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Outline
In standard QCD calculations we have two approaches to heavy quarks

• when energy scale µ ≫ mQ we treat Q as massless; there is PDF for Q

• when µ ∼ mQ we keep Q massive; there is no PDF for Q

General Mass Scheme: a method of treating heavy quarks which is reliable for
0 < mQ/µ < 1 and contains both approaches as a special cases.

There are such solutions for nucleon structure functions – e.g. ACOT scheme
(Aivazis-Collins-Olness-Tung), TR scheme (Thorne-Roberts), FONLL, ...

This seminar: general mass scheme for NLO jet production processes.

• Problems in QCD calculations of jet observables

• Dipole subtraction method with massive quarks

• Factorization of quasi-collinear singularities according to ACOT scheme

• Example
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Basics

IDEA: the momenta of partons {p1, . . . , pn} are translated into
the momenta of jets {P1, . . . ,Pm}

{p1, . . . ,pn}
Fn
−→ {P1, . . . ,Pm}.

• jets are characterized by their four-momenta only

• final state hadrons are not identified

• the jet function Fn is some mathematical realization of a jet algorithm
– a way to cluster several partons into a single jet

• they have to be infra-red safe (explained later)
• two families: kT -cluster and cone algorithms

PROBLEMS IN THEORETICAL CALCULATIONS
Integration over the phase space (PS) of final state partons possesses cuts on various
kinematic variables (transverse momenta, angles etc.) – this can be effectively done only
via MC

• at NLO integration may diverge due to collinear or soft emissions – radiative
corrections (RC)

• at NLO there are also virtual corrections (VC)



Basics (cont.)

• RC and VC both have singularities which cancel in physical observables
(Kinoshita-Lee-Nauenberg theorem)

• singularities in RC appear after PS integration
• singularities in VC exist at the integrand level

CROSS SECTION FOR n JETS

• LO cross section

σLO
n =

∫

dΓn |Mn |
2 Fn

n

• NLO contribution to the cross section
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n = σRC

n + σVC
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RC = n + 1 , VC = n

• methods of cancelling infra-red (IR) singularities:

• phase space slicing • subtraction method • antenna method



Subtraction Method

• First UV renormalization has to be done (using dimensional regularization with
D = 4 − 2ε dimensions). There are remaining IR singularities in VC appearing as
(1/ε)m poles.

• Construct a mapping Γn+1 → Γn , i.e. a set of new momenta Γ̃n =
{
p̃1, . . . , p̃n

}
which

are expressed in terms of the old ones Γn+1 =
{

p1, . . . , pn+1
}

such that

Γ̃n
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∣
∣
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S
,

where S is a ‘singular subspace’ of the full PS Γn+1 .

On the level of differential PS the following relation can be stated

dΓn+1 = dΓ̃n ⊗ dφ,

where dφ parametrizes S (leads to singularities after integration).

• Construct an auxiliary function such that it mimics all the singularities of
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It has the general ‘factorized’ form
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∣Msub

n+1

∣
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∣
2
= V̂ ⊗ |Mn |

2 ,

whereMn is calculated using Γ̃n .



Subtraction method (cont.)
• Auxiliary cross section is constructed as

σsub
n =

∫

dΓn+1
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Fn.

• Add and subtract σsub
n from σNLO

n
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• The jet function has to be IR safe

Fn+1

∣
∣
∣
S
= Fn |S,

so the red curly bracket is integrable in 4 dimensions via MC.

• In the green bracket the integral over dφ has to be done analytically
∫

dφ
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)

⊗ |Mn |
2.

Resulting IR poles (1/ε)m are cancelled against similar poles buried inMloop
n .



Singularities of Matrix Elements
In order to constructMsub

n+1 one has to investigate singularities of tree-level matrix elements.

SOFT SINGULARITIES
A denominator can become zero if a final state parton i (gluon) has vanishing energy

implying pi → 0. In that limit
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pi ·
(

pj + pk

) −
m2

j

2pi · pj




〈Mn | T̂j · T̂k |Mn〉

pi

pj

pk
−→

pj

pi

pk

final state cut

• nomenclature: emitter, spectator; both
can be initial state (IS) or final state
(FS)

• i is always the emitted parton, j, k are
any final state partons, a is an initial
state parton

emitter

spectator

color correlations



Singularities of ME (cont.)
COLLINEAR SINGULARITIES
They appear when two massless FS partons i, j or FS and IS i, a are collinear.

We aim at massive calculations with, however, control over the potential collinear
singularities (CS). This is done using the quasi-collinear limit.

Consider initial state emissions. Momentum pi is decomposed to transverse momentum kT
and longitudinal component (with fraction u) with respect to collinear direction given by pa .

