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Dynamics of light massive fields 
around spinning black holes

● BHs as particle physics labs 

● Review on scalar superradiant instability

● Open problems in BH perturbation theory

● Slow-rotation framework

● Massive spin-1 fields around Kerr BHs

● Astrophysical consequencies of the Proca instability
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BH superradiance

● Simple BH-matter interaction

● Kerr BH: Killing vector         becomes spacelike in the ergoregion:

● Amplification of scattered waves  angular momentum extraction if:→

● Linear effect, but peek to backreaction

● Requires dissipation → needs an event horizon

● ~ tidal heating at the horizon

[Thorne, Price, Macdonald's book]

[Richartz et al. 2008]
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Zel'dovich effect. [Credit: Ana Sousa]

[Cardoso & Pani, 2012]
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BH bomb

● “Nature may provide its own mirrors”

– AdS boundaries

– Massive fields

[Press and Teukolsky '72]

[Cardoso, Dias, Lemos, Yoshida, 2004]
Massive scalar potential on a 

Schwarzschild BH
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Scalar fields & superradiance

● Massive fields around spinning BHs are unstable

● Strongest instability when μM ~1  → τ =107 M

– Ultra-light particles (m ~ 10-21 - 10-9 eV) and (super)massive BHs

[Damour et al. 1976]

[Detweiler, 1980]

[Earley & Zouros 1979]

[Cardoso & Yoshida 2005]

[Dolan 2007]

[Rosa 2010, 2012]

[Arvanitaki et al. 2010-2011]
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● Peccei-Quinn QCD axion , Axiverse scenarios [Kodama & Yoshino 2011-2012]

BH Superradiance

P. Pani     –     Black-Hole Bombs and Photon-Mass Bounds  –       SMU, 2012



Scalar fields & superradiance

● Nonlinear interactions are important

– Saturation of the instability ?

– Bosenova explosion ?

● Numerical simulation are challenging

[Kodama & Yoshino 2011-2012]

[Witek et al, in preparation]

5/30

GWs from 
atomic-like transitions

GWs from 
Pair annihilation

Slow-down
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If ultralight scalars exist 
and they are superradianly unstable,

we shouldn't observe highly-spinning BHs

Constraints on axion parameters from BH 
observations and future GW detection
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What about vector fields?
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[Goodsell et al. 2009]
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Vector fields & superradiance
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Alexandru Proca

● The massive spin-1 around Kerr BHs still uncharted territory

● Proca eq. (apparently) nonseparable in a Kerr background

● Note that EM (massless) perturbations in Kerr-(A)dS are separable!
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Vector fields & superradiance

● Massive hidden U(1) vector fields are generic features of extensions of SM

● Proxy for gravitational theories with higher-curvature terms:

● Conjecture of a stronger instability? [Rosa & Dolan 2011]

[Goodsell et al. 2009]

[Konoplya 2006]

[Herdeiro, Sampaio, Wang 2012]
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Alexandru Proca

[Buchdahl '70]

[Vitagliano, Sotiriou, Liberati '10]
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Part 0

BH perturbations
in a nutshell
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[Kokkotas & 

Schmidt 1998]

[Berti et al. 2009]

[Konoplya & 

Zhidenko  2011]

- The axial and polar sectors decouple  master equations→

- Solved with suitable boundary conditions  eigenvalue problem→

- Any spherically symmetric background, any theory, any field

- Regge-Wheeler formalism: AxialPolar

background perturbations

BH perturbations.  Spherical symmetry

Linear equations involving axial or polar perturbations only
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Non-separable (?) problems
● Separability in Kerr is almost a miracle!

● Four dimensions

– Massive vector (Proca) fields on a Kerr background

– Gravito-EM perturbations of Kerr-Newman BHs

– Rotating objects in alternative theories 

● Higher dimensions

– Myers-Perry BHs with generic spins

– Other rotating solutions

● Stability, greybody factors, quasinormal modes?

[Teukolsky ~ 1973]

[Teukolsky and Press]

[Chandra's book]
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Part I

Perturbations of 
slowly-rotating BHs:

General framework
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Method. Perturbations of slowly rotating spacetimes

● Slowly-rotating background metric: 
[Kojima 1992, 1993, 1997]

● Zeeman splitting

● Laporte-like selection rule

● Propensity rule

● Expand any equation (scalar, vector, tensor...) in spherical harmonics 

● For any metric, any theory and any perturbations: system of radial ODEs:

Linear combinations of axial 

and polar perturbations

[Pani et al., 2012]
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Perturbative scheme

● Second order: particularly advantageous 

– Cauchy horizon, even horizons, ergosphere

– The superradiance regime is now consistent
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● To first order in the rotation, modes do not depend on the couplings: 
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Perturbative scheme

Zeroth order: decoupled
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Perturbative scheme

Zeroth order: decoupled

First order: polar-axial l±1
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Second order: l±2

Perturbative scheme

● Generic: any metric, any perturbation, any theory, any order

First order: polar-axial l±1

Zeroth order: decoupled
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Slow-rotation method. tests

Numerics in the slow-rotation scheme are “easy” to perform

EM (massless) QNMs of a Kerr BH

● Good results even for moderately large spin

Massive scalar modes of a Kerr BH

– direct integration (bound states)   

– continued fractions (QNMs, bound states)

– Breit-Wigner method (QNMs, bound states)   

– WKB (?)

