Hadron Structure in Transverse Momentum Dependent Resummation and Evolution

T. C. Rogers

C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook

- Perturbative QCD and Collinear Factorization.
- Transverse Momentum Dependent (TMD) Factorization.
- TMD project: Implementing TMD-factorization.

Seminar: Southern Methodist University – October 7, 2013

Example:

• Semi-Inclusive Deep Inelastic Scattering (SIDIS):

JLab

Tevatron

• Drell-Yan:

 $q^2 = (l_1 + l_2)^2 = Q^2 \gg \Lambda_{\text{QCD}}^2$

 $\sim 1/Q$ Small Scales

Parton Model Picture

 $\sigma \sim \int \mathcal{H}(Q) \otimes f_{q/P}(x_1) \otimes f_{\bar{q}/\bar{P}}(x_2)$ **Elementary** collision Number densities

"Parton Distribution Functions" (PDFs)

 α_s = QCD coupling strength

QCD Factorization

• Short Distances; Asymptotic Freedom

• Parton Model

 $\sigma \sim \int \mathcal{H}(Q) \otimes f_{q/P}(x_1) \otimes f_{\bar{q}/\bar{P}}(x_2)$

Elementary collision Short distance scales

Hadron Structure: large distance scales

 $\sim 1/Q$

• Perturbative QCD factorization theorem:

$$\sigma \sim \int \mathcal{H}(Q,\mu/Q,\alpha_s(\mu)) \otimes f_{q/P}(x_1;\mu) \otimes f_{\bar{q}/\bar{P}}(x_2;\mu)$$

Small Coupling: Perturbation Theory $C_0 + C_1 \alpha_s (\mu) + C_2 \alpha_s (\mu)^2 + C_3 \alpha_s (\mu)^3 + \cdots$

Error $\sim \Lambda_{\rm QCD}/Q$

Red : Perturbatively Calculable Blue : Non-Perturbative Input Needed

• Perturbative QCD factorization theorem:

$$\sigma \sim \int \mathcal{H}(Q, \mu/Q, \alpha_{s}(\mu)) \otimes f_{q/P}(x_{1}; \mu) \otimes f_{\bar{q}/\bar{P}}(x_{2}; \mu)$$

$$Small Coupling:$$
Perturbation Theory
$$C_{0} + C_{1}\alpha_{s}(\mu) + C_{2}\alpha_{s}(\mu)^{2} + C_{3}\alpha_{s}(\mu)^{3} + \cdots$$
Defined in terms of elementary fields
$$\int \frac{dw^{-}}{(2\pi)} e^{-i\xi P^{+}w^{-}} \langle P | \bar{\psi}_{0}(0, w^{-}, \mathbf{0}_{t}) \frac{\gamma^{+}}{2} \psi_{0}(0, 0, \mathbf{0}_{t}) | P \rangle$$

 $\mathrm{Error} \sim \Lambda_{\mathrm{QCD}}/Q$

Red : Perturbatively Calculable Blue : Non-Perturbative Input Needed

• Perturbative QCD factorization theorem:

$$\sigma \sim \int \mathcal{H}(Q, \mu/Q, \alpha_{s}(\mu)) \otimes f_{q/P}(x_{1}; \mu) \otimes f_{\bar{q}/\bar{P}}(x_{2}; \mu)$$

$$Small Coupling:$$
Perturbation Theory
$$C_{0} + C_{1}\alpha_{s}(\mu) + C_{2}\alpha_{s}(\mu)^{2} + C_{3}\alpha_{s}(\mu)^{3} + \cdots$$
Auxiliary parameter: Arbitrary

$$\mathrm{Error} \sim \Lambda_{\mathrm{QCD}}/Q$$

Red : Perturbatively Calculable Blue : Non-Perturbative Input Needed

• Perturbative QCD factorization theorem:

Factorization + Evolution: Universal PDFs

"Portable"

