

First Results from NOvA

Jianming Bian University of Minnesota 09-21-2015

SMU Physics Colloquium, Dallas, TX

Neutrino Oscillation

- A neutrino created with a specific lepton flavor (e, μ or τ) can later be measured to have a different flavor. The probability of measuring a particular flavor for a neutrino varies periodically as the neutrino travels in space.
- The neutrino flavor eigenstates (v_e, v_μ, v_τ) are each a different linear combination of mass eigenstates (v_1, v_2, v_3) .

$$\begin{split} |\nu_{\alpha}\rangle &= \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle \\ \begin{bmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} &= \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{bmatrix} \begin{bmatrix} \nu_{i} \\ \nu_{2} \\ \nu_{3} \end{bmatrix} \begin{bmatrix} \nu_{i} \\ \nu_{i} \\ \nu_{i} \end{bmatrix} \\ \begin{bmatrix} \nu_{i} \\ \nu_{$$

• As a neutrino propagates through space, the phases of the three mass states $|v_{i=1,2,3}\rangle$ advance at different rates due to the differences in the neutrino masses.

• This results in a periodically changing mixture of mass states as the neutrino travels, so the probability of measuring a particular flavor state change accordingly.

$$P_{\alpha \to \beta} = |\langle \nu_{\beta} | \nu_{\alpha}(t) \rangle|^2 = \left| \sum_{i} U_{\alpha i}^* U_{\beta i} e^{-im_i^2 L/2E} \right|^2$$

Neutrino Oscillation

•For a certain travel distance (L) and energy (E), oscillation probability depends on squared mass differences $\Delta m_{ij}^2 = m_i^2 - m_j^2$ and parameters of the PMNS mixing matrix U

$$P(v_{\alpha} \to v_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}(U_{\alpha i}^{*}U_{\beta i}^{*}U_{\alpha j}U_{\beta j}^{*})\sin^{2}(\Delta m_{ij}^{2}L/4E)$$
 For anti-neutrinos,

$$P(\overline{v_{\alpha}} \to \overline{v_{\beta}}) = P(v_{\alpha} \to v_{\beta}, U^{*})$$

$$+ 2\sum_{i>j} \operatorname{Im}(U_{\alpha i}^{*}U_{\beta i}^{*}U_{\alpha j}U_{\beta j}^{*})\sin(\Delta m_{ij}^{2}L/2E)$$
 (CPT invariant)

•In the case of CP violation $P(v_{\alpha} \to v_{\beta}) = P(v_{\alpha} \to v_{\beta}, U^*) \neq P(v_{\alpha} \to v_{\beta}, U)$, need a complex phase δ_{CP} in the mixing matrix U to describe the non-zero $\operatorname{Im}(U^*_{\alpha i}U_{\beta i}U_{\alpha j}U^*_{\beta j})$

•For the three flavor case the PMNS matrix is most commonly parameterized by three real mixing angles θ_{12} , θ_{23} and θ_{13} and a single complex phase δ_{CP}

 $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta_{CP}} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Including two independent squared mass differences $\Delta m_{21}^2 = m_2^2 - m_1^2$ and $\Delta m_{31}^2 = m_3^2 - m_1^2$, for example, there are 6 free parameters that determine the neutrino oscillation.

Neutrino Oscillation Parameters

From previous neutrino oscillation experiments:

- we know that m_1 and m_2 are very close, but difference in m_3 and $m_{1,2}$ is much larger.
- $\sin^2 2\theta_{12}$, $\sin^2 2\theta_{13}$, $\sin^2 2\theta_{23}$ have been measured.

Fundamental questions remaining for long-baseline neutrino oscillation experiments:

- Mass hierarchy: $m_3 > m_{1,2}$ or $m_{1,2} > m_3$?
- CP phase δ_{CP} : whether neutrinos and antineutrinos $P(v_{\mu} \rightarrow v_{e}) \neq P(v_{\mu} \rightarrow v_{e})$? behave the same way in oscillation?
- Octant of θ_{23} : Is θ_{23} exactly 45°? Is v_3 more strongly coupled to v_{τ} or v_{μ} ?

