

Bolometric Search for Neutrinoless Bouble Beta Decay

Luca Pattavina

INFN - Milano-Bicocca, ITALY

December 12th, 2011 Seminar @ SMU

luca.pattavina@mib.infn.it

OUTLINE

- * Neutrino physics & DBDOv
- * DBDOv sensitivity
- * DBDOv bolometric detectors
 - * CUORE & CUORICINO* Background studies
- * Radon-induced surface contaminations
- * Effects on large mass experiments & solutions
- * Conclusions

Neutrino physics

known

- Neutrinos oscillate
 >Non-zero mass
- Some oscillation parameters are known

unkown

- Mass hierarchy
- Absolute mass scale
- Dirac or Majorana particle

DBDOv

- the neutrino is a Majorana particle: $v_e \equiv \overline{v}_e$
- $\Delta L = 2$, lepton number violation

• v mass measurement: $(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2}$

Design of a DBDOv experiment

- * High efficiency
- * Good energy resolution
- * Large mass source

What are we looking for ??

Monochromatic signal @ Q-value (~ MeV range)

 $S_{0\nu} \propto \varepsilon \frac{i.a.}{A} \sqrt{\frac{M \cdot T}{\Delta E \cdot b}} \overset{\delta}{} \overset{\circ}{} O$

 $\underline{\varepsilon}$: efficiency

- <u>i.a</u>.: isotopic abundance
- <u>A</u>: atomic mass number
- <u>M</u>: source mass

- \underline{T} : live time
- ΔE : FWHM in the ROI
- \underline{b} : bkg in the ROI

$$\begin{array}{l} \textbf{DBDOv Sensitivity} \\ \hline S_{0\,\nu} \propto \varepsilon \, \frac{i.a.}{A} \, \sqrt{\frac{M \cdot T}{\Delta E \cdot b}} \\ \hline \varepsilon: \, \text{efficiency => ~100\% for bolometers} \\ \hline i.a.: \, \text{isotopic abundance => } & \text{Natural} \\ \hline \text{i.a.: isotopic abundance => } & \text{S$$} \\ \hline \text{Enrichment => } & \text{radiopurity} \\ \hline \text{M: detector mass [kg] => Next generation ~ 1 ton} \\ \hline \text{T: time [y] => ~ 5 y} \\ \hline \Delta \text{E: energy resolution [keV] => ~ 5 keV for bolometers} \\ \hline \text{b: background [c/keV/kg/y] => ~ 0.01 c/keV/kg/y CHALLENGE} \end{array}$$

Isotope choice

The calorimetric technique allows a wide selection of possible DBDOv candidates:

No golden isotope: High Q-value & High i.a.

Bolometer background sources

Due to the limited detector energy resolution and the fact that they are sensitive to all types of radiation, there are various background sources for DBDOv experiment:

<u>Neutrons</u> =>	 neutron activation: (n,g) reactions appropriate shielding for n moderation and absorption
<u>Muons</u> =>	 energy deposit in the ROI installation under a mountain or in a mine / coincidence
<u>Gammas</u> => <u>Betas</u>	 natural radioactivity / multiCompton events appropriate isotope choice / material selection
<u>Alphas</u> =>	 degraded alphas emitted by surfaces surface cleaning / particle discrimination

CUORE & Cuoricino

CUORE & Cuoricino use the bolometric technique to search for DBDOv in ¹³⁰Te

CUORE will be able to span low neutrino mass region (tens of meV)

Cuoricino was a small CUORE prototype, about 5 years of data taking starting in 2003

Experiments located underground in the Laboratori Nazionali del Gran Sasso @ 3400 m.w.e.