Renormalization Group Equations for Collinear PDFs

•
$$f_{j/p}(\xi;\mu) = \sum_{i} \int \frac{dz}{z} Z_{ji}(z,g_s(\mu)) f_{0,i/p}(\xi/z)$$
$$= Z_{ji} \otimes f_{0,i/p}$$

• **RG invariance:** $\frac{d}{d \ln \mu} f_{0,i/p}(\xi/z) = 0$

• RG equation:
$$\frac{d}{d\ln\mu}f_{j/p}(\xi;\mu) = 2\sum_i \int \frac{dz}{z} P_{ji}(z,g(\mu)) f_{i/p}(\xi/z;\mu)$$

DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

<u>Measurements</u>

Collinear processes

Fitting

PRD67, 012007 (2003)

CTEQ10 NNLO arXiv:1302.6246

Hadron Structure in Transverse Momentum Dependent Resummation and Evolution

T. C. Rogers

C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook

- Transverse Momentum Dependent (TMD) Factorization.
- TMD project: Implementing TMD-factorization.

Seminar: Southern Methodist University – October 7, 2013

 $\mathbf{k}_{1T} + \mathbf{k}_{2T} = \mathbf{q}_T$

Transverse Momentum:

<u>Small</u> Transverse Momentum:

TMD-Factorization

 Collinear factorization theorem relied on collinear approximations.
Collinear factorization theorem relied on collinear approximations.

• Accounting for intrinsic transverse momentum requires *new factorization theorems*.

Recall Collinear Case:

Parton Model

$$\sigma \sim \int \underbrace{\mathcal{H}(Q) \otimes f_{q/P}(x_1) \otimes f_{\bar{q}/\bar{P}}(x_2)}_{\textit{Elementary}} \\ \underset{\textit{Collision}}{\overset{\textit{Elementary}}{\overset{\textit{Collision}}{\overset{\textit{Hadron Structure: large distance scales}}} \\ \end{array}$$

Perturbative QCD factorization theorem

TMD Parton Model

 $\sigma \sim \int \mathcal{H}(Q) \otimes F_{q/P}(x_1, \mathbf{k}_{1T}) \otimes F_{\bar{q}/\bar{P}}(x_2, \mathbf{q}_T - \mathbf{k}_{1T})$ Parton Model

TMD Parton Model

 $\sigma \sim \int \mathcal{H}(Q) \otimes F_{q/P}(x_1, \mathbf{k}_{1T}) \otimes F_{\bar{q}/\bar{P}}(x_2, \mathbf{q}_T - \mathbf{k}_{1T})$ Parton Model

Elementary collision Short distance scales

 $\sim 1/Q$

TMD Parton Model

$$\sigma \sim \int \mathcal{H}(Q) \otimes F_{q/P}(x_1, \mathbf{k}_{1T}) \otimes F_{\bar{q}/\bar{P}}(x_2, \mathbf{q}_T - \mathbf{k}_{1T})$$
Parton Model
Elementary
collision
Short distance scales
$$\sim 1/Q$$
Number densities
"Transverse Momentum Dependent
Parton Distribution Functions" (TMD PDFs)

TMD Parton Model

$$\sigma \sim \int \mathcal{H}(Q) \otimes F_{q/P}(x_1, \mathbf{k}_{1T}) \otimes F_{\bar{q}/\bar{P}}(x_2, \mathbf{q}_T - \mathbf{k}_{1T})$$
Parton Model
Elementary
collision
Short distance scales
$$\sim 1/Q$$
Number densities
"Transverse Momentum Dependent
Parton Distribution Functions" (TMD PDFs)

- Past Approaches:
 - Non-perturbative TMD parton model descriptions:
 - Transverse Momentum Resummation

Guassian Fits

(Schweitzer, Teckentrup, Metz (2010))

Resummation

(Collins, Soper, Sterman (CSS) formalism (1982,1983))

Resummation

TMD-Factorization: QCD

Unified Formalism

(Collins, Soper, Sterman (CSS) formalism (1982,1983)) (Collins Extension: (2011), Chapts. 10,13,14)

