

RECENT RESULTS OF THE OPERA EXPERIMENT

Giulia Brunetti

OUTLINE

* **OPERA experiment**

Oscillation Project with Emulsion tRacking Apparatus

→ Neutrino oscillations

in APPEARANCE MODE on a LONG BASELINE

• $\underline{\nu_{\mu} \rightarrow \nu_{\tau}}$ oscillation

 $\rightarrow \tau$ decays, candidate events

* Complemetary analysis

 ${\boldsymbol{ \rightarrow } \nu _ \mu } \to \nu _ e$ oscillation analysis

→ Neutrino velocity measurement

NEUTRINOS in the STANDARD MODEL

- Neutral, MASSLESS fermions;
- 3 neutrinos, one for each of the 3 charged leptons;
- The lepton number is conserved separately for each of the 3 lepton families (e, v_e), (μ, v_μ), (τ, v_τ);
- Neutrinos and antineutrinos are distinct

... BUT

Weak neutrinos:

 v_e, v_μ, v_τ Mass eigenstates:

 v_1, v_2, v_3

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = U_{PMNS} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

U_{PMNS} : Pontecorvo-Maki-Nakagawa-Sakata matrix

If neutrinos have mass: $|v_{\ell}\rangle = U_{\ell} |v_{\ell}\rangle$

$$\begin{aligned} U_{li} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ Where \ c_{ij} = \cos \theta_{ij} \ and \ s_{ij} = \sin \theta_{ij} \end{aligned}$$

Various neutrino sources and vastly different energy and distance scales atmosphere accelerators reactors sun sotropic flux of ir nucleus Soudan Fermilal Super-K linois OPERA $\begin{array}{ccc} 0 & e^{i\delta}s_{13} \\ 1 & 0 \\ 0 & c_{13} \end{array}$ 0 $c_{13} \\ 0 \\ e^{-i\delta}s_{13}$ $\begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \end{pmatrix}$ c_{23} **s**₂₃ 0 0 c_{23} $-s_{23}$ *c*₁₃ 0 0 Measured with reactor Measured with Measured with atm and LBL v and LBL v solar, reactor v $\theta_{23} \approx \pi/4$ θ₁₂ ≈ π/6 $\theta_{13} \approx \pi/20$

Neutrino oscillations parametrized by

- mass squared differences Δm^2_{ij}
- mixing angles θ_{ij}
- CP phase δ_{CP}

For instance, 2-flavor case:

P(ν_e→ν_μ)= sin²2θsin²(1.27∆m²L/E) L(km), E(GeV)

Oscillation formula (3-neutrino scheme)

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{\tau}) &\sim \cos^{4} \theta_{13} \sin^{2} 2\theta_{23} \sin^{2} \Delta_{atm} \\ &- \Delta_{sol} \cos^{2} \theta_{13} \sin^{2} 2\theta_{23} (\cos^{2} \theta_{12} - \sin^{2} \theta_{13} \sin^{2} \theta_{12}) \sin 2\Delta_{atm} \\ &- \Delta_{sol} \cos \delta \cos^{2} \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \cos 2\theta_{23} \sin 2\Delta_{atm} / 2 \\ &+ \Delta_{sol} \sin \delta \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \sin^{2} \Delta_{atm} \end{split}$$

Dominant terms

$P(v_{\mu} \rightarrow v_{\tau}) \sim \frac{\sin^2 2\theta_{23} \cos^4 \theta_{13} \sin^2 (\Delta m_{23}^2 L/4E)}{\Delta m_{23}^2 L/4E}$

Direct detection of neutrino oscillations in <u>APPEARANCE MODE</u>:

- ν_τ CC interactions by direct observation
- of τ lepton decay

OPERA experiment

(Oscillation Project with Emulsion tRacking Apparatus)

Requirements:

- 1) long baseline
- 2) high neutrino energy
- 3) high beam intensity
- detect short lived τ's

κE>	17 GeV
L	730 km
$(v_e + \bar{v}_e)/v_\mu$ (CC)	0.87%
$\bar{\nu}_{\mu}/\nu_{\mu}$ (CC)	2.1%
v_{τ} prompt	negligible

