319139	5003.5000	0.6250	02:51:29		
		DS DF.ROS.ROS-T	RT- Average	205.2222	9630 7.2778	96 585.9444	5000.2778	0	02:51:29			
configuration windows					alues d	can he	display	ved ni	Imerically	in		

Values can be displayed numerically in tables. They can be added either to default tables or customized tables.

and adding new tabs

RUNNING Run Number: *

🗸 Opera	tional Monitoring Display - ATL	AS - /atlas/moncfg/tdaq-02-00-03/daq/omd/O	MD-generic-config-2009-12-07.xml				_ a ×
<u>F</u> ile	Configuration <u>H</u> elp						
Save	As Edit Subscriptions H	🜔 📃 📆 Help Add New Tab Change Tab Layou	IT AddExpertTable Add CustomTable Add	La Histo to OH			
Statist		12SV SEO SEL BOS DEM	Edit Subscription				×
Display	/ Criteria .*		Subscription Name IS Se	erver Name 🗌 E	nable Vector Field Parsing	✓ Has Classification	Add Classification
Objec	ts 👻	▲ 2.20 2.00	KOS DF	LI M	iulu Server Subscription]	Ok
L I	DF.ROS.ROS LAR-	1.80	Regexp-0	Regexp-	Regexp-2	Regexp-3	
÷.	DF.ROS.ROS-MDT-	1.60		<u> </u>			Cancel
	DF.ROS.ROS-PIX-	1.20	103.103. [0-5]+]
	DF.ROS.ROS-RPC-	0.80					
	hscription Configurator						
	S losi ii losi		2				
	Subscription Name	Server	regexp0	regexp1 regexp2	regexp3 Multi-Server	Enable Vectors Class	sity
		DF	DFM-[0-9]+	Multiple			
2	L2PU-Netsta	DF-L2-Segment-[0-9]+-[0-9]+-ISS	L2PU-[0-9]+.NETSTAT	wuutipie	-servers can	De Sudscr	
3	ROS DataChinnel	DF	ROS."ROS."-[0-9]+.DataChannel[0-9]-	with the	comp cot of	rogular	
4	Global-Mon	Monitoring	/Monitor/GM"		Same Set UI	regulai	
5	KOS Inggenn	DF		avnrace	ione $\ln to A$	regular	
0	L2PU-L2PU_EXPERT	DF-L2-Segment-[0-9]+-[0-9]+-ISS	L2PU-[0-9]+.L2PU_EXPERT	0701033	10113.0010 +	rcyulai	1
2	SEL Rates	DF	SEL[0.9]+ StreamInfo *	express	ions provide	fine tuned	object
II.	Subscripti	on editor man	ages the start	selectio	n.		
	Coro cubo	cription and (laceifior		Multi-Server	Vectors Enabled C	assify
1					Multi-Server	Vectors Enabled C	assify
1	configurat	ion			✓ Multi-Server	Vectors Enabled 🔽 Cl	assify
1.	Soringarat				✓ Multi-Server	Vectors Enabled 🗌 Cl	assify
15	L2SV-Netstat	DF-L2-Segment-[0-9]+-iss	L2SV-[0-9]+.NETSTAT		✓ Multi-Server	Vectors Enabled 🗹 Cl	assify
16	SFI-PROC	DF	SFI-[0-9]+.PROC		Multi-Server	Vectors Enabled 🗌 Cl	assify
17	EventDisplay-Mon	Monitoring	/Monitor/.*-Stream		🗌 Multi-Server 星	Vectors Enabled 🗌 Cl	assify
18	L2SV-PROC	DF-L2SV-Segment-[0-9]+-iss	L2SV-[0-9]+.PROC		✓ Multi-Server	🛛 Vectors Enabled 🗹 Cl	assify
19	PT	DF-EF-Segment.*	PT-[0-9]+.*:[0-9]+		✓ Multi-Server	Vectors Enabled 🗌 Cl	assify
20	ROIB	DF	ROIB-[0-9]+		🗌 Multi-Server 🗌	Vectors Enabled 🗌 Cl	assify
	Add N	lew Subscription	Edit Selected	d Subscription		Remove Subscription	n
		Read Config Save Config	IS L	ister	ОК	Cancel	