TMD-Evolution

• Recall Collinear / DGLAP:

$$\frac{d}{d\ln\mu}f_{j/P}(x;\mu) = 2\int P_{jj'}(x')\otimes f_{j'/P}(x/x';\mu)$$

TMD-Evolution

• Recall Collinear / DGLAP:

$$\frac{d}{d\ln\mu}f_{j/P}(x;\mu) = 2\int P_{jj'}(x')\otimes f_{j'/P}(x/x';\mu)$$

• TMD Case:

$$\frac{\partial \ln \tilde{F}(x, b_T; \mu, \zeta)}{\partial \ln \sqrt{\zeta}} = \tilde{K}(b_T; \mu)$$

$$\frac{d\tilde{K}(b_T;\mu)}{d\ln\mu} = -\gamma_K(g(\mu))$$

 $\frac{d\ln \tilde{F}(x, b_T; \mu, \zeta)}{d\ln \mu} = \frac{\gamma_F(g(\mu); \zeta/\mu^2)}{((CSS) \text{ formalism (1982, 1983)})}$ (Collins Extension: (2011), Chapts. 10, 13, 14)
48

• Defined in terms of elementary field operators. (Collins, POS (2003)), (Worked out in Collins, Book (2011))

- Defined in terms of elementary field operators. (Collins, POS (2003)), (Worked out in Collins, Book (2011))
- Needed to address questions of hadronic structure.

- Defined in terms of elementary field operators. (Collins, POS (2003)), (Worked out in Collins, Book (2011))
- Needed to address questions of hadronic structure.
- Universality / Modified Universality.
 - Sivers Function: Non-zero, reverses sign in Drell-Yan vs. SIDIS (Brodsky, Hwang, Schmidt (2002)), (Collins, (2002))

- Defined in terms of elementary field operators. (Collins, POS (2003)), (Worked out in Collins, Book (2011))
- Needed to address questions of hadronic structure.
- Universality / Modified Universality.
 - Sivers Function: Non-zero, reverses sign in Drell-Yan vs. SIDIS (Brodsky, Hwang, Schmidt (2002)), (Collins, (2002))
- Constrained by factorization derivation.

- Defined in terms of elementary field operators. (Collins, POS (2003)), (Worked out in Collins, Book (2011))
- Needed to address questions of hadronic structure.
- Universality / Modified Universality.
 - Sivers Function: Non-zero, reverses sign in Drell-Yan vs. SIDIS (Brodsky, Hwang, Schmidt (2002)), (Collins, (2002))
- Constrained by factorization derivation.
- Factorization breaking.

(Collins, Qiu (2007)), (TCR, Mulders (2010)), (TCR, (2013))

Hadron Structure in Transverse Momentum Dependent Resummation and Evolution

T. C. Rogers

C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook

- Perturbative QCD and Collinear Factorization.
- Transverse Momentum Dependent (TMD) Factorization.
- TMD project: Implementing TMD-factorization.

Seminar: Southern Methodist University – October 7, 2013

TMD vs. Collinear

• TMDs: Rich source of information about hadron structure.

– TMD Zoo

TMD vs. Collinear

TMD Taxonomy Also Fragmentation **Parton Model**

Functions

Proton Transversely Longitudinally **Unpolarized** polarized Quark polarized Unpolarized $f_1(x,k_T)$ $f_{1T}^{\perp}(x,k_T)$ <u>Longitudinally</u> polarized $g_{1L}(x,k_T) \mid g_{1T}(x,k_T)$ <u>Transversely</u> polarized $\begin{array}{c} h_{1T}(x,k_T) \\ h_{1T}^{\perp}(x,k_T) \end{array}$ $h_1^{\perp}(x,k_T) \mid h_{1L}(x,k_T) \mid$

