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Standard Model of

FUNDAMENTAL PARTICLES AND INTERACTIONS

Thie Standard Model summarizes the ourment knowledge en Particke Physics. 1 n the gquantum theony that includes the theory of strong interactions (quanium chremodynamics or QCD and the unified
theory of weak and elsctromegnet; ineracteons (Eleciroessak). Gravty s ncdsded on the cham becawe it 15 one of the fundamental interaction sven thaugh net part of the *Standard Model.”
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® But SM takes 19 parameters (or more w/ V mass/mixing)...
no explanation why.
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But SM takes |9 ‘parameters (or more w/ V mass/mixing)...
no explanation why.

And SM is still missing the Higgs... which we need to
regularize VWV scattering x-section
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_..only v, exchange (Gentle)




® But SM takes 19 parameters (or more w/ V mass/mixing)...
no explanation why.

® And SMis still missing the Higgs... which we need to
regularize WWV scattering x-section
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But SM takes |9 ‘parameters (or more w/ V mass/mixing)...
no explanation why.

And SM is still missing the Higgs... which we need to
regularize VWV scattering x-section

Hierarchy/naturalness problem:

® Radiative corrections to my = mH ~ Mp, fine-tuning, or

new scale
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But SM takes |9 ‘parameters (or more w/ V mass/mixing)...
no explanation why.

And SM is still missing the Higgs... which we need to
regularize VWV scattering x-section

Hierarchy/naturalness problem:

® Radiative corrections to my = mu ~ Mpj, fine-tuning, or

new scale

® EW constraints on my < ~200 GeV
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® But SM takes |9 parameters (or more w/ V mass/mixing)...
no explanation why.
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® And SMis still missing the Higgs... which we need to
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® EW constraints on my < ~200 GeV
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® EW constraints on my < ~200 GeV

® Fine-tuning is “unnatural”’ = New scale @ O(1) TeV < M

or GUT

®...Misses a lot of the Universe: No Dark matter candidate.
Cosmological constant?




® But SM takes 19 parameters (or more w/ V mass/mixing)...
no explanation why.

® And SMis still missing the Higgs... which we need to
regularize WWV scattering x-section

® Hierarchy/naturalness problem:

® Radiative corrections to my = my ~ Mp, fine-tuning, or

new scale
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What will the LHC produce?

Fermilab SSC
CERN l LHCl

v

® TJotal O(pp)~ 7/0mb at 14 TeV.
o AtlL=10**cm2s!:

® Beam crossing at 4 - 107 Hz

® 23 interactions/crossing = pp W
eljike . Ojet Ig
collisions at 10° Hz . N R 5
NI
® W—’IV, Z—’” ~ I 02 HZ o (W »BV)\(:m:ipﬁ) S
o topat |0 Hz z
O‘g@'(ma = 500 GeV) =
° O3 _CDF/DO LLl
o Hi gs at |- 10! Hz (m|-|= 100 - M., = 175 GeV mt°'°174Ge
600 GeV) O T
o m_,= 1 %F'ev
e SUSY up to 10 Hz (depending O higge

m_, = 500 GeV
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LHC Environment

® What we are interested in is the hard scatter of proton constituents (qq, qg, gg).
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LHC Environment

® What we are interested in is the hard scatter of proton constituents (qq, qg, gg).

® At High Luminosity there is one hard scatter/crossing.

® Which also leaves the “Underlying Event”:
® Additional parton-parton interactions

Beam-beam remnants



LHC Environment

® What we are interested in is the hard scatter of proton constituents (qq, qg, gg).

® At High Luminosity there is one hard scatter/crossing.

® Which also leaves the “Underlying Event”: &

® Additional parton-parton interactions

® Beam-beam remnants

Initial/Final State radiation
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LHC Environment

® What we are interested in is the hard scatter of proton constituents ( /Sq , qg, £9).

® At High Luminosity there is one hard scatter/crossing.
® Which also leaves the “Underlying Event”:

® Additional parton-parton interactions

® Beam-beam remnants
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LHC Environment

® What we are interested in is the hard scatter of proton constituents ( /Sq , qg, £9).