Y ISL	ister - ATLAS					_ D X)		
Server Name RunParams						BAD			
Bogu	lar Expression *					Close SUBS			
Regu	ai Expression			1					
	Name		type						
1	RunParams.provider:Liv	reFraction	Unknown						
2	RunParams.Physics.L1	PsKey	TrigConfL1PsKey						×
3	RunParams.StorageInfo	.ROS-TIL-LRC-00	StorageInfo						
4	RunParams.StorageInfo	.ROS-TIL-LBC 01	StorageInfo			× 1	or Field Parsing	Has Classification	Add Classification
5	RunParams.StorageInfo	ROS-LAR-EMB -00	StorageInfo				Subscription		
6	RunParams.StorageInfo	ROS-LAR-EMBA-01	StorageInfo						l ok
7	RunParams.StorageInfo	.ROS-LAR-EMBA-02	StorageInfo				legexp-2	Regexp-3	
8	RunParams.StorageInfo	.ROS-LAR-EMBA-03	EtorageInfo						Cancel
9	RunParams.LiveFractior	n.live_int_high					L		
10	RunParams.StorageInfo	.ROS-LAR-EM	l ister wid	dapt liete			Mulu-Server	vectors Enabled IVI Cla	
11	RunParams.Physics.Hlt	tPsKey		agot noto				Veeters Enabled 🗆 Cla	
12	RunParams.StorageInfo	ROS-LAR-EM	a objecte	matching			Mulu-Server 🗹	vectors Enabled	SSIIY
13	RunParams.StorageInfo	ROS-LAR-EM		matoring			🗌 Multi-Server 🗹 🗎	Vectors Enabled 🗌 Ca	assify
14	RunParams.StorageInfo	.ROS-LAR-EM	rogular o	vnraegion			Multi-Server	Vectors Enabled 🗌 Cla	assify
15	RunParams.StorageInfo	ROS-LAR-EM	Cyulai C	$\lambda \mu coolin,$					
16	RunParams.StorageInfo	ROS-LAR-EM	Ining in s	potun		Classification Editor			- O ×
17	RunParams.StorageInfo	.ROS-LAR-EM	aping in c	setup.		ovel Name			
18	RunParams.StorageInfo	.ROS-LAR-EMBA-13	StorageInfo						
19	RunParams.StorageInfo	.ROS-LAR-EMBA-08	StorageInfo			*ROS-[A-Z]+-			
20	RunParams.StorageInfo	.ROS-LAR-EMBA-09	StorageInfo			[A-Z]+-			
21	RunParams.StorageInfo	.ROS-LAR-EMBA-14	StorageInfo					Level Recevn	
22	RunParams.StorageInfo	.ROS-LAR-EMBA-15	StorageInfo					Levernegezp	
23	RunParams.StorageInfo	.ROS-LAR-EMBA-16	StorageInfo						
24	RunParams.StorageInfo	ROS-LAR-EMBA-17	StorageInfo			\			
25	RunParams.StorageInfo	ROS-LAR-EMBA-18	StorageInfo			\ \			
26	RunParams.StorageInfo	ROS-LAR-EMBA-19	StorageInfo						
27	RunParams.TrigConfL1E	BgKey	TrigConfL1BgKey					Add Ne	ew Level
28	RunParams.ECR		ECR						
29	RunParams.TDAQ_DQ	_Flags	RCDataQuality						
	Classifier groups the objects								
10	LZSV-FROC L	JF-LZSV-Segment-[U-	די-ו <u>רב בכי ו</u> בכי	J+.FROC		01000	mor groe		
19	PT D	DF-EF-Segment.*	PT-[0-9]+.	.*:[0-9]+		through	gh differe	ent levels	of
20	ROIB	DF	ROIB-[0-9	0]+		regula	ar expres	ssions	
Add New Subscription Edit Selected Subscrip									
Read Config Save Config IS List			5 Lister	O	K	Ca	ncel		

OMD Summary

- OMD provides an easy way of accessing the information available IS servers.
- ~It can display the information in various styles.
- ~Both experts and shifters can use it easily.
- ~It has great flexibility and real time response.

Event Topologies

- Events classified with respect to their topologies in η-φ plane
- Elastic scattering leaves both protons intact
- In single diffractive events only one of the protons is destroyed through a colorless particle exchange.
- In double diffractive interaction both protons are destroyed with a rapidity gap between.
- In non-diffractive events both protons breakup with a colored particle exchange creating activity in all of the plane

Event Topologies

- Events classified with respect to their topologies in η-φ plane
- Elastic scattering leaves both protons intact
- In single diffractive events only one of the protons is destroyed through a colorless particle exchange.
- In double diffractive interaction are destroyed with a rapidity get
- In non-diffractive events both up with a colored particle exc activity in all of the plane

Common definition of minimum bias

Minimum Bias Events

- Minimum bias (MB) events are the events collected with as little bias from the trigger as possible.
- They are mostly composed of soft interactions and majority of the collisions at the LHC will be MB events.
- ✓We need to understand MB events since they will be a background for interesting physics events.

from Exp. Perf. of the ATLAS Det. Det. Trig, and Phys.