$$\begin{split} \sigma &\sim \int \mathcal{H}(Q) \otimes F_{q/P}(x_1, \mathbf{k}_{1T}, S_1) \otimes F_{\bar{q}/\bar{P}}(x_2, \mathbf{q}_T - \mathbf{k}_{1T}, S_2) \\ \sigma &\sim \int \mathcal{H}(Q) \otimes F_{q/P}(x_1, \mathbf{k}_{1T}, S_1) \otimes D_{H/q}(z, \mathbf{q}_T + \mathbf{k}_{1T}) \\ \hline \mathcal{Q}_{uark} & \underbrace{Unpolarized} & \underbrace{Longitudinally}_{polarized} & \underbrace{Transversely}_{polarized} \\ \hline f_1(x, k_T) & \underbrace{f_{1T}^{\perp}(x, k_T)}_{+f_{1T}^{\perp}(x, k_T)} & f_{1T}(x, k_T) \\ \hline f_1(x, k_T) & \underbrace{g_{1L}(x, k_T)}_{+f_{1T}(x, k_T)} & g_{1T}(x, k_T) \\ \hline f_1(x, k_T) & h_{1L}(x, k_T) & h_{1T}(x, k_T) \\ \hline f_1(x, k_T) & h_{1L}(x, k_T) & h_{1T}(x, k_T) \\ \hline f_1(x, k_T) & h_{1L}(x, k_T) & h_{1T}(x, k_T) \\ \hline f_1(x, k_T) & h_{1L}(x, k_T) & h_{1T}(x, k_T) \\ \hline f_1(x, k_T) & h_{1L}(x, k_T) & h_{1T}(x, k_T) \\ \hline f_1(x, k_T) & h_{1L}(x, k_T) & h_{1T}(x, k_T) \\ \hline f_1(x, k_T) & h_{1T}(x, k_T) & h_{1T}(x, k_T) \\ \hline f_1(x, k_T) & h_{1L}(x, k_T) & h_{1T}(x, k_T) \\ \hline f_1(x, k_T) & h_{1T}$$

TMD vs. Collinear

• TMDs: Rich source of information about hadron structure.

– TMD Zoo

• More complicated fitting:

$$f_{f/P}(x) \longrightarrow F_{f/P}(x, \mathbf{k}_T)$$

Need non-perturbative descriptions

TMD vs. Collinear

• TMDs: Rich source of information about hadron structure.

– TMD Zoo

• More complicated fitting:

$$f_{f/P}(x) \longrightarrow F_{f/P}(x, \mathbf{k}_T)$$

Need non-perturbative descriptions

Cases of non-universality / TMD-factorization breaking.

Implementing Collinear Factorization

Extractions of TMD PDFs

Extractions of TMD PDFs

• ResBos: CSS formalism

 $g_{K}(b_{T})\ln\left(rac{Q}{Q_{0}}
ight) = -g_{2}rac{1}{2}b_{T}^{2}\ln\left(rac{Q}{Q_{0}}
ight)$

Gaussian ansatz

http://hep.pa.msu.edu/resum/ (Landry, Brock, Nadolsky, Yuan, (2003))

$$g_2 = .68 \ \text{GeV}^2$$
 $b_{\text{max}} = .5 \ \text{GeV}^{-2}$
Extractions of TMD PDFs

• ResBos: CSS formalism

$$g_{K}(b_{T})\ln\left(\frac{Q}{Q_{0}}\right) = -g_{2}\frac{1}{2}b_{T}^{2}\ln\left(\frac{Q}{Q_{0}}\right)$$

Gaussian ansatz

Extractions of TMD PDFs

Look at one TMD PDF

Nonperturbative large b_{τ} behavior

Evolved TMD PDFs: constructed from old fits

https://projects.hepforge.org/tmd/

Evolved TMD PDFs: constructed from old fits

https://projects.hepforge.org/tmd/

Polarized TMD PDFs:

• Same definition, same evolution equations

$$F_{f/P^{\uparrow}}(x,k_T,S;\mu,\zeta_F)$$

= $F_{f/P}(x,k_T;\mu,\zeta_F) - F_{1T}^{\perp f}(x,k_T;\mu,\zeta_F) \frac{\epsilon_{ij}k_T^i S^j}{M_p}$