® At High Luminosity there is one hard scatter/crossing.
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® What we are interested in is the hard scatter of proton constituents (qq, qg, gg).
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® What we are interested in is the hard scatter of proton constituents (qq, qg, gg).

® At High Luminosity there is one hard scatter/crossing.
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® Which also leaves the “Underlying Event”:
® Additional parton-parton interactions
® Beam-beam remnants

® |nitial/Final State radiation
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ATLAS

2 T Solenoid Calorimeter (TileCal) spectrometer

Hadronic Tile Muon

| Toroid
magnets
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3 Fundamental “Layers”:

| Inter trackers in solenoidal magnetic field for
‘direction/momenta of charge particles
2. Electromagnetic & Hadronic calorimeters to absorb
& measure energies of electrons, photons, & hadrons
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3. Muon spectrometer/toroidal magnet for direction/

momenta of muons.
S

I Electromagnetic barrel calorimeter (LAr = liquid argon)

Inner Detectors

46 m
Total mass ~ 7000 tonnes, installed 92 m underground.



Detecting Particles .
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Hadronic
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Tracking Tracker
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The dashed tracks
are invisible to
the detector

. Electrons/Photon



LHC Schedule

® This month: Last LHC Magnet will be installed

® End of summer: Machine+experiments closed

e Before end of 2007: First collisions Vs=900 GeV, L~102° cm™2 s!
O_.i_.___é__;:__Summer 2008 \/s = I4TeV Goal L—IO32 cm'2 s’ ' 6 months for I fb I)
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New Physics Discovery
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New Physics Discovery
in 2008? a3t 2 rate  ev/year

.LHC ha's (.‘.l\//@"r\ ® T a Ihela$t|c L‘U"l input — - :-GHZ 10 *°
i
long-term phys
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S e © In the very first 100/pb (few weeks):

' * Msusy~500 GeV: ~50K Events Produced
J° Even if you not a fan of SUSY, many other new
physics searches have overlapping sighatures

= Early SUSY searches are good investment.
‘= You might see sqmethlng

= Getting for other interesting things

Integrated luminosity (fb™)
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Looking for SUSY in
early LHC data




SUSY Motivation




SUSY Motivation

® Aesthetic: new space-time symmetry




SUSY Motivation

® Aesthetic: new space-time symmetry

® Leads to new partners for every SM particle.
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SUSY Motivation

® Aesthetic: new space-time symmetry Spin 12 Spini  Spin32  Spin0

Higgs Higgsino Gravitino  Graviton

® Leads to new partners for every SM particle. [
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® Removes quadratic divergences (Higgs mass).

Fermion loop

Boson loop




SUSY Motivation

® Aesthetic: new space-time symmetry Spin0  Spin 112

Spin 1 Spin 3/2 Spin 0

Higgs Higgsino Gravitino  Graviton
sLepton Lepton

® Leads to new partners for every SM particle.
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SUSY Motivation

® Aesthetic: new space-time symmetry Spn0  Spint2 Spin1  Spin32  SpinO

Higgs Higgsino Gravitino  Graviton
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® Aesthetic: new space-time symmetry Spn0  Spint2 Spin1  Spin32  SpinO

Higgs Higgsino Gravitino  Graviton
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SUSY Motivation

® Aesthetic: new space-time symmetry Spin0  Spin 112 Spin3/2  Spin 0

Higgs Higgsino Gravitino  Graviton

sLepton Lepton

® Leads to new partners for every SM particle. [RE_—

Gluino

® Removes quadratic divergences (Higgs mass). hotne
Wino

- ReSOIVeS Hiel"al"Ch)’ PrObIem Fermion loop

® Gauge unification I
® Has Gaviton

® Dark matter Candidate: The ' ightest -USY
article can be a heavy stable neutral particle

® “Predicted” by String theory o L L L] []
; i 10 RS N pu=
® Note: no explanation of the origin of SM 0 i =2 TP T e
parameters (masses, CP), or neutrino masses. NiliEEp P=aRnn
PE s
1 [i=3
o | |
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SUSY Phenomenology

® No scalar electron partner = SUSY broken

SSB origin
(hidden

® If want SUSY to preseve EWV naturalness = sector)

SUSY broken in hidden sector at scale F < My, LG i

interaction

® SUSY has 105 parameters...

