In Search of a Charged Higgs Boson

Stephen Sekula SMU Presented at the Physics Department Seminar September 26, 2011

Programme

- Theoretical Motivation
 - Standard Model (SM)
 - Beyond the SM
 - Supersymmetry (SUSY) and the MSSM Higgs scenario(s)
- Low-energy implications
 - how does a charged Higgs affect precision physics at low energy?
- The direct test at high energy
 - The Large Hadron Collider and the ATLAS Experiment
 - Direct search for a "low mass" H+

The Standard Model Higgs

Mass is introduced in the Standard Model by introducing a complex isodoublet, Φ , whose self-interactions provide a mechanism for spontaneous symmetry breaking and gives rise to fermion and boson masses

Adds 4 degrees of freedom to the Standard Model, which by a clever gauge transformation can be made to appear at the three longitudinal polarizations of the W⁺, W⁻, and Z⁰ bosons and in the mass of a new scalar boson, the Higgs.

$$V(\Phi) = \mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \longrightarrow m_{H} = \sqrt{-2\mu^{2}}$$

$$m_{H} = \sqrt{-2\lambda v^{2}} \longrightarrow Vacuum Expectation
Value (VEV) of the Hi
Field, v = 246 GeV$$

the Higgs

ATLAS-CONF-2011-135

Red region indicates central value + 1σ for indirect prediction of Higgs mass.

Extending the Standard Model

- We have good reason to believe the SM is incomplete
 - e.g. neutrino mass/mixing, divergence of corrections to Higgs mass, dark matter, dark energy, that pesky gravity problem . . .
- Extending the SM to solve some of these problems typically means adding more fermions and bosons
 - if the Higgs mechanism is the origin of mass, you need more Higgs bosons to give mass to all the new particles in any extension

Minimal Supersymmetric Standard Model

- Extend the SM with Supersymmetry
 - adds a fermion for every boson, a boson for every fermion
- Requires the addition of at least one more Higgs field doublet
 - adds 4 more degrees of freedom (read: more unknowns that must be measured)
 - leads to 5 physical Higgs boson states:
 - $H^{0}, h^{0}, A^{0}, H^{+}, H^{-}$
 - The MSSM requires that up-type fermions couple to one doublet and down-type fermions couple to the other ("Type-II two-Higgs-doublet Model" or "Type-II 2HDM")

The Charged Higgs Boson

- Two of the new states are spin-0 and carry electric charge: H^{\pm}
- General statement:
 - there is no such "beast" in the Standard Model
 - observation of a charged scalar gauge boson would be unambiguous evidence of physics beyond the SM!
- Decay/Production Rates
 - depend on charged Higgs mass and the parameter tan β : VEV for doublet that

couples to down-type fermions (d,s,b,e,μ,τ)

 $\tan \beta \equiv \frac{v_2}{v_1}$ VEV for doublet that couples to up-type fermions (u,c,t, v)

Charged Higgs Decay

- Decay modes
 - $H^{\pm} \rightarrow \tau \nu$: dominates for large tan β
 - this mode can be used to constrain tan β from above
 - $H^{\pm} \rightarrow c \bar{s}$: higher rate at low tan β
 - can be used to constrain $tan\beta$ from below
 - $H^{\pm} \rightarrow t^{(*)}\overline{b}$:
 - also useful at low $tan\beta$
 - difficult due to off-shell top at low H mass and in general due to top decay to many jets/leptons + MET

- One of the "benchmark points" in SUSY space for LHC searches
 - chosen to obtain the largest possible Higgs boson mass as a function of tan β (e.g. m, up to ~140GeV)

$$\begin{split} m_t &= 174.3 \text{ GeV}, \quad M_{SUSY} = 1 \text{ TeV}, \quad \mu = 200 \text{ GeV}, \quad M_2 = 200 \text{ GeV}, \\ X_t^{\text{OS}} &= 2 \, M_{SUSY} \; \text{(FD calculation)}, \quad X_t^{\overline{\text{MS}}} = \sqrt{6} \, M_{SUSY} \; \text{(RG calculation)} \\ A_b &= A_t, \quad m_{\tilde{g}} = 0.8 \, M_{SUSY} \; . \end{split}$$

arXiv:hep-ph/0202167 (Eur.Phys.J.C26:601-607,2003) and arXiv:hep-ph/9812472 (Eur.Phys.J.C9:343-366,1999)

Trends in the decay branching fractions of H+ for m_{H+} =120GeV (computed using FeynHiggs in the m_h -max scenario of the MSSM)

P. Gutierrez,

Low-Energy Implications

From Maria Różańska, CHARGED 2010

FCNC process in SM occurs via loop diagram

new physics can enter with size comparable to SM contributions

ⓒ *BF*-enhancement due to the amplitudes with H^{\pm} depends on m_{H[±]} but is almost independent of tanβ

⊗ more NP processes complicate the interpretation...

but all above the SM prediction

r_H= 1.37±0.39

¹ HFAG, <u>http://www.slac.stanford.edu/xorg/hfag</u> ² V_{ub} /=(4.32±0.16±0.29)×10⁻³ HFAG ICHEP08 f_B =190±13MeV HPQCD arXiv:0902.1815

From Maria Różańska, CHARGED 2010

Indirect constraints would suggest that a charged Higgs is excluded whose mass is <300 GeV $(\tan \beta < 25)$ or whose mass is less than [300,1000] GeV for tan $\beta > 25$. . .

