Rarest of Decays Neutrinoless Double Beta Decay with Germanium

James Loach, Berkeley National Laboratory SMU, September 2012

Double beta decay

Two neutrino

Neutrinoless

$${
m AZN}
ightarrow {
m AZN}' + e^- + e^-$$

 $T_{1/2} > 10^{25} {
m y}$ As yet unobserved

Two neutrino

MAYER

Phase space factor

 $(T_{1/2}^{2\nu})^{-1} = G_{2\nu}(Q_{\beta\beta}, Z)|M_{2\nu}|^2$

Matrix element

1935 Prediction of 0νββ

M. Goeppert-Mayer, Phys. Rev. 48, 512 (1935).

1957 Geochemical observation (Te)

M.G. Inghram and J.H. Reynold, Phys. Rev. 78, 822 (1950).

1987 Laboratory observation (Se)

S.R. Elliott et al., Phys. Rev. Lett. **59**, 2020 (1987).

 $T_{1/2}$ (2v) (y)

⁴⁸ Ca	$(4.4 \pm 0.6) \cdot 10^{19}$
⁷⁶ Ge	$(1.5 \pm 0.1) \cdot 10^{21}$
⁸² Se	(0.92 ± 0.07) ⋅ 10 ²⁰
⁹⁶ Zr	$(2.3 \pm 0.2) \cdot 10^{19}$
¹⁰⁰ Mo	$(7.1 \pm 0.4) \cdot 10^{18}$
¹¹⁶ Cd	$(2.8 \pm 0.2) \cdot 10^{19}$
¹²⁸ Te	$(1.9 \pm 0.4) \cdot 10^{24}$
¹³⁰ Te	$(1.5 \pm 0.1) \cdot 10^{20}$
¹⁵⁰ Nd	$(8.2 \pm 0.9) \cdot 10^{18}$
238	$(2.0 \pm 0.6) \cdot 10^{21}$
¹³⁶ Xe	$(2.1 \pm 0.2) \cdot 10^{22}$

A.S. Barabash, Phys. Rev. C **81**, 035501 (2010). (With errors symmetrized) + arXiv:1108.4193v2

Neutrinoless

Phase space factor

 $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$

Matrix element

Effective Majorana neutrino mass

 $T_{1/2}$ (0v) (y)

⁷⁶ Ge	> .9 • 0 ²⁵
	> 1.6 • 10 ²⁵
¹³⁰ Te	> 2.8 • 0 ²⁴
¹⁰⁰ Mo	> . • 0 ²⁴
¹³⁶ Xe	> .6 • 0 ²⁵
⁸² Se	> 3.6 • 0 ²³
¹¹⁶ Cd	> .7 • 0 ²³

A.S. Barabash, Phys. Rev. C **81**, 035501 (2010). (Limits at 90% c.l.) + arXiv:1205.5608v2

1937 Majorana neutrino

E. Majorana, Nuovo Cimento 14, 171 (1937).

1937 Suggestion of 0vββ

G. Racah, Nuovo Cimento 14, 322 (1937).

2002 Claimed observation (Ge)

H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B **586**, 198 (2004). Mod. Phys. Lett. A **21**, 1547 (2006).

Neutrinoless

Phase space factor

 $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$

Matrix element

 $\left\langle m_{\beta\beta} \right\rangle \equiv \left| \sum_{k} m_{k} U_{ek}^{2} \right|$

Effective Majorana neutrino mass

1937 Majorana neutrino

E. Majorana, Nuovo Cimento 14, 171 (1937).

1937 Suggestion of 0vββ

G. Racah, Nuovo Cimento 14, 322 (1937).

2002 Claimed observation (Ge)

H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B **586**, 198 (2004). Mod. Phys. Lett. A **21**, 1547 (2006).

S.R. Elliott and P. Vogel, Annu, Rev. Nucl. Part, Sci.

What we would learn

The neutrino is a Majorana particle

though other mechanisms may contribute to the $0\nu\beta\beta$ decay rate

Schechter, J., and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).