® Some SUSY Breaking Models take parameters M.S’.SM
. (visible
to a practical handful, example: sector)
® Minimal Gravity Mediated (mSUGRA): mo,
mi/2, sig(M), tan B, Ao

RG evolution of unified mMSUGRA mass parameters

B |ust a useful framework for searches

® R-Parity = +| (-1) for SM (SUSY) particles

Mass [GeV]

® RPC:no proton decay, dark matter (LSP),
SUSY produced in pairs

® RPV: Lose MET signature... wide-array of
couplings (production) in different models




Looking for SUSY

® Constrains on SUSY come from:

® From cosmology: cold dark matter
density

® Direct Accelerator Searches: looking
for sparticles

® |ndirect Accelerator Searches:

® Precision Electroweak: W mass,
weak mixing angle

® Anomalous magnetic moment of

C
muon (g-2)
® Studying flavor-changing neutral
currents: eg b—sy %

® Generally speaking, setting SUSY limits
require assuming some breaking model

Excluded
by direct
searches
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For example, m"SUGRA’s five
parameters are very
constraining...

But the parameter/model space
so large that it difficult to rule out

SUSY



indirect SUSY Searches with
B mesons

® FCNC:Loop dominated B-decays:

Ap(B,— oK)

® Can get additional contributions from

SUSY: mpn s
Q
N L 0.0
o o . . m 0.5
® Resulting in CKM Unitarity parameter oo, su6) 9,

degenerate tan B =30 non-degenerate tan = 30

sin 2B from loop-dominated B decays
# sin 23 from tree decays if new physics
contributes.

0 500 1000 1500 2000 0 500 1000 1500 2000 2500
m(g) [GeV] m(g) [GeV ]



indirect SUSY Searches with
B mesons

¢ FCNC:I|oop dominated B-decavs:
* Potential for discovery of new physics in such :

measurements were a key motivation for the
impressive B physics programs of the recent past.

* ¢ The observed consistencies with SM tells us about
the flavor-structure of new physics...
* Future B physics (eg LHCDb, super B-factories)
important compliment to any discovery at LHC...

o allow differentiation different models

sin 2B from loop-dominated B decays
# sin 23 from tree decays if new physics
contributes.




A New Technique!

® Excitement in 2003: Signs of deviation in
=% Winter
B— K. ALEPH 00
or ™ 2003

0.79 _ g4

BABAR 02
0.741 £ 0.067 = 0.034

® Many of the loop-dominated B decays to CP
eigenstates were inaccessible to extraction Bele0z
of sin 2 because their decay products had Average (charmonium)
no tracks pointing to the B decay vertex. AT

Charmonium Modes

—0.18 +0.51 £0.07

Belle 03
—0.73+0.64 +0.22

BABAR 03
0.02+0.34+0.03

® |n summer 2003 BaBar invented a new 002-0¢
vertexing technique to allow time-dependent 0712087 o
analysis for decays with K in final state.

(«Xp}
X
==

L0
N'Ks

KKKS

0.49+043" %
Average (s penguin)
0.19+0.20

" . Average (All) ,
® First measurement in B2 K, then B— 0699 -0.054 5y
(KO, ...

® |ead 50% increase in the number of such
measurements.

® TJoday: Taking all modes, deviations at 2.60
(ignoring theoretical uncertainties).



A New Technique!