NuMI Off-Axis v_e Appearance Experiment

- NOvA is a 2-detector neutrino oscillation experiment, optimized for v_e identification.
- Upgrading NuMI muon neutrino beam at Fermilab (700 kW).
- Construct a 14 kt liquid scintillator far detector at a distance of 810 km (Ash river, MN) to detect the oscillated beam.
- Functionally identical \sim 300 ton near detector located at Fermilab to measure unoscillated beam v to estimate backgrounds in the far detector.

NuMI Off-Axis Beam

•NOvA detectors are sited 14 mrad off the NuMI beam axis

•Beam v are produced by π and K decays. Neutrino energy depends on the decay angle and π/K energy

•With the medium-energy NuMI tune, yields a narrow 2-GeV spectrum at the NOvA detectors

•Reduces beam NC and v_e CC backgrounds in the oscillation analyses while maintaining high v_{μ} flux at 2 GeV for the oscillation signal

Neutrino Oscillation at NOvA

 v_{μ} disappearance:

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2(\Delta m_{32}^2 L/4E)$$

...to leading order

Improve precision on $\sin^2 2\theta_{23}$ and $|\Delta m^2_{32}|$

$$+2\alpha\sin\theta_{13}\cos\delta\sin2\theta_{12}\sin2\theta_{23}\frac{\sin A\Delta}{A}\frac{\sin(A-1)\Delta}{(A-1)}\cos\Delta$$

$$-2\alpha\sin\theta_{13}\sin\delta\sin2\theta_{12}\sin2\theta_{23}\frac{\sin A\Delta}{A}\frac{\sin(A-1)\Delta}{(A-1)}\sin\Delta$$

Determine the sign of Δm_{31}^2 , measure $\delta_{\rm CP}$ and octant of θ_{23} 7

Physics Goals of NOvA

- Measuring v_e appearance probability and v_{μ} disappearance probability with v_{μ} and anti- v_{μ} beam.
- v_e appearance:
 - Determine neutrino mass hierarchy.
 - Constrain CP violation phase (δ_{CP})
 - Resolution of the θ_{23} octant.

Physics Goals of NOvA

- Measuring v_e appearance probability and v_{μ} disappearance probability with v_{μ} and anti- v_{μ} beam.
- v_e appearance:
 - Determine neutrino mass hierarchy.
 - Constrain CP violation phase (δ_{CP})
 - Resolution of the θ_{23} octant.
- For the first v_e analysis we measure $v_{\mu} \rightarrow v_e$ with neutrino beam.

The NOvA Detectors

- 14-kton Far Detector
- 344,064 detector cells
- 0.3-kton functionally identical Near Detector
- 18,432 cells

- Composed of PVC modules extruded to form long tube-like cells : 16m long in FD, 4m ND.
- Each cell is filled with liquid scintillator and has a loop of wavelength-shifting fiber routed to an Avalanche Photodiode (APD).
- Cells arranged in planes, assembled in alternating planes of vertical and horizontal extrusions.
- Each plane just 0.15 X_0 . Great for $e^- vs \pi^0$.

Single Cell

To APD

NOvA construction (2009-2014)

Far/Near Detector v timing

- Neutrino candidates were observed in both near and far detectors in 2014 summer.
- Far Detector neutrino candidates blow up of timing peak, showing agreement with expected spill times as measured at our Near Detector at FNAL.
- This demonstrates both FD & ND were completed.

Event clustering

Because hits in a 550µs trigger window are a combination of cosmic and beam events, first step in reconstruction is to cluster hits by space-time coincidence

Event clustering

neutrino spill timing window

Calibration

 Use the MIP peak of cosmic muons to correct the attenuation in the WLS fiber.

 Use stopping muons in cosmic rays to set absolute energy scale.