For 22.5x10¹⁹ POT → Expected Events 7.6 Signal, 0.7 Background Ref: New Journal of Physics 14(2012)033017

OPERA collaboration

(11 countries, 30 Institutes, ~160 researchers)

THE PRINCIPLE OF THE EXPERIMENT: ECC + ELECTRONIC DETECTORS

THE IMPLEMENTATION OF THE PRINCIPLE

τ decay modes

Topology	decay mode	BR	exp. evts. (22.5.x10 ¹⁹ pot)	BG events
Kink	τ ⁻ → e ⁻	17.8 %	1.8	0.09
	τ → μ·	17.4 %	2.9	0.22
	τ → h-	49.5 %	2.2	0.24
Trident	$\tau^- \rightarrow h^- h^- h^+$	15.2 %	0.7	0.18
Total			7.6	0.73

v_{τ} CC detection

v_{τ} CC detection

Interaction vertex confirmation & decay search

CHARM EVENTS: A test sample and a physics BG

Charm Data-MC comparison: Proof of the τ efficiency

Detected: 49 events Expected: 51± 7.5 events

flight length: 1330 microns kink angle: 209 mrad IP of daughter: 262 microns daughter muon: 2.2 GeV/c decay Pt: 0.46 GeV/c

Status of the CNGS data taking (oscillation analysis)

Year	Protons on target (pot)	Number of neutrino Interactions	Integrated pot /proposal value
2008	1.78x10 ¹⁹	1698	7.9%
2009	3.52x10 ¹⁹	3557	23.6%
2010	4.04x10 ¹⁹	3912	41.5%
2011	4.84x10 ¹⁹	4210	63.0%
2012	(~4.7x10 ¹⁹)	(~4050)	(~84%)

14.2 x 10¹⁹ pot up to 2011

Expected pot after 2012 run 18.9 x 10¹⁹ (22.5 x 10¹⁹ proposal)

v_{τ} CANDIDATE EVENTS

Years	Status of analysis	# of events for decay search	Expected v _r events (Preliminary)	Observed v _r candidate events	Expected BG for v _r (Preliminary)		
2008- 2009	completed	2783		1		PRESENT STATISTICS	
2010- 2011	in progress	1343		1		(NEUTRINO2012 conf.)	
2012	started						
Total		4126	2.1	2	0.2	660	

First v_{τ} candidate

VARIABLE	AVERAGE	Selection criteria
kink (mrad)	41 ± 2	>20
decay length (mm)	1335 ± 35	within 2 lead plates
P daughter (GeV/c)	12 ⁺⁶ -3	>2
Pt (MeV/c)	470 +230 ₋₁₂₀	>300 (g attached)
missing Pt (MeV/c)	570 + ³²⁰ -170	<1000
φ (deg)	173 ± 2	>90

Event nature and invariant mass reconstruction

- The event passes all cuts, with the presence of at least 1 gamma pointing to the secondary vertex, and it is therefore candidate to the τ→1 prong hadron decay mode
- The invariant mass of the two detected gammas is consistent with the π^0 mass value: 120 ± 20 ± 35 MeV
- The invariant mass of the $\pi^2 \gamma \gamma$ system has a value compatible with that of the

ρ(770) mass value: 640⁺¹²⁵-80⁺¹⁰⁰-90 MeV

The ρ appears in about 25% of the τ decays:

$\tau \rightarrow \rho(\pi^{\text{-}}\pi^{0})\nu_{\tau}$

BACKGROUND SOURCES:

- Prompt v_{τ}
- Decay of charmed particles produced in v_e interactions
- Double charm production
- Decay of charmed particles produced in ν_{μ} interactions
- Hadronic reinteractions

~10⁻⁷/CC ~10⁻⁶/CC ~10⁻⁶/CC ~10⁻⁵/CC ~10⁻⁵/CC 18

An Interesting by-product: search for v_e appearance

Systematic v_e search for 2008/2009 located events (preliminary result presented at NEUTRINO 2012)

Event sample: 505 NC-like events in 2008-2009

For each located event: - Extrapolated 1ry track to CS

- Search shower on CS
- If shower-like tracks are found on CS, open additional volume