® Excitement in 2003: Signs of deviation in

%) OPAL98 -
) o
B— K. g f\prHgg Winter
084”0, =0.16
E CDFQg 2003
® Many of the loop-dominated B decays to CP R
: . i : . eff eff
eigenstates were inaccessible to extraction sin(2p7) = ( 2(1) &ﬁﬁoe
. . PRELIMINARY
of sin 2 because their decay products had s WoTid AVETage — 068+ 0,03
no tracks pointing to the B decay vertex. Belle 5 TRy osoZozrsoos
Average ; e E 0.39+0.18
. : 5 f | 058:0.10=0.03
® In summer 2003 BaBar invented a new ~ ; o 064s0102004
vertexing technique to allow time-dependent S 090-026.008
analysis for decays with K in final state. il e 9512028
' e ' 0.33+0.35+0.08
i : 0 : = 0.33 + 0.21
® First measurement in B2 K m1°, then B— — o e
0 : B ety
(Ksﬂ )Y’ § o ! 0.11+0.46 = 0.07
: oy 0.48 = 0.24
e ] 5 N 0.62 '+ 0.23
® |[ead 50% increase in the number of such ; P orszoz3z011
: 0.42 +0.17

measurements. T 0712 0.08

-0.84 = 0.71

® Today:Taking all modes, deviations at 2.60 R rundciib . N 5068*0150_;’803;_81%
(ignoring theoretical uncertainties).




Time-dependent CPV in b—sy

BO>K"y, K*>K¥ CP Eigenstate- 11%

* Same vertexing technique allows it _
B°>K™, K">K*n~ Self-tagging- 89%

studying the time-dependent CP

02 03 04 05 06 0.7 0.8 0.9 11

Violation in b—sYy decays e

* The dominant SM amplitude gives  Jor2820i 030507 0505 1,
. o i gid ; SUSY SU(5)®vg ; 0.8

opposite photon helicities for B/Bbar g (rondogenerate)

0.4
0.2
0
-0.2
-0.4

David Atwood, Michael Gronau, Amarijit
Soni (1997) (hep-ph/9704272)

-0.6
-0.8

Helicity Flip D e
Suppressed by m/m;,

- Expect: M

Z_ m, . PRD 72 (2005) 051103 —1

fCP S * e 2 Sln 2 [3 ~ O Belle : 032 036 0.055

Ky m & PRD 74 (2006) 1111b4 : -

1 b Average ! 5 0.28 £ 0.2

* New physics can enhance Sy« up to ted averaE—+—] v

BaBar : N -0.06 + 0.37

50% Of Sin ZB 225672(20055)051103 ' to.o;

PRD 74 (2006) 111104
Average

L A new Way Sear’Ch for' N R HFAG correla?lted average




Time-dependent CPV in b—sy

BO>K"y, K*>K¥ CP Eigenstate- 11%

P

 Same vertexing technique allows
s'Quiick digression-for'HEP experimentalists:
) Message: Stay open to new experimental
“techniques... and be ready for the unexpected.
"o This technique:
* |dea — feasibility in 24 hours
* — first new result in conference in 2 months
* Hard to convince collaboration of new technique.
® Reason for success: Good analysis software!
= |[mportant to have software ready handle the
“unexpected.... more on this later.

V/o VI Sl 4P : -o.1oto.31¢o.o§7

P S O T

-0.09 + 0.24

* A new way search for NP.




SUSY at LHC
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SUSY at LHC
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SUSY at LHC
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Details

' X-section Mean # of Jets o

o 1000
-

£
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m
0

® Sensitivity is
model/parameter
dependent
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Details

' X-section Mean # of Jets o

g 1000

£

0 500 1000 1500 2000 2500 3000 3500 4000
m
0

® Sensitivity is
model/parameter
dependent

White (missing)
SUSY grid points due to

data transfer problems on
the GRID o
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Backgrounds

® SM signatures w/ large Er, Jets, veslatev  L=t0Temts’ 1o 17
leptons L L ]

® /-OVV +]ets
® WV + Jets
® tt— bblvqgqbblvlv

i
1 1 1
N S

| T |
® Missing lepton in W or top. ﬂ*ﬂm‘nutput

H[‘JHd| """""""

e QCD

® large Er from neutrinos (b
jets)

® Fake Er (detector)

® SUSY is a background to SM G ?ﬁ'arLsz
backgrounds to SUSY... affects data 11‘:;:”;:“ GoV)
driven bkg estimation techniques




Target:Winter 2009

® Question: what are the signatures which are most
likely to indicate BSM physics, provided:

® < |/fb of data
® imperfect understanding of
® detector performance

® standard model backgrounds

® unmanageably large SUSY model/parameter
space with variety of phenomenology.