But one must always be careful with indirect constraints. We have an unprecedented data sample for direct search, and we should use it!

The Large Hadron Collider @ CERN in Geneva, Switzerland

Currently accelerates 1380 proton bunches (~10¹¹ per bunch), separated by 50ns, up to 7 TeV in energy (designed for 14 TeV)

The ATLAS Experiment

Since much of what I will be talking about today is based on jet reconstruction, it's useful to note that using jets with $|\eta|>2.5$ means risking incomplete containment of the jets in the EM and Hadronic Calorimeters.

STRATEGY

- Require >= 4 jets
- Require >= 1
 b-tagged jet
- Require a well
 - identified tau lepton
- Require significant missing transverse energy (MET)
- Combine (jj)b into a top quark candidate
- Study the tau+MET system

In the next part of the talk I'll focus in on a few key features of the reconstruction: tau identification and background rejection/estimation.

Simulations

Process	Generator	Cross section [pb]
$t\bar{t} \text{ with } \geq 1\ell$	MC@NLO	89.4
single-top (s, t, Wt channel)	MC@NLO	21.4, 1.41, 14.6
$W \rightarrow \ell \nu + \text{jets}$	ALPGEN	$3.1 \cdot 10^{4}$
$Z/\gamma^* \rightarrow \ell\ell + jets$	ALPGEN	$3.2 \cdot 10^{3}$
$t\bar{t} \rightarrow bH^{\pm}bW$ with $H^{\pm} \rightarrow \tau v$	PYTHIA	29.6

After all our selection criteria are applied (see next several slides), we find this dominates over all other backgrounds.

One notable omission from this table: *generic multi-jet QCD*! More on that in a few slides . . .

Tau Reconstruction

- Tau Decay
 - mass: 1.777 GeV/c², with electric charge (either ±e)
 - 35% leptonic final states ($e^+ \nu \nu$, $\mu^+ \nu \nu$), 65% hadronic final states (e.g. $\pi^+ \nu$, $\pi^+\pi^0\nu$, $\pi^+\pi^-\pi^+\nu$)
 - hadronic final states will superficially resemble jets \rightarrow jet background expected to be the largest problem
- Tau Reconstruction
 - seeded from either a track (trajectory left by a charged particle), a calorimeter jet candidate, or both
 - identification uses additional variables
 - e.g. mass (tracks, clusters), momentum of the leading (highest-pT) track, size and distribution of energy in calorimeters (EM and hadronic)

These and other variables are combined using multivariate algorithms (e.g. boosted decision trees or likelihood ratios) to define a final selector output.

ATLAS-CONF-2010-086

Run Number: 152409, Event Number: 8186656

Date: 2010-04-05 12:28:45 CEST

31

ATLAS-CONF-2010-086

Tau Selection for $H^+ \rightarrow \tau^+ \nu$

- We use the likelihoodbased selector for the charged Higgs search
- Improves on background efficiency by ~order of magnitude while maintaining an acceptable signal efficiency
- We measure our τ signal efficiency using $Z \rightarrow \tau \tau$ events in data and find ~30% efficiency 33

Baseline Event Selection

- Trigger:
 - require at least 1 tau object (pT>29 GeV) and MET>35 GeV
- Event refinement
 - >= 4 jets (excluding tau jets) with pT>20 GeV and $|\eta|{<}2.5$
 - 1 tight-identified tau jet, 1 or 3 prongs, pT>35GeV and $|\eta|{<}2.3$
 - · veto events containing identified electrons or muons
 - MET>40 GeV
 - Large fluctuations in the absolute measured MET are possible, event-by-event, due to the limited energy resolution on jets, etc. We reject large METs due to this effect by requiring

$$\frac{MET}{(1/2)\sqrt{\sum E_T^{\text{visible}}}} > 8 \,\text{GeV}^{1/2}$$

- Top mass, the mass of the highest-pT (jj)b system, must satisfy [120,240]GeV
- Use transverse mass of the tau+MET system to finalize the analysis

Transverse Mass

FIG. 2. $\sigma^{-1}d\sigma/m_T$ for M=80 GeV/ c^2 and $p_T^W=0$ GeV/ c^2 . The dashed, solid, and dot-dashed lines refer to $\Gamma=1$, 2.5, and 5 GeV/ c^2 , respectively.