Stable

Unstable

16/30 P. Pani     –     Black-Hole Bombs and Photon-Mass Bounds  –       SMU, 2012



Part III

Proca perturbations 
of a Kerr BH
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Proca in slowly-rotating Kerr

● The Proca problem becomes tractable in the slow-rotation approximation

● Let us decompose the Proca field in vector spherical harmonics:

Axial parity Polar parity

● One spurious degree of freedom → three physical perturbation functions 
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Proca in SR Kerr. Field equations

● Polar and axial sector are coupled:

● Where we have used the Lorenz condition and defined:
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Proca in SR Kerr. Analytical results

● In the axial case  → master equation (scalar  → s=0 , axial vector  → s=1)

[Starobisky 1973]

[Detweiler 1980]

● Suitable for analytical methods

● Matching asymptotics
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Proca in SR Kerr. Field eqs. at second order

Superradiance 

● Behavior at infinity:

B=0  quasinormal modes→  (purely outgoing waves at infinity)

C=0  bound states→  (exponential decay, spacially localized near the BH)

21/30

● System of second order ODEs  solved numerically→

● Near-horizon behavior:
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Proca in SR Kerr. Results

Axial modes (S=0) Polar modes (S=+1,-1)
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● Vector axial modes are very similar to scalar ones

● Vector polar modes are more unstable

P. Pani     –     Black-Hole Bombs and Photon-Mass Bounds  –       SMU, 2012



Proca in SR Kerr. Fully coupled system

Breit-Wigner resonances Confirmed by time evolution

[Witek et al., in preparation]

BeatingS = -1
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Part IV

Astrophysical 
consequences of the 

Proca instability

24/30 P. Pani     –     Black-Hole Bombs and Photon-Mass Bounds  –       SMU, 2012



Proca instability 
● Can we extrapolate these results to higher rotation?

● Scalar case (l=1)

● Extrapolation should provide an order of magnitude for the instability

● Massive vectors: stronger instability for polar modes with S = -1 and l=1:

[Dolan 2007]
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Within a factor 2 from exact evolution with a=0.99 M      [Witek et al., in preparation]
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Proca instability. Regge plane

● Instability is effective roughly for any non-vanishing spin!

[Data taken from

 Brenneman et. Al, ApJ 2011]

● Depend very  mildly on the fit coefficient and on the threshold

● τ
Salpater 

 timescale for accretion at the → Eddington limit
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Proca instability. Axial and Polar modes
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Proca instability
● Not strongly dependent on the timescale nor on type of mode
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Current bound on the photon mass [PDG]   →

From the existence of spinning BHs →
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What about vector fields?

[Goodsell et al. 2009]

P. Pani     –     Black-Hole Bombs and Photon-Mass Bounds  –       SMU, 2012



What about vector fields?

[Goodsell et al. 2009]

BH 
superradiance
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Proca instability. Limitations

● Nonlinear effects:

– Photon self-interaction is very weak  → gradual slow down

– Might be important for exotic fields  → Bosenova?

● Accretion disk

– Hidden U(1) fields are weakly coupled to matter

– Might be relevant for massive photons, but

● Superradiant mode are coherent and λ ~ BH size

● Disks are charge neutral and matter coupling incoherent

● Equatorial disks can at most quench some unstable modes
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Conclusions
● Spinning BHs as labs for exotic particles and modified gravity

● Perturbation theory of rotating objects is challenging

● Slowly-rotating approximation: general method

● Proca perturbations of Kerr BHs in GR

– Instability for massive vector fields  → Strong (est?) instability

– Bounds on the photon mass and on exotic ultralight spin-1 fields

● Extensions

– BHs in alternative theories (e.g. quadratic curvature)

– Kerr-Newman BHs

– Higher dimensions

[Yunes & Pretorius 2009]

[Pani et al. 2011]

[Yagi, Yunes, Tanaka 2012]
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“Black holes teach us that space can be crumpled like a piece of paper into an 
infinitesimal dot, that time can be extinguished like a blown-out flame, and that 
the laws of physics that we regard as 'sacred', as immutable, are anything but.”

John Archibald Wheeler (1998):
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