- Muon flux: (3.2+0.2) 10⁻⁸ μ /s/cm²
- Neutron flux: 10⁻⁶-10⁻⁷ n/s/cm²
- Rn level: 50-100 Bq/m³

Bolometric Technique

The CUORE experiment

Cryogenic Underground Observatory for Rare Events

Array of 988 detectors. 19 CUORICINO-like towers M = 0.741 ton of TeO₂ (~200 kg ¹³⁰Te) to measure DBDOv of ¹³⁰Te with bolometric detector. Pulse Tubes Pb

Sensitivity: 1.6*10²⁶ y [T: 5y; ∆E: 5 keV; b: 0.01 c/keV/kg/y]

 $m_{\beta\beta} = 35-82 \text{ meV}$ NME from F.Simkovic et al. Phys.Rev. C77 - J.Suhonen et al. Int.Jou.Mod.Phys. E17 - J.Menendez et al. Nucl. Phys.A818 - J.Barea et al. Phys. Rev. C79

[arXiv:1109.0494] F. Alessandria et al. (LP) In press

Cuoricino

<u>Cuoricino results</u> :

- no evidence of DBDOv
- Statistics : ~ 19.75 kg*y of ¹³⁰Te
- Bkg @ ROI: 0.18 ± 0.02 c/keV/kg/y
- *FWHM @ 2615 keV (208 TI) \rightarrow 6.3 keV

Shieldings

Internal:

→1cm low activity Pb (A < 4 mBq/Kg in ²¹⁰Pb)

External:

- →20cm Pb
- →20cm Borated Polyethylene
 →Anti-Rn box: Nitrogen
- overpressure

A tower of 62 TeO₂ crystals

11 floors made of 4 crystals • not enriched • Mass: 790g • Dimensions: 5x5x5 cm³

- 2 floors made of 9 crystals: •Mass: 330g
- •Mass: 330g
- Dimensions: 3x3x6 cm³
 2 enriched in ¹²⁸Te (82%)
- •2 enriched in ¹³⁰Te (75%)

Total mass: 40.7 Kg (11.3 Kg in ¹³⁰Te)

T^{0v}_{1/2}> 2.8*10²⁴ y @ 90% C.L.

Astropart. Phys. 34 (2011) 822–831 E. Andreotti et al. (LP)

 $m_{\beta\beta} \leq 0.3 - 0.7 \text{ eV}$

1 Šimkovic et al., PRC 77 (2008) 045503 2 Civitarese et al., JoP:Conference series 173 (2009) 012012 3 Menéndez et al., NPA 818 (2009) 139 4 Barea and Iachello, PRC 79 (2009) 044301

Cuoricino

Alpha contaminations in Cuoricino

Various and delocalized alpha contaminations

- Production ¹⁹⁰**P†** • ²³⁸U and daughters • ²³²Th and daughters - Cleaning Recontaminations

• Bulk of crystals

- Copper surfacesCrystal surfaces

Surface contamination studies

Copper cleaning R&D

TTT

Specific measurements were performed in order to identify the best copper surface treatment for reducing the background in the ROI

TeO₂ surface radiopurity studies

CCVR Systematic control of bulk and surface contaminations of TeO₂ crystals

TTT detector

TTT (Three Tower Test): large mass detector for testing Cu surface contaminations with 3 different cleaning procedures inside Cuoricino cryostat (same bkg and operational conditions and reprocessed Cuoricino crystals)

> - Test the final design of the CUORE single module (reduction of inert material facing the crystals);

- Test the best Cu "cleaning recepies";

- Bkg study and abatement;

TTT detector performances and results

Tower	Live Time [day*crystal]	FWHM [keV] @ 2615 keV	* [2.7–3.9] MeV : in between g and a region. Suitable region for degraded a studies
T1	942.25	4.6	* [4-5] MeV : main a peaks of
T2	610.32	4.1	U
Т3	601.73	4.7	* [5-6] MeV : ²¹⁰ Po (²¹⁰ Pb) contaminations

TTT results

Tower	continuum	U/Th	Po/Pb	Rates
	2.7-3.9 MeV	4-5 MeV	5-6 MeV	[c/keV/kg/y] for
T1	0.068 ± 0.006	0.27 ± 0.01	(1.25 ± 0.04)	Qino, no
Τ2	0.120 ± 0.012	0.36 ± 0.03	1.82 ± 0.11	are applied
Т3	0.072 ± 0.008	0.25 ± 0.02	(1.80 ± 0.09)	on TTT
Cuoricino	0.116 ± 0.002	0.576 ± 0.003	0.962 ± 0.004	

T1 Polyethylene Cleaning:

* Soap * Passivation * 7 layers (70um) Polyethelene complete coverage

T3 Plasma Cleaning:

* Tumblering * Chemical etching * Electrochemical etching * Plasma

* T1 and T3 are compatible and show better bkgs compared to Cuoricino;

* Uranium and Thorium surface/bulk contaminations are reduced by a factor of ~2;

* No strong control of Polonium (Lead) re-contaminations

TTT-T1 results

* M1 shows ²¹⁰Po bulk crystal contaminations and surface contaminations (?crystals?, ?Copper/Polyethelene?)