Polarized TMD PDFs:

• Same definition, same evolution equations

$$F_{f/P^{\uparrow}}(x, k_T, S; \mu, \zeta_F)$$

= $F_{f/P}(x, k_T; \mu, \zeta_F) - F_{1T}^{\perp f}(x, k_T; \mu, \zeta_F) \frac{\epsilon_{ij} k_T^i S^j}{M_p}$

• Derivative evolves in b_{T} -space

$$\tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu, \zeta_F) = -2\pi \int_0^\infty dk_T k_T^2 J_1(k_T b_T) F_{1T}^{\perp f}(x, k_T; \mu, \zeta_F).$$

Polarized TMD PDFs:

• Same definition, same evolution equations

$$\tilde{F}_{1T}^{'\perp f}(x, b_{T}; \mu, \zeta_{F}) = \sum_{j} \frac{M_{p} b_{T}}{2} \int_{x}^{1} \frac{d\hat{x}_{1} d\hat{x}_{2}}{\hat{x}_{1} \hat{x}_{2}} \tilde{C}_{f/j}^{\text{Sivers}}(\hat{x}_{1}, \hat{x}_{2}, b_{*}; \mu_{b}^{2}, \mu_{b}, g(\mu_{b})) \\ \times T_{Fj/P}(\hat{x}_{1}, \hat{x}_{2}, \mu_{b}) \exp\left\{\ln\frac{\sqrt{\zeta_{F}}}{\mu_{b}} \tilde{K}(b_{*}; \mu_{b}) \\ + \int_{\mu_{b}}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{F}(g(\mu'); 1) - \ln\frac{\sqrt{\zeta_{F}}}{\mu'} \gamma_{K}(g(\mu'))\right]\right\} \\ \times \exp\left\{-g_{f/P}^{\text{Sivers}}(x, b_{T}) - g_{K}(b_{T}) \ln\frac{\sqrt{\zeta_{F}}}{Q_{0}}\right\}.$$

Evolved TMD PDFs: constructed from old fits

https://projects.hepforge.org/tmd/

Evolved TMD PDFs: constructed from old fits

(CSS/Collins formalism.)

https://projects.hepforge.org/tmd/

- High Q fits extrapolated to low Q (≈ 1 GeV) gives extremely rapid evolution.
 - Is this realistic??
 - Recently questioned.

- High Q fits extrapolated to low Q (≈ 1 GeV) gives extremely rapid evolution.
 - Is this realistic??
 - Recently questioned.
- Importance of non-perturbative effects?
 - − Collins, Soper, Sterman (1985): non-perturbative evolution of k_T -dependence becomes negligible at Q ≈ 10⁸ GeV.
 - Global fits find important non-perturbative evolution of k_T-dependence. (*Recent: (Guzzi, Nadolksy, Wang (2013)*)
 - Other approaches claim perturbative evolution down to $Q \approx 1 \text{ GeV}$. (Sun-Yuan (2013)) (Echevarria, Idilbi, Schafer, Scimemi (2012))

- High Q fits extrapolated to low Q (≈ 1 GeV) gives extremely rapid evolution.
 - Is this realistic??
 - Recently questioned.
- Importance of non-perturbative effects?
 - − Collins, Soper, Sterman (1985): non-perturbative evolution of k_T -dependence becomes negligible at Q ≈ 10⁸ GeV.
 - Global fits find important non-perturbative evolution of k_T-dependence. (*Recent: (Guzzi, Nadolksy, Wang (2013)*)
 - Other approaches claim perturbative evolution down to Q ≈ 1 GeV .
 (Sun-Yuan (2013)) (Echevarria, Idilbi, Schafer, Scimemi (2012))
- Important for studies of Sivers SIDIS/DY sign flip.

Why Study Perturbative QCD?

- Test QCD as theory of Strong Interaction.
- Support for other HEP (high energy QCD, BSM, etc...)
 - Resummation, Jets, showers etc...
 - LHC / Higgs studies
 - Processes with new physics.
 - Backgrounds, Jet Vetos...