General Definition:

$$M_{T}^{2} \equiv (E_{T}^{l} + E_{T}^{v})^{2} - (\vec{p}_{T}^{l} + \vec{p}_{T}^{v})^{2}$$

Specific to $W \rightarrow I v$ (where final-state particles are essentially "massless" on these energy scales):

$$M_T^2 \equiv 2 p_T^l E_T^{miss} (1 - \cos \Delta \phi)$$

Transverse mass of the tau+MET system in tau + jets + MET events

QCD Background Estimate

- MC Simulations of the QCD background are insufficient to understand this background
 - too few events are generated for a precision study few/none survive all of our selection criteria
 - variable shapes not in great agreement at early stages of the selection when there is more QCD MC available
 - use data-driven method to study this background
- Method define a "control sample" [A. Randle-Conde]
 - invert the b-tagging and tau selection cuts
 - No b-tagged jet AND no tau candidate passing the nominal criteria
 - subtract tt and other well-modeled MC shapes from MET distribution
 - Look at MET in these control events and develop a template to fit the MET shape in baseline-selection events

Transverse mass of the tau+MET system in tau + jets + MET events

determined from other data-driven methods . . .

Systematics

Quantity	Uncertainty	
Luminosity [36]	±3.7%	
Jet energy resolution (JER)	$\pm (10 - 30)\%$, depending on $p_{\rm T}$ and η	
Jet energy scale (JES)	$\pm (2.5 - 14)\%$, depending on $p_{\rm T}$ and η	
$E_{\mathrm{T}}^{\mathrm{miss}}$	Uncertainty due to scale/resolution uncertainties (e.g. JES);	
	additional 10% of pile-up-related uncertainty	
b-tagging efficiency SF unc.	$\pm (0.05 - 0.15)$, depending on $p_{\rm T}$ and η	
<i>b</i> -tagging mistag rate	$\pm (0.16 - 0.39)$, depending on $p_{\rm T}$ and η	
b jets JES uncertainty	an additional $\pm 2.5\%$ on top of the standard JES	
au identification efficiency	$\pm (8.5 - 9.9)\%$, depending on $p_{\rm T}$	
au energy scale	$\pm (4.5 - 6.5)\%$, depending on $p_{\rm T}$, η , number of associated tracks	
au electron mis-id correction factors	$\pm (23 - 100)\%$, depending on η ; for one-prong only	
$\tau + E_{\rm T}^{\rm miss}$ trigger	±9%	
e reco. efficiency SF	$\pm (0.7 - 1.8)\%$, depending on η	
e identification efficiency SF	$\pm (2.2 - 3.8)\%$, depending on $E_{\rm T}$ and η	
e energy scale	$\pm (0.3 - 1.8)\%$, depending on $p_{\rm T}$ and η	
e energy resolution	$\pm (0.5 - 2.4)\%$ (additional constant term), depending on $p_{\rm T}$ and η	
μ reco. efficiency SF	$\pm (0.25 - 0.55)\%$, depending on the data-taking period	
μ momentum scale and resolution	$\pm (0.4 - 0.7)\%$, depending on η	
Initial/final state radiation modelling	-16% / +19% (tt signal and background)	
Acceptance	$\pm 4\%$ (background), $\pm 10\%$ (signal)	
$t\bar{t}$ cross section	$165^{+4}_{-9}(\text{scale}) {}^{+7}_{-7}(\text{pdf}) \text{ pb}$	

Comparison to other measurements

Comparison (continued)

ATLAS tau+lepton search was not ready in time for summer conferences but will be ready for our publication on this topic.

Comparison (cont.)

ATLAS-CONF-2011-094

ATLAS is pursuing other final states besides τν

Future Directions/Issues

- Increased Pileup Collisions
 - we are already at $L = 3.3 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
 - corresponds to $<\mu> \sim$ 11 per crossing
 - at L = 2 x 10³⁴ cm⁻²s⁻¹ (~2016), <µ> ~ 46
 - Impact on MET, tau, and jet triggers
 - Impact on offline reconstruction of MET, etc.
 - We are involved in trigger rates and object triggering studies for these conditions
- New methods for searching
 - H+ \rightarrow W⁺Z⁰
 - $H^+ \rightarrow tb$
 - $H^+ \rightarrow SUSY???$

Conclusions

- An exciting time for discovery-oriented physics
 - when keeping up with the data becomes your biggest problem, you're living in a golden age
- Direct tests of SUSY/MSSM hypothesis are possible at the target energy scales
 - SUSY is supposed to be interesting once you get to around 1 TeV
 - Here we are where are you, SUSY?
- Testing the Higgs Mechanism
 - The race to discover a SM Higgs is hotter than ever
 - If the Higgs is the mechanism for the attainment of mass, and there are more particles out there (SUSY or no), then we need more Higgses
- Unprecedented sensitivity to t \rightarrow Hb
 - We're approaching the 1% level in sensitivity precision tests are coming
 - Need to open up the space for higher-mass charged Higgs searches