Reconstruction

<u>Vertexing:</u> Find lines of energy depositions w/ Hough transform

Shower Clustering: Based on the vertex, prongs are determined by angular clustering.

<u>**Tracking:</u>** Trace particle trajectories with **Kalman filter** tracker (below). Also have a **cosmic ray tracker** that reconstructs cosmic tracks with high speed.</u>

The first v_e appearance analysis

- A cut-and-count analysis, with 1/13th of planned exposure.
- v_e event reconstruction: clustering, calibration, reconstruct event vertex and prongs.
- v_e identification: identify v_e in $v_{\mu} \rightarrow v_e$ oscillation
 - LID: Artificial neural network using shower shape based likelihood for particle hypotheses. (Primary PID)
 - LEM: Matching events to a Monte Carlo library. (Cross check)
- Event selection, including cosmic rejection.
- Data driven extrapolation of background using ND data. Each background component: beam v_e , NC, v_{μ} CC is predicted in the FD.

Neutrino Event Topology in NOvA

The muon is a long minimum ionizing particle (MIP) track, the electron ionizes in the first few planes then starts a shower and the photon is a shower with a gap in the first few planes.

- Reconstructed prong energy profile, vertex and event topology go in to LID.
- For an unidentified particle, we compare its energy loss per length (dE/dx) with the expected dE/dx histograms by each longitudinal and transverse slice to construct the probability and likelihood for each particle hypotheses.

Probability Density Function (P.D.F) for plane dE/dx distributions and measured dE/dx in FD Data

Color: p.d.f. for dE/dx in each plane (e⁻ assumption) Points: measured dE/dx in each plane (example event)

- Summing over these longitudinal/transverse likelihoods we have overall longitudinal and transverse likelihoods for each type of particle.
- The difference of log-likelihoods indicates the identity of the particle, for example: $LL(e/\mu)=LL(e)-LL(\mu)$.

Likelihood-based v_e Identifier (LID)

• Particle likelihoods for the leading shower, amongst other event topology variables, are used as inputs to an Artificial Neural Net (ANN) for the final PID.

- v_e selection is LID>0.95, according to max. S/sqrt(B).
- Signal efficiency of 34% relative to the contained sample.
- Reject 99% of beam backgrounds.
- After all selection cuts, achieves a rejection of 1 in 10⁸ for cosmogenic backgrounds.

Library Event Matching v_e Identifier (LEM)

- Compare an unknown trial event to an enormous **MC library**, using individual cell hits rather than high-level reconstructed variables.
- Extract **the pattern function (potential)** for the **trail event** by cell, including both position and charge information.
- Loop over all events in the library, place each event on the pattern function to calculate match value and record the **1000 best matching library events**.
- Five matching goodness variables based on the 1000 best matching events, along with the calorimetric energy of the trial event are trained in a BDT to form the PID (LEM).

Library Event Matching v_e Identifier (LEM)

Both PIDs are very similar in the physics performance

- v_e selection is LEM>0.8, according to max. FOM=S/sqrt(B).
- Signal efficiency of 36% relative to the contained sample.
- Similar rejection of beam and cosmic background.
- There is 62% overlap of selected signal events between the two PIDs.

Cosmic Ray Background Prediction

Because the NOvA FD is on surface, the rejection of cosmic rays is extremely important.

Three simple cuts are used to reject the cosmic induced backgrounds prior to PID

- P_t/P force directionality of showers along the beam
- *Max Y hit position* remove particles entering from the top of the detector
- Vertex Gap assure reconstruction quality

Achieves 350 million to 1 cosmic rejection with cosmic rejection and and v_e selection

Data/MC for Brem Shower in cosmic rays

- Use muon removal technique to select signal-like Brem. shower in cosmic rays.
- Great agreement in reconstructed shower variables and LID.
- EM showers are well simulated by NOvA.

Near detector background

- Far Detector and Near Detector are functionally identical. Near detector is close to the beam (1 km), so in the ND, all PID selected events are background events.
- ND data gives a data-driven correction for the MC normalization in FD.
- Scale up each component in MC by the data/MC ratio improves the background prediction.

