ATLAS Review and Main Results

Ryszard Stroynowski Southern Methodist University

Standard Model

Matter is made of quarks and leptons

- •Their interactions are governed by Gauge theories
 - $-SU(2)_L \times U(1)$ Electroweak
 - -& *SU*(3) : Strong

The forces are transmitted by Gauge bosons:

- $-\gamma, W^{\pm}, Z^{0}$: Electroweak -Gluon: Strong
- Particles receive mass through interaction with the Higgs boson

ELEMENTARY PARTICLES

Standard Model Lagrangian

$$\begin{aligned} \mathcal{L}_{GWS} &= \sum_{f} (\bar{\Psi}_{f} (i\gamma^{\mu} \partial \mu - m_{f}) \Psi_{f} - eQ_{f} \bar{\Psi}_{f} \gamma^{\mu} \Psi_{f} A_{\mu}) + \\ \frac{g}{\sqrt{2}} \sum_{i} (\bar{a}_{L}^{i} \gamma^{\mu} b_{L}^{i} W_{\mu}^{+} + \bar{b}_{L}^{i} \gamma^{\mu} a_{L}^{i} W_{\mu}^{-}) + \frac{g}{2c_{w}} \sum_{f} \bar{\Psi}_{f} \gamma^{\mu} (I_{f}^{3} - 2s_{w}^{2} Q_{f} - I_{f}^{3} \gamma_{5}) \Psi_{f} Z_{\mu} + \\ -\frac{1}{4} |\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - ie(W_{\mu}^{-} W_{\nu}^{+} - W_{\mu}^{+} W_{\nu}^{-})|^{2} - \frac{1}{2} |\partial_{\mu} W_{\nu}^{+} - \partial_{\nu} W_{\mu}^{+} + \\ -ie(W_{\mu}^{+} A_{\nu} - W_{\nu}^{+} A_{\mu}) + ig' c_{w} (W_{\mu}^{+} Z_{\nu} - W_{\nu}^{+} Z_{\mu}|^{2} + \\ -\frac{1}{4} |\partial_{\mu} Z_{\nu} - \partial_{\nu} Z_{\mu} + ig' c_{w} (W_{\mu}^{-} W_{\nu}^{+} - W_{\mu}^{+} W_{\nu}^{-})|^{2} + \\ -\frac{1}{2} M_{\eta}^{2} \eta^{2} - \frac{g M_{\eta}^{2}}{8M_{W}} \eta^{3} - \frac{g'^{2} M_{\eta}^{2}}{32M_{W}} \eta^{4} + |M_{W} W_{\mu}^{+} + \frac{g}{2} \eta W_{\mu}^{+}|^{2} + \\ +\frac{1}{2} |\partial_{\mu} \eta + iM_{Z} Z_{\mu} + \frac{ig}{2c_{w}} \eta Z_{\mu}|^{2} - \sum_{f} \frac{g}{2} \frac{m_{f}}{M_{W}} \bar{\Psi}_{f} \Psi_{f} \eta \end{aligned}$$

+

3

The problems with the Standard Model

- What is the origin of the electroweak symmetry breaking
- Loop corrections blow up at high energies
- Where is the Higgs boson ?

Expect new physics at the energy of ~ 1 TeV

The problem of the origin of mass

- The problem of mass scales
- Dark matter
- Evolution of the universe
- Particle-antiparticle asymmetry in the universe
- Unification of gravity with the other forces

Dark Side of the Universe: Dark Matter

Dark Matter appears to be weakly interacting massive particle Lightest SUSY particle has these properties !

5

Why High Energy Accelerators?

- Reproducible results
- Large mass $E=mc^2$
- Spatial resolution $\lambda = h/p$
- Elementary particles may be a source of dark matter

Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, Baku, IFAE Barcelona, Belgrade, Bergen, Berkeley LBL and UC, HU Berlin, Bern, Birmingham, UAN Bogota, Bologna, Bonn, Boston, Brandeis, Brasil Cluster, Bratislava/SAS Kosice, Brookhaven NL, Buenos Aires, Bucharest, Cambridge, Carleton, CERN, Chinese Cluster, Chicago, Chile, Clermont-Ferrand, Columbia, NBI Copenhagen, Cosenza, AGH UST Cracow, IFJ PAN Cracow, SMU Dallas, UT Dallas, DESY, Dortmund, TU Dresden, JINR Dubna, Duke, Edinburgh, Frascati, Freiburg, Geneva, Genoa, Giessen, Glasgow, Göttingen, LPSC Grenoble, Technion Haifa, Hampton, Harvard, Heidelberg, Hiroshima IT, Indiana, Innsbruck, Iowa SU, Iowa, UC Irvine, Istanbul Bogazici, KEK, Kobe, Kyoto, Kyoto UE, Lancaster, UN La Plata, Lecce, Lisbon LIP, Liverpool, Ljubljana, QMW London, RHBNC London, UC London, Lund, UA Madrid, Mainz, Manchester, CPPM Marseille, Massachusetts, MIT, Melbourne, Michigan, Michigan SU, Milano, Minsk NAS, Minsk NCPHEP, Montreal, McGill Montreal, RUPHE Morocco, FIAN Moscow, ITEP Moscow, MEPhI Moscow, MSU Moscow, LMU Munich, MPI Munich, Nagasaki IAS, Nagoya, Naples, New Mexico, New York, Nijmegen, Northern Illinois, BINP Novosibirsk, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Olomouc, Oregon, LAL Orsay, Osaka, Oslo, Oxford, Paris VI and VII, Pavia, Pennsylvania, NPI Petersburg, Pisa, Pittsburgh, CAS Prague, CU Prague, TU Prague, IHEP Protvino, Regina, Rome I, Rome II, Rome III, Rutherford Appleton Laboratory, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinshu, Siegen, Simon Fraser Burnaby, SLAC, South Africa, Stockholm, KTH Stockholm, Stony Brook, Sydney, Sussex, AS Taipei, Tbilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Tokyo Tech, Toronto, TRIUMF, Tsukuba, Tufts, Udine/ICTP, Uppsala, UI Urbana, Valencia, UBC Vancouver, Victoria, Waseda, Washington, Weizmann Rehovot, FH Wiener Neustadt, Wisconsin, Wuppertal, Würzburg, Yale, Yerevan

ATLAS Detector

2T solenoid, toroid system Tracking to $|\eta|=2.5$, calorimetry to $|\eta|=4.9$

ATLAS Experimental observables

Electron	isolated track with matching em cluster
	η , ϕ from tracking, energy from calorimeter
Muon	isolated, combined track (ID and muon
	spectrometer)
Photon	isolated em cluster (no track) pointing to
	the vertex
2 tracks conve	ersion: 2 electrons fitted to separated vertex
1 track conve	rsion: 1 TRT track with with high ionization
Tau (hadronic)	tracking + calorimeter signal shape
Jet	energy deposits in calorimeters
	anti- k_T algorithm, p_T (jet) > 25 GeV
b-jet	jet with displaced vertex, $L / \sigma(L) > 5.7$
E _T ^{miss}	energy imbalance in transverse plane from
	topological clusters in the calorimeters

Details

Detector

- In time LAr pileup
- Out of time pileup

multiple (4-20) interactions per bunch crossing

- requirements: precise vertex determination, photon pointing, spatial isolation of electron and photons
 calorimeter signal collection time spans up to 8 bunch crossings
- → signal shape matching with expectations
- Photon conversions about 60% of photons converts in the tracker material before reaching calorimeter
 - → early conversions reconstructed from 2 tracks, energy measured in the calorimeter
 - \rightarrow late conversions reconstructed from single tracks in TRT
 - Cosmic muons removed by the vertex and timing constraints
- Calorimeter calibration

٠

- electrons Use calibration signals + Geant4 simulations based on test beam results + "tag and probe" signals from J/psi + Z
- photons use Geant4 simulation + fudge factors to fix shower shape
- muons simulations + J/psi and Z signals
- jets simulations
- missing ET simulations

Data Collection

Superb LHC performance Data collection efficiency >95% 2010 46 pb⁻¹ 2011 March 295 pb-1 July 1.50 fb⁻¹ August 31 2.61 fb⁻¹

Luminosity measured with calorimeters + several dedicated detectors. Calibrated with the Van der Meer beam-beam scans.