As a result: 96 events selected, total 19 ν_{e} confirmed

Background from ν_{μ} NC (π^{0} →2 γ)

BG for 2008+2009 statistics: 0.16 events

Close-up of an electron pair

Expected events:

Oscillated v_e : 1.5 Beam v_e BG: 19.2 Observed v_e : 19

After low-energy event selection (Ev < 20 GeV): Observed events: 4 Expected event: oscillated 1.1, beam BG 3.7

22

OPERA $v_{\mu} \rightarrow v_{e}$ oscillation result

Neutrino Velocity Measurement

CNGS Layout

CNGS event selection – ON TIME events

Offline coincidence of SPS proton extractions (kicker time-tag) and OPERA events

 $|T_{OPERA} - (T_{kicker} + TOFc)| < 20 \ \mu s$

Synchronisation with standard GPS system ~100 ns (not adequate for our purposes)

OPERA data: narrow peaks of the order of the spill width (10.5 μ s) Negligible cosmic-ray background: O(10⁻⁴) Selection procedure kept unchanged since first events in 2006

25

Summary of the principle

- ✓ Tagging of neutrino interaction by a far detector
- ✓ Accurate determination of the baseline
- ✓ Blind Analysis

CNGS-OPERA Synchronization

- → Data processing of the twin high accuracy timing system
 - Comparison old/new timing system every second
 - Satellites in common view mode

TIME LINK VALUES at single event level

\rightarrow Timing chains calibrations

Every path delays of the timing chains has been calibrated more then once, using different techniques (Portable Cs clock, 2-ways, Scope meas., laser, dedicated beam)

→ Geodesy measurements to link the OPERA detector position underground to GPS benchmarks

20 cm accuracy over ~730 km

\rightarrow Statistical Analysis

- No seasonal effect
- No day/night effect
- No energy dependence
- No beam intensity dependence
- No difference between internal and external events (agreement with MC)

Measurement with a short-bunch narrow-spacing proton beam

- \rightarrow 2011: By associating each event to its own bunch: check on possible biases due to:
- Statistical treatment of data
- Response of the beamline components to long-lasting pulses

- TOFv for each detected neutrino
- 6 internal events
- 14 external events
- events evenly distributed in the 4 bunches of the extraction

Result compatible with the previous measurement

\rightarrow New measurement in 2012

10 to 24 May 2012

- CERN White Rabbit system for delay monitoring
- improved OPERA timing system (including both TT and RPC) •
- **106 on time events (external + contained)** •

SUMMARY

OPERA experiment: Direct detection of neutrino oscillations in <u>APPEARANCE MODE</u>

 \succ ν_µ→ν_τ → τ decays

- → High energy almost pure v_{μ} beam (CNGS)
- \rightarrow High spatial resolution + high target mass \rightarrow hybrid detector: ECC and

lead (brick walls) + electronic detectors

2 candidate events:

τ→1 prong: τ → ρ(π⁻π⁰)ν_τ
τ→3 h

BG events	
0.73	

Year	Protons on target (pot)	Number of neutrino Interactions	Integrated pot /proposal value
2008	1.78x10 ¹⁹	1698	7.9%
2009	3.52x10 ¹⁹	3557	23.6%
2010	4.04x10 ¹⁹	3912	41.5%
2011	4.84x10 ¹⁹	4210	63.0%
2012	(~4.7x10 ¹⁹)	(~4050)	(~84%)

- * Preliminary result on the $\nu_{\mu} \rightarrow \nu_{e}$ oscillation analysis
 - > 19 events observed, 4 with energy < 20 GeV (expected osc. Signal 1.1, BG 3.9) → constraints in the high ∆m² region
 - New improved result soon
- Neutrino velocity measurement
 - Long baseline
 - > Sophisticated timing system (common view mode GPS)
 - ➤ Geodesy
 - > 2012 bunched beam preliminary result:

 $\delta t = -1.6 \pm 1.1 + 6.1_{-3.7} \rightarrow (v-c)/c = (-0.7 \pm 0.5 + 2.5_{-1.5})10^{-6}$

THANK YOU!