Dirac neutrino

Redundant information

 $\nu^M = \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix}$

Majorana neutrino

Efficient New

What we would learn

The neutrino is a Majorana particle

though other mechanisms may contribute to the $0\nu\beta\beta$ decay rate

Schechter, J., and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).

Its mass can be explained naturally via the seesaw mechanism

- natural explanation for the mass scale
- important for leptogenesis

Lepton number is violated

- a prerequisite for leptogenesis

A.D. Sakharov, JETP Lett. 91B (1967).

Measure the effective Majorana neutrino mass

$$\langle m_{\beta\beta} \rangle \equiv \sum_k m_k U_{ek}^2$$

Measure the effective Majorana neutrino mass

$$\langle m_{\beta\beta} \rangle \equiv \sum_k m_k U_{ek}^2$$

CosmologyBeta decayOscillation $m_{sum} = \sum_{k} m_k = m_1 + m_2 + m_3$ $m_{\beta} = \sqrt{\sum_{k} m_k^2 |U_{ek}|^2}$ $\Delta m_{ij}^2 = m_j^2 - m_i^2$ $m_{sum} < \sim 0.7 \text{ eV}$ $m_{\beta} < \sim 2 \text{ eV}$ $U_{ik} \Delta m_{12} \Delta m_{23}$

Neutrinoless double beta decay $\langle m_{\beta\beta} \rangle \equiv \sum_{k} m_{k} U_{ek}^{2}$ $= \cos^{2} \theta_{12} \cos^{2} \theta_{13} e^{i\alpha} m_{1}$ $+ \sin^{2} \theta_{12} \cos^{2} \theta_{13} e^{i\beta} m_{2}$ $+ \sin^{2} \theta_{13} e^{-2i\delta} m_{3}$

Experimental signatures

Elliott, S. R., and Vogel, P., Annu. Rev. Nucl. Part. Sci. **52**, 115 (2002). (5% energy resolution; relative normalization 10⁻²,10⁻⁶ in insert)

 $0\nu\beta\beta$ characterized by a sharp peak in deposited energy Rate heavily suppressed relative to $2\nu\beta\beta$

Making a discovery

Making a discovery

Evidence

- Peak at the correct energy
- Single-site deposition
- Correct event distributions

Convincing evidence

- Observe the 2-electron nature
- Correct kinematic distributions
- Observe t-correlated daughter
- Observe excited-state decay

Compelling evidence

• Consistent results using different isotopes

A broad experimental program is required

Sensitivity

$$\begin{split} \langle m_{\beta\beta} \rangle^2 &= \frac{1}{T_{1/2}^{0\nu} \cdot G_{0\nu}(Q_{\beta\beta},Z) |M_{0\nu}|^2} \\ \text{Zero background} & \text{Background-limited} \\ m_{\beta\beta} &\sim \sqrt{1/\varepsilon} \cdot \frac{1}{\sqrt{Mt}} & m_{\beta\beta} \sim \sqrt{1/\varepsilon} \cdot \left(\frac{b\Delta E}{Mt}\right)^{1/4} \end{split}$$

ISM Interacting shell model
 QRPA(J) Quasiparticle random phase approx.
 QRPA(T) Quasiparticle random phase approx.
 IBM Interacting boson model
 GCM Generating coordinate method

J. Gómez-Cadenas et al., arXiv:1010.5112v4 (2011).

Current experimental efforts

 $T_{1/2}^{2\nu} = 2.38 \pm 0.02 \,(\text{stat}) \pm 0.14 \,(\text{sys}) \times 10^{21} \,\text{y}$

EXO-200

supernemo

NEMO & SuperNEMO

Foils, tracking and calorimetry

Beautiful measurements of two-neutrino angular distributions and half-lives

Source (~ ⁸²Se) 5-7 kg

CUORE

Tellurium oxide bolometers

The germanium experiments

HPGe detectors are an excellent way to search for $0\nu\beta\beta$

- Off-the-shelf technology
- Integrated ⁷⁶Ge source
 - 7.8% in natural natural Ge (& enrichable)
- Excellent energy resolution $\Delta E_{\text{FWHM}} = 0.16\% @ \text{Q}_{\beta\beta} (2.039 \text{ MeV})$