ΔL/L = ±3.4% (2010) ΔL/L = ±3.7% (2011, preliminary)

 N_{ev} = ∫Ldt σ A ε

Trigger and pileup

Primary triggers

Inclusive muons pT > 18 GeV Inclusive jets Missing energy Diphotons

Inclusive electrons pT > 20 GeV 22 GeV pT > 180 GeV $E_{T}^{miss} > 60 \text{ GeV}$ p_T > 20 GeV

+ several additional and monitoring triggers

Pileup 5-14 interactions per beam crossing on average

Physics results

•Impossible to discuss all recent results. Within last 18 months ATLAS Collaboration produced 74 journal papers and 240 conference notes. The following are selected recent highlights only.

•General method of searching for new physics is to look for deviations from the expectations and to interpret the results within a specific model.

•First step is to verify that we understand well the "known" physics: multiplicity, particle spectra, jet distributions, vector boson production, t tbar production,

QCD and the Standard Model

from N. Varelas, EPC2011

QCD - particle and jet production

multiplicity

Particles within jets, pt

jets, fragmentation

Impressive agreement of data with QCD Monte Carlo predictions over many (up to 12) orders of magnitude.

arXiv1107.3311

diphotons

Jets, pt

Dijet mass cross section Comparison to NLO + non-perturbative corrections

ATLAS-CONF-2011-047

Gauge bosons

$Z \rightarrow e e$

$W \rightarrow \mu v$

Cross sections

Triple gauge coupling

No deviations from SM

Theory - NLO or higher

SUPERSYMMETRY

•Extension of the Standard Model (SM) - solves many theoretical problems unification of gauge couplings, cancellation of fermion and boson contributions to Higgs mass (hierarchy problem),....

•Each SM particle has a partner with spin that differs by $\frac{1}{2}$.

•If R parity is conserved $R = (-1)^{2j+3B+L}$ SUSY particles are produced in pairs and lightest one is stable.

•The minimal extension of the SM (MSSM) introduces 105 new parameters. SUSY is predictive about spins and couplings but says nothing about the masses.

•Large number of models with additional assumptions that reduce the numbers of free parameters (e.g., mSUGRA, CMSSM have 5 parameters). For most of the models a typical decay chain has lowest mass supersymmetric neutral particle that escapes the detection

 \rightarrow missing energy (E_T^{miss}). Bonus: dark matter candidate

Electron with $p_T > 25$ GeV and at least 3 jets with $p_T > 60$, 25, 25 GeV.

Observed and expected 95% CL exclusion limits

ATLAS-CONF-2011-090

1400

m_o [GeV]

SUSY cont.

Missing E_T Events with one lepton + jets ATLAS-CONF-2011-090

Search for squarks and gluinos Events with jets and no leptons ATLAS-CONF-2011-086

Missing Transverse Energy, E_T^{miss}

SM - W $\rightarrow \mu\nu$: Missing transverse energy spectrum. No sign of deviation from known processes

More SUSY exclusion limits

Models with large mixing of right handed and left-handed squarks expect large cross section For heavy quark jets. Signature: b-jets, no leptons and and large missing E_T

ATLAS-CONF-2011-098

L dt = 0.83 fb⁻¹.vs=7 TeV

800 الم^ا س^ر (GeV [pb](CL Observed 95% CL, limit 10² Expected CL_limit section 600 **ATLAS** Preliminary 10 500 0 lepton, 3 jets cross b-jet analyses 400 Maximum 300 10 200 100 Ω ⁷⁰⁰ m_g [GeV] 500 600 200 300 400 800

 \tilde{g} - \tilde{g} production, $\tilde{g} \rightarrow 2b + \tilde{\chi}$, $m(\tilde{q}) >> m(\tilde{g})$

Observed and expected 95% CL exclusion Limits in the mass sbottom-gluino plane 95% CL upper cross section limits in pb for gluino masses > 200 GeV

Bump hunting

Method

• Compare the invariant mass distribution with an expected signal from a new resonance of a fixed mass.

For a given distribution, simulate signal and vary the mass to obtain the limit.
Include probability of statistical fluctuations for both signal and background to compare the measured limit with an expected one.