Transverse Momentum Dependent (TMD) Factorization

Main theme of talk.

- Hadronic/Nuclear Structure with quark/gluon degrees of freedom.
 - <u>Hadron Structure</u>
 - Confinement
 - Lattice QCD
 - Chiral Symmetry Breaking
 - Non-perturbative QCD

New fits: To do

- Incorporate data from all types of processes.
 - SIDIS, DY, e⁺e⁻, different targets....
- Incorporate all types of observables.
 - Unpolarized cross sections, spin asymmetries...

New fits: To do

- Incorporate data from all types of processes.
 - SIDIS, DY, e⁺e⁻, different targets....
- Incorporate all types of observables.
 - Unpolarized cross sections, spin asymmetries...

$$d\sigma_{\text{SIDIS}} = \sum_{f} \mathcal{H}_{f,\text{SIDIS}}(Q) \otimes F_{f/H_1}(x, k_{1T}, Q) \otimes D_{H_2/f}(z, k_{2T}, Q) + Y_{\text{SIDIS}}$$
$$d\sigma_{\text{DY}} = \sum_{f} \mathcal{H}_{f,\text{DY}}(Q) \otimes F_{f/H_1}(x_1, k_{1T}, Q) \otimes F_{\bar{f}/H_2}(x_2, k_{2T}, Q) + Y_{\text{Drell-Yan}}$$
$$d\sigma_{\text{e}^+\text{e}^-} = \sum_{f} \mathcal{H}_{f,\text{e}^+\text{e}^-}(Q) \otimes D_{H_1/\bar{f}}(z_1, k_{1T}, Q) \otimes D_{H_2/f}(z_2, k_{2T}, Q) + Y_{\text{e}^+\text{e}^-}$$

Constraining Non-Perturbative Parts

<u>TMD</u> Functions	TMD PDF: quark in hadron $F_{f/P}(x, k_T)$	TMD PDF: antiquark in hadron $F_{ar{f}/P}(x,k_T)$	TMD Fragmentation Function	
	$\left(F_{\bar{f}/\bar{P}}(x,k_T) \right)$	$\left(F_{f/\bar{P}}(x,k_T) \right)$	$D_{h/f}(z,k_T)$	More TMDs

Constraining Non-Perturbative Parts

<u>TMD</u> Functions	TMD PDF: quark in hadron $F_{f/P}(x,k_T)$	TMD PDF: antiquark in hadron $F_{ar{f}/P}(x,k_T)$	TMD Fragmentation Function	
	$\left(F_{\bar{f}/\bar{P}}(x,k_T) \right)$	$\left(F_{f/\bar{P}}(x,k_T) \right)$	$D_{h/f}(z,k_T)$	••• More TMDs

<u>Processes</u>	$pp \to \gamma^*(Z, W) + X$ $p\bar{p} \to \gamma^*(Z, W) + X$	$lp \to h + X$	$l^+l^- \to h_1 + h_2 + X$	More Processes,
	Drell-Yan	SIDIS		Different Targets

Constraining Non-Perturbative Parts

New fits: To do

- Incorporate data from all types of processes.
 - SIDIS, DY, e⁺e⁻, different targets....
- Incorporate all types of observables.
 - Unpolarized cross sections, spin asymmetries...
- Utilize/Test Strong Universality of Non-Perturbative Evolution.

New fits: To do

- Incorporate data from all types of processes.
 - SIDIS, DY, e⁺e⁻, different targets....
- Incorporate all types of observables.
 - Unpolarized cross sections, spin asymmetries...
- Utilize/Test Strong Universality of Non-Perturbative Evolution.
- Non-perturbative physics

• Chiral symmetry breaking:

(Schweitzer, Strikman, Weiss, (2013))

• Chiral symmetry breaking:

• Lattice QCD

(M. Engelhardt et al., (2012)) (B. Musch et al., (2011)) • Chiral symmetry breaking:

• Lattice QCD

- Non-perturbative models
 - Bag models
 (A. Courtoy et al., (2008,2009))
 - Light-cone wave function
 (B. Pasquini, F. Yuan (2010))
 - Others...