The best current limits come from Ge experiments

Two experiments

Heidelberg-Moscow

IGEX

The Claim

5 p-type enriched coaxial HPGe detectors

GERDA & MAJORANA

Next generation germanium

GERDA

MAJORANA

Naked diodes in liquid argon

Diodes in vacuum cryostats

Cooperation and an understanding to merge for the tonne-scale

GERDA

Phase I

Enriched detectors from H-M and IGEX

17.66 kg total

+ natural detectors

Deployed Nov 1st 2011 & taking data Background substantially improved compared to H-M

GERDA

Phase I

Expect the unexpected in a new type of experiment

GERDA

Phase I

Expect the unexpected in a new type of experiment

MAJORANA

- Demonstrate backgrounds low enough to justify a tonne-scale Ge experiment
- Establish feasibility of constructing and fielding modular arrays of Ge detectors
- Test the claim for observation of $0\nu\beta\beta$ in ^{76}Ge
- Exploit low-energy sensitivity to search for dark matter & axions

MAJORANA Dewar Lead

Monolith

Technical

- Demonstrate backgrounds low enough to justify a tonne-scale Ge experiment
- Establish feasibility of constructing and fielding modular arrays of Ge detectors

Science goals

- Test the claim for observation of $0\nu\beta\beta$ in ⁷⁶Ge
- Exploit low-energy sensitivity to search for dark matter & axions

Three phase implementation

Prototype cryostat (2 strings ^{nat} Ge)	Fall 2012
Cryostat I (3 strings ^{enr} Ge, 4 string ^{nat} Ge)	Fall 2013
Cryostat II (up to 7 strings ^{enr} Ge)	Fall 2014

Backgrounds

Energy (MeV)

Davis Campus

MAJORANA lab

Assembly room

Electroforming laboratory

Glovebox

Electroforming lab operational since mid-2011

Equipment currently being installed in assembly room

Demonstrated purity < IuBq / kg Goal 0.1-0.3 uBq / kg

Ultra-clean copper parts made from electro-formed copper

Enriched material

Iron transportation container

28.5 kg $^{enr}GeO_2$ delivered

Enrichment: 88% Chemical purity: 99.98%

Enrichment removes cosmogenic isotopes

Including Ge-68

Reduction

Zone refinement

Electronic-grade Ge

Peaked weighting fields

Easy discrimination between single and multiple site events Powerful background rejection

Easy discrimination between single and multiple site events Powerful background rejection

- Dark matter & axions
- Background-tagging

LBNL-fabricated PPC

Low noise therefore low energy thresholds

Low noise therefore low energy thresholds

Resistive feedback

- Low radioactivity
- Low noise

Radioactivity within the cryostat is minimized

Front end

Fused silica (high purity, low dielectric losses, low thermal conductivity) Amorphous Ge film for R_f (high purity, low noise) Stray capacitance for C_f R_f ~ 10 - 100 GΩ (77K) C_f ~ 0.2 pF

Front end

Fused silica (high purity, low dielectric losses, low thermal conductivity) Amorphous Ge film for R_f (high purity, low noise) Stray capacitance for C_f

$$\label{eq:relation} \begin{split} R_f &\sim 10 - 100 \ \text{G}\Omega \ (77\text{K}) \\ C_f &\sim 0.2 \ \text{pF} \end{split}$$

Ultra-pure

Ultra-low-noise

Component	Material	Purity (g / g)		
		232 Th	²³⁸ U	
Substrate	Fused silica	101×10 ⁻¹²	284×10 ⁻¹²	
Resistor	a-Ge	5×10 ⁻⁹	5×10 ⁻⁹	
Traces	Au	47(1)×10 ⁻⁹	2.0(0.3)×10 ⁻⁹	
Traces	Ti	$<$ 400 \times 10 ⁻¹²	< 100×10 ⁻¹²	
FET	FET die	$< 2 \times 10^{-9}$	$<$ 141 \times 10 ⁻¹²	
Bonding wire	Al	91(2)×10 ⁻⁹	9.0(0.4)×10 ⁻¹²	
Epoxy	Silver epoxy	<70×10 ⁻⁹	$< 10 \times 10^{-9}$	