Lepton pairs	search for Z'
Lepton + E _T ^{miss}	search for W'
Di-photon	Higgs, search for gravitons, extra dimensions,
Di-jet	search for W', Z', squarks, gluinos, excited quarks,
e - µ	search for exotic states
ZZ, WW	Higgs, exotic states,

Search for sequential SM-like bosons

arXiv:1108.1316, 1582,

Di-muon mass

 $M_{Z'}$ > 1.83 TeV @ 95% CL for SSM $M_{Z'}$ > 1.50 - 1.64 TeV @ 95%CL for E₆

Search in transverse mass

 $M_{T} = \sqrt{2p_{T}^{l}E_{T}^{miss}(1 - \cos \Delta \phi_{l,E_{T}^{miss}})}$

Search for di-jet resonances

Enhancement in the m_{jet-jet} spectrum Interpretation: excited quarks, axigluons, color octet scalars

95	95% CL limits in TeV		
model	expected	observed	
q *	2.77	2.91	
axigluon	3.02	3.21	
color octet	1.71	1.91	

Search for di-jet resonances associated with W

Signal: 2 jets + lepton + neutrino electron: $E_{\tau} > 25 \text{ GeV}$, $|\eta| < 2.47$, $\Delta R = 0.3$ muon: $p_T > 20 \text{ GeV}$, $|\eta| < 2.4$, $\Delta R = 0.2$ anti- k_T algorithm, R = 0.4, m_T > 40 GeV jet: $E_{\tau}^{miss} > 25 \text{ GeV}$

2-jet invariant mass

GeV Events / 10 GeV Ldt = 1.02 fb⁻¹,√s=7 TeV ATLAS Preliminary 6000 events / 5 WW + WZSM background L dt = 1.02 fb W+jets QCD data 5000 $e+\mu$, Njet = 2 N_{iet} = 10 single top 4000 Total SM (Syst. Unc.) ^{la.*}. **(† **(† 3000 2000 1000 **ATLAS** Preliminary 10² stat. sig. Data/MC 1.4 1.2 0.8 ignificance of interval: 0.33c 0.6 50 100 150 250 400 200 0 200 300 350 100 150 250 M_{ii} [GeV] M_{ii} [GeV]

Signal/background ratio

No evidence for CDF bump but the WW/WZ associated production rate is small

ATLAS-CONF-2011-097

300

Search for exotics in lepton pairs

Same charge pairs

Same sign di-lepton mass sources: Majorana neutrinos universal extra dimensions 4th generation down-like quarks

Opposite charge pairs

Opposite charge e – μ resonance sources: sneutrions R-parity violating SUSY models Z' with lepton violating interactions