* M2 tells us that crystals can explain a part of the overall ²¹⁰Po contamination. By exclusion Copper/Polyethelene will explain the rest

CCVR: CUORE Crystals Validation Runs

The CCVRs are dedicated cryogenic set-ups planned to test the various batches of ready-to-use produced crystals.

CUORE crystal production started in 2008 in Jaiding (CHINA):

- * ~30 crystals/month
- * 700 crystals already delivered

^r Bolometer performances: es			
Buik a contaminations	Isotope	Allowed Contamination	ι
Surtace contaminations	$^{238}\mathrm{U}$	$< 3 \cdot 10^{-13} \text{ g/g}$	
	232 Th	$< 3 \cdot 10^{-13} \text{ g/g}$	
	$^{210}\mathrm{Pb}$	$< 1 \cdot 10^{-5} \; {\rm Bq/kg}$	
	210 Po	$< 0.1 \; \mathrm{Bq/kg}$	1-3150
Up to now 7 CCVR tests were	40 K	$< 1 \cdot 10^{-3} \text{ Bq/kg}$	4
performed.			
Detector Livetime [d] Crystal tested			
CCVR1 59.9 7, 11, 39, 41		1-	
CCVR2 19.4 7, 11, 76, 97			L.P. L.
CCVR3 43.05 180, 190, 229, 23	6	and he	7770111
CCVR4 25.8 313, 340, 354, 38	0		and the state of t
CCVR5 30.3 416, 421, 436, 45	5	3	

CCVR results

		Continuum	U/Th	210 Po
		(2700, 3900)	(4000, 5000)	(5000, 6000)
		$[\mathrm{keV}]$	$[\mathrm{keV}]$	$[\mathrm{keV}]$
CCVR	M1	$0.09{\pm}0.02$	$0.13 {\pm} 0.01$	-
	M2	$0.015 {\pm} 0.007$	$0.014{\pm}0.003$	-
TTT	M1	0.052 ± 0.008	$0.28 {\pm} 0.02$	$1.30 {\pm} 0.07$
	M2	$0.009 {\pm} 0.003$	$0.0018 {\pm} 0.005$	$0.09 {\pm} 0.01$
Cuoricino	M1	0.104 ± 0.002	$0.522{\pm}0.003$	$0.846{\pm}0.004$
	M2	0.009 ± 0.001	$0.084{\pm}0.001$	$0.173 {\pm} 0.002$

* Continuum higher in CCVR-M1 because of ²¹⁰Po tail (from MC simulation is 20%)

* CCVR has lower bulk and surface U/Th contaminations compared to Qino

[arXiv:1108.475] F. Alessandria et al. (LP) In press

CCVR final results

Qino + TTT + CCVR results

* Surface contaminations are a limitation to the sensitivity of low background experiments.

* The main source of re-contamination for Copper (TTT) and TeO₂ crystals (CCVR) seems to be induced by ²¹⁰Po (²¹⁰Pb daughter).

Radon decay chain

Rn-induced contaminations (1)

Rn-induced contaminations (2)

- Detector exposure to Rn directly induces Polonium contaminations
- Radon does not diffuse inside the sample

Analysis of contaminants

²¹⁰Po activity evaluated under the peak

 210 Po contaminations are strictly releated to the time exposure of the samples (Cu & TeO₂) to Radon.

N.B.: ²¹⁰Po ($T_{1/2}$ =138 d) is not in equilibrium with ²¹⁰Pb ($T_{1/2}$ =22.4 y)

²¹⁰Po diffusion

 $Y = A \cdot exp(x \cdot \Lambda)$

Sample	Material	Exposure time	Diffusion depth
Rame_BaseMen	Copper	63 days	430 ± 20 nm
Rame_OFHC	Copper	56 days	$410{\pm}20 \text{ nm}$
$Rame_OFHC_brv$	Copper	16 days	***
TeO2_2Mis	Tellurium Oxide	73 days	$940\pm20 \text{ nm}$
$TeO2_1Mis$	Tellurium Oxide	49 days	$500\pm20~\mathrm{nm}$
TeO2_brv	Tellurium Oxide	14 days	***
²¹⁴ Po and ²¹⁰ Po diffusion in TeO, and in Cu			