Near Detector v_{μ} Spectrum for Far Detector Signal Prediction

- The signal for the v_e appearance analysis is v_e from $v_{\mu} \rightarrow v_e$ oscillation, which does not appear in the Near Detector.
- The ND v_{μ} CC's allows us to predict our expected FD v_{e} CC signal.

Systematic Errors

- A two detector experiment allows for the canceling or reduction of many systematic uncertainties such as beam flux and neutrino interaction modeling.
- The residual systematic uncertainties are evaluated by extrapolating our ND data with our nominal simulation and a systematically modified simulation
- For the appearance measurement, we consider a number of systematic effects

Systematic Error in Calibration

- Our calibration is built on dE/dx from stopping cosmic muons.
- Control samples for calibration uncertainty
 - π^0 mass peak in ND
 - Michel electrons in ND and FD

Michel decay of muon

FD predictions with systematic uncertainties indicated

Background [0.01 events variation with relevant osc. parameters]

LID: 0.95 ± 0.09 events [49% v_e CC, 38% NC] LEM: 1.01 ± 0.11 events [46% v_e CC, 40% NC] 2.74×10²⁰ POT equiv.

Signal [NH,
$$\delta = 3\pi/2$$
, $\theta_{23} = \pi/4$]
LID: **5.62 ± 0.72 events**
LEM: **5.91 ± 0.65 events**
Signal [IH, $\delta = \pi/2$, $\theta_{23} = \pi/4$]
LID: **2.24 ± 0.29 events**
LEM: **2.34 ± 0.26 events**

Aside: Before unblinding, two sidebands checks -

- (1) Near-PID (LID/LEM) sideband, and
- (2) High-energy sideband

Results of both were well within expectations.

FD predictions with systematic uncertainties indicated

Background[0.01 events variation with relevant osc. parameters]LID: 0.95 ± 0.09 events[49% v_e CC, 38% NC]LEM: 1.01 ± 0.11 events[46% v_e CC, 40% NC]

2.74×10²⁰ POT equiv.

Signal [NH,
$$\delta = 3\pi/2$$
, $\theta_{23} = \pi/4$]
LID: **5.62 ± 0.72 events**
LEM: **5.91 ± 0.65 events**
Signal [IH, $\delta = \pi/2$, $\theta_{23} = \pi/4$]
LID: **2.24 ± 0.29 events**
LEM: **2.34 ± 0.26 events**

Aside: Before unblinding, two sidebands checks -

(1) Near-PID (LID/LEM) sideband, and

(2) High-energy sideband

Results of both were well within expectations.

FD data selected by LID

<u>Background</u> 0.94 ± 0.09 events [49% v_e CC, 37% NC]

2.74×10²⁰ POT equiv.

Signal[NH, $\delta = 3\pi/2$, $\theta_{23} = \pi/4$]Signal[IH, $\delta = \pi/2$, $\theta_{23} = \pi/4$]5.62 ± 0.72 events2.24 ± 0.29 events

FD data selected by LEM

 Background 1.00 ± 0.11 events [46% v_e CC, 40% NC]
 2.74×10²⁰

 Background 1.00 ± 0.11 events [46% v_e CC, 40% NC]
 POT equiv.

 Signal [NH, $\delta = 3\pi/2$, $\theta_{23} = \pi/4$]
 Signal [IH, $\delta = \pi/2$, $\theta_{23} = \pi/4$]

 5.91 ± 0.65 events
 2.34 ± 0.26 events

FD data selected by LID and LEM

In Data, the (LID only)/(LEM only)/(LID&LEM) events are 0/5/6
Given Monte Carlo expected correlations, the observed event counts yield a mutual p-value of 11%

Electron neutrino interaction candidate

Results: Allowed region without reactor constraint

LID selected 6 v_e candidates 3.3 σ significance for v_e appearance (Primary Result)