 $Z \rightarrow jj$ event

A $Z \rightarrow jj$ event simulated with Pythia

Occupancy in the pixel detector.

Tracks in the inner detector

$Z \rightarrow jj + 23$ Minimum Bias pile-up

Without understanding MB any study would be significantly harder.

Occupancy in the pixel detector.

Tracks in the inner detector

Minimum Bias Monte-Carlos

- ∼Unfortunately perturbative QCD can not describe MB events.
- \sim There aren't any theories for soft interactions.
- Several models explain soft interactions with varying accuracy, quite a few predating QCD.
- Some of them are implemented in Monte-Carlo programs such as Phojet, EPOS and Pythia. They all somewhat agree at low energies however extrapolations to LHC are different
- Sometimes these MC programs have user tunable parameters.
- ~Fine-tuning these parameters can improve agreement with data.

Minimum Bias Monte-Carlos

- Phojet uses Dual Parton Model where soft interactions are modeled by the exchange of colorless particles called *Pomerons*. Free parameters of the model are found by the fits to the data.
- ➤EPOS is a new hadronic interaction model with multiple scattering approach based on partons and pomerons. It is used for heavy ion collision and cosmic-ray interactions. It doesn't have any user tunable parameters.
- Pythia is probably the most widely used MC generator in high energy physics. It uses an approach combining Regge theory and "Eikonalized" QCD models for soft interactions. It has many tunable parameters.

Tuning Problem

Relationship between the parameters and the observables are extremely complex and usually there are several tuning parameters and many data sets to check for.

- Comparing distributions by eye is subjective and inefficient, i.e. for 5 parameters, 3 different values for each parameter and 10 data sets, 1250 comparisons.
- Prute force random sampling is very inefficient ~3-6 hours of event generation for each parameter value set. Parameter space grows exponentially.
- Parameterization is a good approach but it is based on the approximation of the generator response.
- ∼A good search and optimization method could be useful.

Genetic Algorithms

Genetic algorithms (GA) are based on the evolutionary principles observed in the nature.

- They are a compromise between random and systematic search and very good at problems where solution is unknown or too hard to calculate.
- ←GA's are composed of "individuals" which are a potential solution to the problem.
- Collection of individuals are called "population"
- Each individual is tested for their goodness as a solution through a fitness function and assigned a "fitness score".
- Solution is achieved as the population evolves through genetic operations.

Genetic Operations

- Individuals are given a chance to procreate proportional to their fitness. Higher score means higher chance of mating.
- Parents create a child through crossover operation. The child posses genes coming from both parents with random portions.
- Mutation alters a randomly selected gene with a given chance.
- Through cross-over and mutation, fitness of the population increase.

Applying GA's to MC tuning

- ∼GA's has a good application in MC tuning problem (i.e. solution is unknown, perfect description does not exist, a multi-dimensional optimization and search problem).
- \sim Parameters can be assigned to the genes of individuals.
- The similarity between data and MC distributions can be used as a fitness function.
- But evaluation requires generation of MC samples for all individuals. It takes too long to generate samples for all data sets of all individuals in the population.
- However MC event generation is an embarrassingly parallel problem. Thus sample generation can be distributed.

Distributing the sample generation

- Message Passing Interface (MPI) provides a way to interprocess communication over a network.
- ∼However passing all events over the network is inefficient.
- Generating events and evaluating the distributions remotely then sending only the results is much more efficient.
- This approach requires a binary wrapping the MC generator, an analysis library for generating the distributions from the events, data sets and communicating through MPI.
- ∼All these features can be connected with a modular approach.

Tuning Pythia

- →Pythia uses parton shower approach to simulate 2→n
 processes which occur in ISR and FSR.
- ∼It uses string model for fragmentation and hadronization.
- Fragmentation, flavor and hadronization parameters are tuned by LEP data.
- ∼Divergence of hard cross-section is regulated by the factor

$$\frac{d\sigma}{dp_T^2} \propto \frac{\alpha_s^2(p_T^2)}{p_T^4} \rightarrow \frac{\alpha_s^2(p_{T_0}^2 + p_T^2)}{(p_{T_0}^2 + p_T^2)^2}$$

where p_{T_0} is an energy dependent parameter and α_s is the strong coupling constant.

 \sim Energy dependency of $p_{T_{a}}$ is given as

$$p_{T_{0}}(E_{cm}) = p_{T_{0}}^{ref} \left(\frac{E_{cm}}{E_{0}^{ref}}\right)^{E_{pow}}$$

where $p_{T_0}^{ref}$ is the value of p_{T_0} at the reference energy scale E_0^{ref} and E_{pow} is the slope of evolution.