Eur. Phys. J. C (2011) 71:1805 M. Clemenza et al. (LP)

Who produces ²¹⁰Po?

$$A = \frac{N_1}{\tau_1} = \frac{N_2}{\tau_2} = \frac{N_3}{\tau_3} = .$$

An element concentration in a closed system is proportional to its life-time

²¹⁰Pb contaminations

²¹⁰Pb evaluation starting from ²¹⁰Po contamination "prompt" (t ~ h) and "delayed" (t ~ 300 d)

$$A_{Po} = A_{Pb}^0 \frac{\lambda_{Pb}}{\lambda_{Po} - \lambda_{Pb}} (e^{-\lambda_{Pb}t} - e^{-\lambda_{Po}t})$$

~ 85% of ²¹⁰Pb contamination is generated by delayed decays of Rn fast daughters (²¹⁸Po, ²¹⁴Po).

> => Informations need for the design of a clean room It is important to reduce Rn concentration more than the Pb one. 31

Sticking Factor

The Rn sticking factor is evaluated on ²¹⁰Pb (starting from the ²¹⁰Po contaminations):

$$\Sigma = \frac{A^0_{210\,Pb} \cdot \tau_{210\,Pb}}{\Gamma \cdot S \cdot t_{exp}}$$

 Γ : Rn nulei flux

- S: sample surface
- t_{exp} : time exposure to Rn

Sample	Material	Exposure time	Σ_{Rn}
Rame_BaseMen	Copper	63 days	$8.39 \cdot 10^{-9} \pm 4.53 \cdot 10^{-10}$
Rame_OFHC	Copper	56 days	$3.15 \cdot 10^{-9} \pm 3.15 \cdot 10^{-11}$
$Rame_OFHC_brv$	Copper	16 days	$2.32 \cdot 10^{-9} \pm 1.25 \cdot 10^{-10}$
TeO2_2Mis	Tellurium Oxide	73 days	$1.69 \cdot 10^{-9} \pm 5.36 \cdot 10^{-11}$
TeO2_1Mis	Tellurium Oxide	49 days	$1.41 \cdot 10^{-9} \pm 9.46 \cdot 10^{-11}$
TeO2_brv	Tellurium Oxide	14 days	

Effects on CUORE

Effects on CUORE sensitivity due to an exposure of Cu to Radon

Cu exposed for 1 year @ 100 mBq/m³

 Σ for Cu = 1.85x10⁻⁴ @ 315 kBq/m³

Hypothesys : Linearity @ 100 mBq/m³

Monte Carlo simulation

 $B \le 3.4 \times 10^{-3}$ counts/keV/kg/y

Is there a way out ?

Polonium (Pb) is one of the source of surface contaminations, but does not explain the background in the ROI.

Even if we completely understand the mechanisms inducing surface contaminations (degraded alpha), is it really possible to prevent recontaminations of radiopure materials?

Will we ever have a 0 alpha background?

SOLUTION

 α / β discrimination

Reduce the alpha background in the DBDOv ROI to a O-level

α / β discrimination

There are different proposed solutions:

* Scintillating bolometers: combination of heat and light for particle interaction discrimination:

* Cherenkov light emission: [arXiv:1106.6286]: Discrimination of alpha and beta/gamma interactions in a TeO, bolometer.

* Pulse shape analysis: identification of a and b interaction in the detector through pulse shape analysis of signals.

ZnMoO4 bolometers allow a / b [arXiv:1011.5415] Gironi et al. discrimination just on the heat signa

Conclusions

* Polonium-210 (Lead-210) are the most intense source of surface contaminations for DBDOv bolometric experiments;

* Radon-induced contaminations are one mechanism of surface contaminations, but they do not explain the whole problem;

* ²²²Rn It is realldaughters, but they do not explain the whole problem;

* Particle discrimination seems to be a solution to the problem, but it still needs to be proved the scale to large mass detector;