For $(\delta_{CP}, \sin^2 2\theta_{13})$ allowed regions

- Feldman-Cousins procedure applied
- solar osc. parameters varied
- Δm_{32}^2 varied by *new NOvA measurement*
- sin²θ₂₃ held fixed at 0.5
 [contours for other values in backup]

Results: Allowed region without reactor constraint

LEM selected 11 v_e candidates 5.5 σ significance for v_e appearance

For $(\delta_{CP}, \sin^2 2\theta_{13})$ allowed regions

- Feldman-Cousins procedure applied
- solar osc. parameters varied
- Δm_{32}^2 varied by *new NOvA measurement*
- sin²θ₂₃ held fixed at 0.5
 [contours for other values in backup]

For LEM (n=11) the s-curves shift by a factor of 2 to the right increasing tension for the inverted mass ordering.

Muon Neutrino Disappearance

- We compare a prediction of the muon neutrino spectrum obtained from ND data with a FD measurement. Neutrino oscillations deplete the muon neutrino rate and distort its energy spectrum.
 - Identify contained v_{μ} CC events in the Near Detector and Far Detector.
 - Measure their energies.
 - Extract oscillation information from differences between the Far and Near energy spectra

Muon Neutrino Selection

- We have developed a particle identification algorithm (k-nearest-neighbors) based on muon characteristics:
 - track length
 - dE/dx along the track
 - scattering along track
 - track-only plane fraction

Cosmic Rejection For Muon Neutrinos

- Final cosmic background rate is measured directly from data taken concurrently with beam spill by using the out-of-time window.
- Selecting a narrow window around the 9.6 μsec spill gives a rejection factor of 10⁵ track length.
- For the cosmic rejection of the muon neutrino disappearance analysis, we use a boosted decision tree algorithm based on reconstructed track direction, position, and length; and energy and number of hits in event.
- These event topologies gives a factor of 10⁷ rejection.

Muon Neutrino Energy

- Reconstructed muon track: **track length** $\rightarrow E_{\mu}$
- In the hadronic system: $\Sigma E_{cell} \rightarrow E_{had}$
- Reconstructed v_{μ} energy is the sum of these two:

 $\boldsymbol{E}_{\nu} = \boldsymbol{E}_{\mu} + \boldsymbol{E}_{\text{had}}$

- Energy resolution at beam peak ~7%
- ND data is used to produce a data driven prediction in the FD

Muon Neutrino Energy Spectrum in FD

NOvA Preliminary

- We expect 201 events before oscillations.
- We observe 33 events.
- Muon neutrino disappearance observed.

Muon Neutrino Candidate in FD

Muon Neutrino Disappearance Results

- The spectrum is matched beautifully by the oscillation fit.
- Systematic uncertainties included in the fit as nuisance parameters: Hadronic neutrino energy, neutrino flux, absolute and relative normalization, neutrino interactions, NC background rate, multiple calibration and oscillation parameters.

$$\Delta m_{32}^2 = \begin{cases} +2.37 \, {}^{+0.16}_{-0.15} \, [\text{NH}] \\ -2.40 \, {}^{+0.14}_{-0.17} \, [\text{IH}] \end{cases} \times 10^{-3} \, \text{eV}^2 \\ \text{(Errors are 1D profiles at 68\% C.L.)} \end{cases}$$

$\sin^2(\theta_{23}) = 0.51 \pm 0.10$

- 7.6% of nominal NOvA exposure
- Allowed regions are consistent with MINOS and T2K

Summary

- NOvA observes electron neutrino appearance
 - v_e appearance signal at 3.3 σ for primary selector, 5.5 σ for secondary selector.
 - Some preference for normal hierarchy
 - Only 1/13th of baseline NOvA exposure.
- NOvA observes muon neutrino disappearance
 - 6.5% measurement of $|\Delta m_{32}^2|$
 - θ_{23} consistent with maximal mixing (45°)
- Beam returns in October, 2015
 - 400-500 kW running
 - Double the exposure by next summer
 - Lots more data to come