Even though the divergence at low momentum transfer are regulated, at high energies hard cross-section can become larger than total cross-section. This effect is explained by multiple parton interactions where several interactions taking place between the partons of the incoming protons in the same collision.

- In multiple parton interactions matter distribution in the proton becomes significant.
- Multiple Parton Interactions are modeled with an impact parameter dependence. An example is double Gaussian matter distribution.

$$\rho(r) \propto \frac{1-\beta}{a_1^3} \exp\left(\frac{-r^2}{a_1^2}\right) + \frac{\beta}{a_2^3} \exp\left(\frac{-r^2}{a_2^2}\right)^{10} = \frac{1}{a_2^2} + \frac{\beta}{a_2^3} \exp\left(\frac{-r^2}{a_2^2}\right)^{10} = \frac{1}{a_2^3} + \frac{\beta}{a_2^3} + \frac{\beta}{$$

S. Kama

∼Shower evolution stops at 1 GeV. Primordial k_T is used to compensate the softer activity. In Pythia 8 it has a normal distribution with a width given by

$$\sigma = \frac{(\sigma_{soft} Q_{half} + \sigma_{hard} Q)}{Q_{half} + Q} \frac{m}{m_{half}}$$

where Q is the scale of the hardest process, m is the mass of the system, σ_{soft} , Q_{half} , σ_{hard} and m_{half} are the parameters of the model

Beam remnants are also taken into account respecting to flavor, color and momentum correlations.

Pythia 8 Parameter set

Parameter	Explanation
MultipleInteractions:pT0Ref	Parameter controlling the energy dependence of the hard scattering cross-section regulation factor p_{T_0} .
MultipleInteractions:ecmPow	Slope of the energy dependence of the p_{T_0}
MultipleInteractions:coreRadius	Radius of the inner core in double Gaussian matter distribution
MultipleInteractions:coreFraction	Fraction of mass in the inner core
BeamRemnants:primordialKThard	$\sigma_{_{hard}}$ factor in the primordial $k_{_{T}}$ width
BeamRemnants:reconnectRange	Parameter controlling the probability of merging the gluons in a sub-processes in the multiple interactions.
MultipleInteractions:alphaSvalue	Value of the strong coupling constant at Z ^o mass

Data Sets

- Several measurements from CDF, D0 and UA5 are used in tuning.
- Analyses use trigger selection simulation whenever available.
 For example UA5 analyses require at least one charged particle in both sides of the detector in range 2.0<|η|<5.0
- It is not possible to directly relate the parameters to distributions.

Coll.	\sqrt{s}	Data Set
		$< p_{\rm T} >$
		$dN_{ch}/dp_{ m T}$
	1060 CAV	UE Trans-Min Σp_{T} density in Drell-Yan
	1900 Gev	UE Trans-Max $\Sigma p_{\rm T}$ density in Drell-Yan
CDF		UE Trans-Min ΣN_{ch} density in Drell-Yan
		UE Trans-Max ΣN_{ch} density in Drell-Yan
	1800 C.W	$dN_{ch}/dp_{ m T}$
	1800 Gev	$1/\sigma d\sigma/dp_{\rm T}$ (Drell-Yan)
	630 GeV	dN_{ch}/dp_{T}
DO	1060 CeV	$d\sigma/dp_{\rm T}$ Drell Yan
DU	1900 Gev	$d\sigma/dp_{\rm T}$, $y > 2 p_{\rm T} < 30 {\rm GeV}$
		$dN_{ch}/d\eta$
		N_{ch}
	000 C.V	$N_{ch}, \eta < 0.5$
	300 Gev	$N_{ch}, \eta < 1.5$
		$N_{ch}, \eta < 3.0$
TIAS		$N_{ch}, \eta < 5.0$
UAJ	546 GeV	N_{ch}
		$dN_{ch}/d\eta$
		N_{ch}
	$200~{\rm GeV}$	$N_{ch}, \eta < 0.5$
		$N_{ch}, \eta < 1.5$
		$N_{ch}, \eta < 3.0$

 $\sim < p_T >$, $p_T N_{ch}$ and $dN_{ch}/d\eta$ distributions are typical quantities in MB measurements.

- However they are not enough to constrain the parameters.
- The UE and Drell-Yan data sets help constraining the parameters.