			· · · · · · · · · · · · · · · · · · ·
	MSUGRA/CMSSM : 0-lep + E	Lat of th ^{at} (2011) The level	$\overline{a} = \overline{a}$ mass
	Simplified model (light 2) : 0.len + F	Fund the first " (1999) Stration in and	
	Simplified model (light 2): 0-lep + E	Control of the state of the sta	ATLAS ATLAS
	Simplified model (light 2): 0-lep + E	Cut the full spectra spectra and	Prelminary Prelminary
	Simplified model (light χ_j): 0-lep + $E_{\chi_{miss}}$	Contraction (sector presidential product and presidential product and product	mass for mb) < 600 GeV/
	Cimpl mod (auto) : Lion + bilate + E	Lot of the course of the second	$[1 dl = (0.021 - 1.60) b^{-1}$
\geq	Dhana MCCM (light (^A) : 2-log CC + E	Contraction (contraction of the second	2 De = (0.031 - 1.00) ID
8	Pheno MSSM (light 2) 2 lop OS + E Timins		vis = 7 TeV
\$	GMSB (GGM) + Simpl. model 199 + F	1445 PC [2010] [#104-1105.5208]	Margan Q mass
	Timins	12-06 pc [2010] [#/XIV-1107.0681]	Sectory g mass
	GMSB : stable t	Crd1 96. [5010] [9/07-1106.4rd9[36 GeV	T mass
	Stable massive particles : H-hadrons	C+34 26* [2010] [#/XIV-1100.1984]	g mass
	Stable massive particles : H-hadrons	2+34 pb * (2010) [#X0V:1100.1984]	servery o mass
	Stable massive particles : H-hadrons	C+34 pb* (2010) (#X0+1103.1984)	steow I mass
	HPV (A ₃₀ =0.01, A ₃₀₂ =0.01) : high-mass e _i	CHERP ID (2011) (Preliminary)	weaver v, mass
	Large ED (ADD) : monojet	CHLODIN" (2011) (ATLAS-CONF-2011-DHI)	aa wy M _D (6=2)
8	$OED : \gamma\gamma + E_{T,miss}$	C+36 pb* (2010) [#X09:1107.0581]	Compact. scale 1/H
8	RS with $k/M_{p_1} = 0.1 : m_{p_1}$	L+36 (6-1 (2010) (ATLAS-COMF-2011-614)	see sev Graviton mass
8	RS with $k/M_{p_1} = 0.1 : m_{ed/p_1}$	CHL08-1.21 (61 (2011) [HKH-1108-1982]	Lastev Graviton mass
2	HS with $g_{\text{groups}}/g = -0.20$: $H_{\text{T}} + E_{\text{T,miss}}$	Get.04 fb ^(*) (2011) (Preliminary)	Me Gwy KK gluon mass
8	Quantum black hole (QBH) : m _{dijet} , F(x)	2+86 pb ⁻¹ (2010) [#X0V:1108.5864]	asr two M _D (8=6)
18	QBH : High-mass of t + x	6+33 p61 (2010) (ATLAS-CONF-2011-818)	and rev. M _D
14	ADD BH $(M_{p_1}/M_{p_2}=3)$: multijet Σp_{γ_1} , N_{pers}	6+85 (b ⁺¹ (2010) (ATLAS-CONF-8011-868)	таттых M ₀ (8=6)
	ADD BH (M _{in} /M ₀ =3) : SS dimuon N _{ch. pml}	6+01 (6+7 (2010) (ATLAS-COMF-2011-018)	1.20 TeV M _D (8=6)
	qqqq contact interaction : $F_{\chi}(m_{d w})$	2+35 pb ⁺⁺ (2010) [arXiv:1100.5864 (Buywelet	(init) 6.7 TeV A
g.	qqµµ contact interaction : m	6+42 (6*** (2010) (#X0+.1104.4088)	4 a two in A
2	SSM : m _{en/ep}	2+1.08-1.21 8 ²¹ (2011) [#334-1108.1882]	uanv. Z' mass
.N.,	SSM : m _{TAb}	4+1.04 TV ⁻¹ (2011) (+XV-1108.1016)	als nv. W'mass
0	Scalar LQ pairs (6=1) : kin. vars. in eejj, evjj	4+86.96 ¹¹ (2010) [arXiv:1104.8681]	swaw. 1 ^{er} gen, LQ mass
	Scalar LQ pairs (B=1) : kin. vars. in µµ[], µv]]	4+86.96 ¹¹ (2010) [arXiv:1104.8681]	versev 2 ¹⁰ gen. LQ mass
	4 th generation : coll. mass in Q ₁ Q ₁ → WqWq	2+37 (b)* (2010) (ATLAS-CONF-3011-023)	zro Gev Q, mass
	4 th generation : d ₁ d ₂ → WtWt (2-lep SS)	(+34.96 ^{**} (2010) [#10+1108.0088]	Below d, mass
	$T\overline{T}_{max} \rightarrow t\overline{t} + A_nA_n : 1-lep + jets + E_{Tmin}$	(L+1.04 fb ⁻¹ (2011) [Preliminary]	top day T moss
×	Major. neutr. (LRSM, no mixing) : 2-lep + jets	2+34 (6" (2010) (ATLAS-COMP-2011-115)	masser N mass (m(W _a) = 1 TeV)
ALC: N	Major. neutr. (LRSM, no mixing) : 2-lep + jets	2+34 pb* (2010) [ATLAS-CONF-2011-115]	Tate two W mass (230 < m(N) < 700 GeV)
0	H ⁱⁿ (DY prod., BR(H ⁱⁿ →µµ)=1) : m	Coll & Roll (2011) (Pretty Inary)	The Gev H ¹¹ mass
	Excited quarks : maint	2+631 %" (2011) (ATLAB-CONF-2011-044)	2.81 TeV q* mass
	Axigluons : male	2+681 %" (2011) (ATLAS-CONF-2011-698)	aar tev. Axigluon mass
	Color octet scalar : maint	4-6.81 %" (2011) (ATLAS-CONT-2011-046)	say two Scalar resonance mass
		10 ⁻¹	1 10

ATLAS Searches* - 95% CL Lower Limits (Lepton-Photon 2011)

*Only a selection of the available results leading to mass limits shown

Mass scale [TeV]

Higgs boson

Electroweak theory does not predict Higgs mass

Assumption that gauge boson scattering satisfies s-wave unitarity provides an upper limit

$$M_{\rm H} \le (8\pi \sqrt{2/3G_{\rm F}})^{1/2} \approx 1 {\rm ~TeV}$$

If bound is not satisfied weak interactions among W, Z, H become strong at 1 TeV scale.