• Sea quark TMDs vs. valence quark TMDs:

Example:

• Sea quark TMDs vs. valence quark TMDs:

Example:

• Sea quark TMDs vs. valence quark TMDs:

New fits: To do

- Incorporate data from all types of processes.
 - SIDIS, DY, e⁺e⁻, different targets....
- Incorporate all types of observables.
 - Unpolarized cross sections, spin asymmetries...
- Utilize/Test Strong Universality of Non-Perturbative Evolution.
- Non-perturbative physics
- Account for x, z, hadron species dependence. Take TMD picture/interpretation seriously.

Current work with C. Aidala and L. Gamberg

$$\mathbf{b}_{*}(\mathbf{b}_{\mathrm{T}}) \equiv \frac{\mathbf{b}_{\mathrm{T}}}{\sqrt{1 + b_{T}^{2}/b_{\mathrm{max}}^{2}}}$$
$$\mu_{b} \equiv C_{1}/|\mathbf{b}_{*}(b_{T})|$$
$$g_{K}(b_{T}) \ln \frac{Q}{Q_{0}}$$

 $\begin{array}{l} \textbf{COMPASS, C. Adolph et al., arXiv:1305.7317} \\ Q = 1 \sim 2 \ \ \text{GeV} \\ \textbf{Approx. fixed} \\ \textbf{Fit:} \quad \frac{d\sigma}{dP_T^2} \propto \exp\left\{-\frac{P_T^2}{\langle P_T^2 \rangle}\right\} \end{array}$

From COMPASS, C. Adolph et al., arXiv:1305.7317

From COMPASS, C. Adolph et al., arXiv:1305.7317

Current work with C. Aidala and L. Gamberg

• Fastest evolution (b_T-space):

What is needed

• New global fits to semi-inclusive deep inelastic scattering over wide range of Q. (Nadolsky, Stump, Yuan (2000,2001))
What is needed

- New global fits to semi-inclusive deep inelastic scattering over wide range of Q. (Nadolsky, Stump, Yuan (2000,2001))
- Dedicated effort to constraining non-perturbative evolution.
 - Studies of different non-perturbative forms.
 - Input from purely non-perturbative studies.

What is needed

- New global fits to semi-inclusive deep inelastic scattering over wide range of Q. (Nadolsky, Stump, Yuan (2000,2001))
- Dedicated effort to constraining non-perturbative evolution.
 - Studies of different non-perturbative forms.
 - Input from purely non-perturbative studies.
- Fix x, z, hadron species as much as possible (or account for variations).

What is needed

- New global fits to semi-inclusive deep inelastic scattering over wide range of Q. (Nadolsky, Stump, Yuan (2000,2001))
- Dedicated effort to constraining non-perturbative evolution.
 - Studies of different non-perturbative forms.
 - Input from purely non-perturbative studies.
- Fix x, z, hadron species as much as possible (or account for variations).
- TMD Pert. QCD is reaching a stage where two traditionally separate QCD styles are rapidly merging.
 - New, very labor intensive projects need to be pushed through.
 - Collaboration badly needed.

Hadron Structure in Transverse Momentum Dependent Resummation and Evolution

T. C. Rogers

C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook

- Perturbative QCD and Collinear Factorization.
- Transverse Momentum Dependent (TMD) Factorization.
- TMD project: Implementing TMD-factorization.

Seminar: Southern Methodist University – October 7, 2013

Hadron Structure in Transverse Momentum Dependent Resummation and Evolution

T. C. Rogers

C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook

For more details: https://www.jlab.org/hugs/program.html

Seminar: Southern Methodist University – October 7, 2013

Hadron Structure in Transverse Momentum Dependent Resummation and Evolution

T. C. Rogers

C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook

Seminar: Southern Methodist University – October 7, 2013