	Coll.	\sqrt{s}	Data Set
			$< p_{\rm T} >$
			$dN_{ch}/dp_{ m T}$
		$1060 \ GeV$	UE Trans-Min $\Sigma p_{\rm T}$ density in Drell-Yan
		1900 Gev	UE Trans-Max $\Sigma p_{\rm T}$ density in Drell-Yan
	CDF		UE Trans-Min ΣN_{ch} density in Drell-Yan
			UE Trans-Max ΣN_{ch} density in Drell-Yan
		1800 GeV	$dN_{ch}/dp_{ m T}$
		1000 Gev	$1/\sigma d\sigma/dp_{\rm T}$ (Drell-Yan)
		630 GeV	$dN_{ch}/dp_{ m T}$
	D0	1960 GeV 900 GeV	$d\sigma/dp_{\rm T}$ Drell Yan
	DO		$d\sigma/dp_{\rm T}$, $y > 2 p_{\rm T} < 30 {\rm GeV}$
			$dN_{ch}/d\eta$
			N_{ch}
			$N_{ch}, \eta < 0.5$
			$N_{ch}, \eta < 1.5$
			$N_{ch}, \eta < 3.0$
,	UA5		$N_{ch}, \eta < 5.0$
	0110	$546 \mathrm{GeV}$	N _{ch}
			$dN_{ch}/d\eta$
		200 GeV	N _{ch}
			$N_{ch}, \eta < 0.5$
			$N_{ch}, \eta < 1.5$
			$N_{ch}, \eta < 3.0$

Results

Comparing with Other Generators

LHC Predictions

LHC Predictions

Conclusions

- Trigger monitoring is an important and challenging task. OMD is versatile tool covering a small part of this task.
- ~Genetic algorithms can be used for Monte-Carlo tuning, finding tunes comparable to or better than alternative methods.
- Minimum bias events have to be modeled properly in order to make precise measurements at high energies.
- Predictions of soft interaction models are different at high energies.

THANK YOU

BACKUP

Trigger Conditions(UA5)

Data taken with trigger conditions which require at least one charged particle in pseudorapidity ranges \$-5.6<\eta<-2.0\$ and \$2.0 <\eta< 5.6\$. Method of maximum entropy used for the trigger and detector acceptance. Data contains only the primary particles. Errors in multiplicity data are strongly correlated.

There are two triggers for different data.2-Arm trigger is at least one hit in both \$\eta\$ ranges \$2.0<|\eta|< 5.6\$ and selects mainly (Non single-diffractive(NSD) trigger. 1-Arm trigger requires hit only one arm to select highly asymmetric events like single diffractive(SD) events. Data are corrected for secondary tracks,trigger efficiency, geometrical acceptance losses. Plots here are using data for NSD events and symmetrized for -ve \$\eta\$.

Trigger Conditions (CDF)

Data 1960 was taken with minimum bias trigger which requires hits in both hemispheres in range \$3.7< |\eta| <4.7\$. Data is corrected for track detection and reconstruction efficiency, contamination from secondaries, particle decays and misidentification. Only primary tracks with \$p_{t}>0.4GeV\$ and \$|\eta|\le1.0\$ used.

1800 GeV and 630 GeV Multiplicity data and transverse momentum distribution trigger requires hits in \$3.2< |\eta| < 5.9\$ in both hemispheres. Only tracks with \$p_{t}\ge0.4GeV\$ and \$|\eta|\le1.0\$ There is no reference for corrections for secondaries. Only track reconstruction efficiency is corrected.

\$dN/d\eta\$ plot trigger requires hits in \$3.2< |\eta| < 5.9\$ in both hemispheres. Additionally only events which have at least 4 tracks in \$|\eta| <3.0\$ with at least one in both forward and backward hemispheres. Data is corrected for secondaries. Also pt spectrum extrapolated to 0. to take kinematical acceptance into account.

In simulation required two charged particles in the trigger \$\eta\$ ranges to approximate trigger, then applied fudical cuts (\$|\eta|<1.0\$, \$p_{t}\ge0.4\$.

Drell-Yan and UE

D0 data is corrected for acceptances and efficiencies within Z masses of 40 to 200GeV. Used \$Z^{0}\$ from the generator for plots.

CDF Drell-Yan 1800GeV data used \$Z^{0}\$ in the range 66 to 116GeV. directly from generator.

Underlying event data required an $e^{+}e^{+}\$ each with $p_{t}>20.\$ and $70<M_{inv}<110.GeV$, $|eta_{Z_{0}}|<6.$. TransMax(Min) region is defined as transverse region with respect to $\theta_{t} = Z_{0} + C_{0} + C_$

Histogram styles (Histogram)

Histogram Styles (Bars)

Histogram Styles(2D)