Scalar boson

Mass dependent couplings

Production cross sections

Handbook of LHC Higgs Cross Sections arXiv:1101.0593v2 [hep-ph] (work in progress) Dominant diagrams

Higgs Decays

Higgs final state cross sections

Uncertainties ~25% missing higher order corrections inner band - QCD scale (α_s) outer band - PDF uncertainty

If 4th generation exists all particles must be heavy → enhanced loop in gluon fusion Higgs production

Narrow width assumed for $M_H < 500 \text{ GeV}$ Theoretical challenge – many interference effects not calculated

ATLAS Higgs searches

One of the main motivation for building LHC and ATLAS ATLAS searches in many channels:

 $H \rightarrow \gamma\gamma$ Rozmin, Renat, RS $H \rightarrow ZZ^*$ \rightarrow IIII, IIvv, Ilqq (l = e, μ)Julia, Ryan, RS $H \rightarrow WW^*$ \rightarrow Ivlv, IvqqJulia, Ryan, RS $H \rightarrow \tau\tau$ $WH/ZH, H \rightarrow bb$ MSSM $H \rightarrow \tau\tau$ MSSM $H \rightarrow \tau\tau$ Aidan, Steve

Combination of channels Combination with CMS

Backgrounds

Process	Dominant Backgrounds
Н→үү	γγ, γ-jet
H→ττ	Z→ττ, top, EW, QCD
H→bb	Vbb, V+jets, top
H→WW→lvlv	WW, V+jets, top
H→WW→lvqq	WW, V+jets, top
H→ZZ→IIII	ZZ, top, Zbb
H→ZZ→llvv	ZZ/WZ/WW, top, Z+jets
H→ZZ→llqq	ZZ/WZ/WW, top, Z+jets
MSSM TT	Z→ττ, top, EW, QCD
H±	top

 $\sigma\left(\text{nb}\right)$

Expected signal - narrow peak Backgrounds: $\gamma\gamma$ production γ -jet events jet-jet events Drell-Yan

No significant excess Observed upper limit $2 \times \sigma_{SM}$ to $6 \times \sigma_{SM}$

$H \rightarrow 4$ leptons: 4e, 4 μ , 2e2 μ , 2 μ 2e

Signal selection: 4 leptons with one pair of opposite charged leptons consistent with Z hypothesis "Golden channel" because backgrounds small Z Z*, Z + jets, t tbar

ATLAS Preliminary — Observed CL_s H \rightarrow ZZ^(*) \rightarrow 4I Expected CL_s JLdt = 1.96-2.28 fb⁻¹ \pm 1 σ \sqrt{s} =7 TeV \pm 2 σ 10 10 200 300 400 500 600 m_H [GeV]

Run Number: 183081, Event Number: 10108572

Date: 2011-06-05 17:08:03 CEST

SM Higgs Exclusion Limits

Combined constraints

ATLAS excludes at 95%CL 146 < m_H < 232 GeV 256 < m_H < 282 GeV 296 < m_H < 466 GeV

Standard Model with heavy 4th generation

Enhanced expected signal Stronger suppression

Summary

- Limits for new physics ~ >1 TeV (>3 TeV for some exotic models).
- No evidence for Supersymmetry so far.
- Search for SM Higgs boson narrowed its possible mass range.
- LHC works better than expected. ATLAS performance is excellent. Expect 4-5 fb⁻¹ before the end of the year
- Wealth of data allows for new ideas to be tested.
- Exciting times.

Backup slides

Exotic Monojets

Monojet – high E_T jet + E_T^{miss}
Standard Model process: single jet + Z with Z → v v
Ahmed-Arkani, Dimopulos, Dvali model with extra dimensions
monojet p_T is balanced by graviton that does not interact with detector.

Model is characterized by M_D a 4 + n-dimensional Planck scale

No excess above SM processes

Cross section limits for 2 and 4 extra dimensions

A "new" set of particles, known as "Supersymmetric particles", could explain

the dark matter (but NOT the dark energy!)

Source: Robert Kinshner Source: NASA/WMAP Science Team