• Uniform rescaling kT and the masses

kT ≡ λkT , mq ≡ λmq, λ→ 0.

• Tree level
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where P̂ai are splitting matrices:

P̂qq = CF

(
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2ūm2

a
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a

)

,
(

P̂qg

)µν
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(

−ūgµν −
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ūp2
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)
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(
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(
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where pai = pa − pi and ū = 1 − u.



Dipole Method
Particular realization of subtraction method→ Dipole Subtraction Method.
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is given

as a sum of distinct ‘dipoles’ for all possible emissions and emitter/spectator combinations
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(

DFE−FS
i,j,k +DFE−IS
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)

EXAMPLE: dipoleDIE−FS
g,q,j

(initial state q(pa) → q g(pi) splitting)

• PS mapping:

Γn+1

(

pa ; p1, . . . , pi , . . . ,pj , . . . , pn+1

)

→ Γ̃n

(

p̃ai ; p1, . . . , p̃j , . . . ,pn

)

,

where in present case i = g, ai = q the new ‘dipole momenta’ are

p̃µj = w̃
(

pµi + pµj
)

− ũpµa ,

p̃µai = (w̃ − 1)
(

pµi + pµj
)

− (ũ − 1) pµa . pa pi

pj
→

p̃ai p̃j

The soft limit is approached when ũ→ 0 (w̃ → 1).

• PS factorization:

dΓn+1 =

∫

dũ Γ̃n (ũ) dφ (ũ) , dφ = A (z̃) dz̃,

where z̃ = pa · pi/
(

pi + pj

)

· pa .



Dipole Method (cont.)
• unintegrated ‘dipole’

DIE−FS
g,q,j =

−1

p2
ai −m2

1
1 − ũ
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T̂2
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V̂ (ũ, z̃) |Mn〉

so called ‘dipole splitting function’ (below ν =
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• integrated ‘dipole splitting function’
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• massless case (m = 0)

I ∼

(

1
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ε2
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)

δ (ũ) −
1
ε

Pqq (1 − ũ) + . . .

• massive case (m ≡ mQ)

I ∼
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1
ε

b1 +
1
ε

log η2 b2 + b3

)

δ (ũ) + log η2 Pqq (1 − ũ) + O
(

η2
)

+ . . .,

where η2 = m2
Q/2γ̃ and Pqq (z) = CF

(

1 + z2/1 − z
)

+
.



Factorization
If γ̃ ≫ m2

Q the logs of η2 are harmful. They form quasi-collinear singularity that should be factorized out.
• in massles case factorization is done via subtracting

Ca =
∑

b

fab ⊗
∑

j

〈Mn |
T̂b · T̂j

T̂2
b

|Mn〉

where fab (z) =
αs
2π (−1/ε) Pab (z) are massless densities of partons inside a parton

renormalized in MS with given number of active flavours Nf . The splitting functions are
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+
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)

• in massive case one uses the ACOT (Aivazis-Collins-Olness-Tung) scheme.

Partonic densities have to be calculated with full mass dependence and renormalized in special
CWZ (Collins-Wilczek-Zee) scheme: for given number of active flavours (including possible heavy
quarks) diagrams with loops containing still heavier quarks are renormalized by zero-momentum
subtraction (at the order αs this is actually trivial).

fgQ (z) =
αs

2π
log ρPgq (z) , fQg (z) =
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2π
CF Pqg (z) [log ρ − 2 log z − 1], ρ = µ2

r /m
2
Q
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}

+
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2π
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−
1
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)

Pgg (z) −
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3
δ (1 − z)TR log ρ

]

.



Example: structure function F(Q)

2 at NLO
• LO contribution:M1 = Q,Q

• NLO contribution

• real emissions:M2 =

• virtual corrections:Mloop
1 =

• Needed ‘dipoles’: DIE−FS
g,Q,Q , D

FE−IS
g,Q,Q , D

IE−FS
Q,g,Q

• Quasi-collinear factorization terms: CQ, Cg

• Numerical integration using MC
program

The result interpolates between
completely massless calculation
at high Q2 and boson-gluon
fusion (BGF) at low Q2.

It recovers the result of [Kretzer,
Schienbein].
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Summary

GENERAL MASS SCHEME FOR JETS:

1 dipole subtraction method with quark masses taken into account

2 massive factorization scheme (ACOT)

• We have checked that for very large scale all possible
quasi-collinear singularities are properly factorized at NLO and the
jet cross sections become exactly known massless cross sections.

• The full MC program is under development, we have checked its
demo version against F2 structure function and found agreement
with existing calculations in the ACOT scheme.

• Possible extensions: hadron-hadron collisions, identified final states
(fragmentation functions)

• Issues not discussed: e.g. an ambiguity in the ACOT scheme