Mounts

Sensitivity

The claim can be tested with a year's data

1TGe

Future large-scale Ge

GERDA

<image>

Majorana

Naked diodes in liquid argon

Diodes in vacuum cryostats

Cooperation and an understanding to merge for the tonne-scale

Alternative shield concepts

Compact shield

Vacuum cryostat immersed in liquid Ar, H₂O, scintillator

Vacuum cryostat immersed in liquid Ar, H₂O

Studied through grants from NSF (S-4) and other channels

Materials & assay R&D, detector studies, small parts, shielding schemes, operational schemes, fabrication techniques

The choice of technology awaits results from Majorana & GERDA

The long view

Summary

Neutrinoless double beta decay is an exciting field with interesting parameter space ahead

The MAJORANA experiment is progressing well

The field has a clear, though challenging, road ahead

Moore's Law

Institution	Origin	Size (mm)	Туре	Year
LBNL	Paul Luke	50 × 50	NPC	1987
		62 × 50	Segmented-PPC	2008
		20 × 10	Mini-PPCs (x3)	2009
		62 x 50	PPC	2009
	Canberra USA	70 × 30	Mod. BEGe	2011
Univ. Chicago	Canberra France	50 x 44	PPC	2005
	Canberra USA	60 × 30	Mod. BEGe	2008
PNNL	Canberra France	50 x 50	PPC	2008
lanl	PHDs	72 × 37	PPC	2008
	Canberra USA	70 × 30	Mod. BEGe (x39)	2009-11
	ORTEC	62 x 51	PPC	2009
		67 x 54	PPC	2010
	PGT	70 × 30	PPC	2010
UNC	Canberra USA	61 x 30	Mod. BEGe (low bgd)	2009
		61 x 32	Mod. BEGe	2010
		70 × 30	Mod. BEGe (x3)	2011

Size is (diameter x height)

- most stored underground, others for R&D

30 mm

Cables

Critical small parts

Experimental configuration

- 5 p-type enriched (~88%) coaxial HPGe detectors
 10.96 kg total active volume Enriched to 86-88% in ⁷⁶Ge
- Two shielding configurations

The claim

Linear background + peaks

Excess of 28.75 \pm 6.86 events at $Q_{\beta\beta}$

 $4.2 \ \sigma$ significance

Claimed observation

$$T_{1/2}^{0\nu} = (2.23^{+0.44}_{-0.31}) \times 10^{25} \,\mathrm{y}$$

 $\langle m_{\beta\beta} \rangle \sim 300 \,\mathrm{meV}$

Even stronger (6 sigma) claim with more recent PSA: Klapdor-Kleingrothaus, H.V. et al., Mod. Phys. Lett. A **21**, 1547 (2006). Klapdor-Kleingrothaus, H.V., et al., Phys. Lett. B **586**, 198 (2004). (Plot annotated by me.)

The claim

Klapdor-Kleingrothaus, H.V. et al., Mod. Phys. Lett. A **21**, 1547 (2006).

Linear background + peaks

Excess of 28.75 \pm 6.86 events at $Q_{\beta\beta}$

 $4.2 \, \sigma$ significance

Claimed observation

$$T_{1/2}^{0\nu} = (2.23^{+0.44}_{-0.31}) \times 10^{25} \,\mathrm{y}$$

 $\langle m_{\beta\beta} \rangle \sim 300 \,\mathrm{meV}$

Klapdor-Kleingrothaus, H.V., et al., Phys. Lett. B **586**, 198 (2004). (Plot annotated by me.)

Techniques

Source *≠* Detector

Source in foils, surrounded by instrumentation

- Topological background rejection
- Sensitivity to the mechanism
- Poor exposure, efficiency, resolⁿ

Final state ID

Search for anomalous (A, Z+2) in a material containing (A,Z)

Natural source or one specially prepared

Source = Detector

Sensitivity

Phase space factor

Data from: K. Zuber et al., arXiv:0511009v1 (2005).

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

Phase space factors affect the predicted rate