Discovery Strategy

® What signature do we choose?

e WIMP DM = Assume RPC = MET = Main weapon
against QCD backgrounds.

® |ets... balance:

® |ess jets: smaller SM background uncertainties (more on
this later)... but more backgrounds.

® More Jets: smaller backgrounds, but larger uncertainties.
® | eptons:
® No/Less Leptons: larger x-section

® More Leptons:less QCD backgrounds



Standard SUSY Analyses

e Require:

e Large Er (> 100 GeV)

* 4 Hard Jets

* Sphericity?
* Look at: Met= ) %ets pT + ET
for N=0,1,2 (SS/OS) leptons




Standard SUSY Analyses
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Standard SUSY Analyses

e Require:

e Large Et (> 100 GeV)

* 4 Hard Jets

* Sphericity!?
e Look at: Mef= D %ees pT + ET
for N=0,1,2 (SS/OS) leptons

+++++
ZZZZZZ

----------------- 1012 e ¢ Adding Leptons reduces

GeV

s QCD Background
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Standard SUSY Analyses

e Require:

e Large Et (> 100 GeV)

* 4 Hard Jets

* Sphericity!? > R
e Look at: Mef= D %ees pT + ET e 1 =
for N=0,1,2 (SS/OS) leptons o rw

L SRR N

............ ?,’7//// T R
1

2
w

500 1000 1500 2000 3000 3500

Jdooo B Adding Leptons reduces
QCD Background
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Standard SUSY Anal

e Require:
e Large Et (> 100 GeV) L R B R S
* 4 Hard Jets - _____________ ______________ ______________ ______________ ____________ _____________ =

oyl e 21v z g : : : : : : :
® Sphericity! $ 20ppSign Tl TR 1. A S S

PY LOOI( at: Meff= Z4jEtS PT + 'ET 10° Leptons ...... .............. .....
for N=O’ I ’2 (SS/OS) Ieptons , ......... FI_ - ........ .............. ............. .............

2 Same Sign
S Leptons. ... — R ﬁwﬁiﬁﬂfﬁ!w .......
s : f | ¥ zeses

w

800 900 1000
GeV

700 800 900 1000
GeV

PR = S L T8

.............................................................................................................................................

""""""""" ] ¢ Adding Leptons reduces
_____________________ "B QCD Background

e
//// , than opposite sign

1000 1500 2000 2500 3000 3500 4000
N/ GeV



Standard SUSY Analyses

° Requ”"e § 2 Same Slgn

LA ™ \

. MET + 4 Jets [+ leptons] strategy are very weII
motivated and been studied for years
]:O|° But we should be careful not to be biased by history.
* Ex:2 or 3 Jets + MET + leptons may present a
promising balance of statistical reach versus systematic
on backgrounds.
* We need to study these regions anyway as we test
our background estimation
* Requires generalizing our approaches (good
software).
* (Yes...signature based searches).

////////,///////,////////7 ///M tnan opposite sign

107 1000 1500 2000 2500 3000 3500 4000
GeV
A




Nature may not be kind

® Many regions of model/parameter space (eg large tan 8) where T decay
dominate

B |eptonic T decays make e,l analyses still sensitive even if T
reconstruction isn’t ready

® Degenerate sparticle masses produce softer jets, leptons,and MET

B Harder to isolate SUSY signal... generally requires more data and much
better background understanding

® R-parity conserve... similar to above

® SUSY may present special features: photons not from IP, heavy charged
tracks, kink tracks, R-hadrons, long life-times

B some preserve or mimic the standard SUSY scenario
B cfforts to ensure proper detection (and triggering) of such signatures

® No SUSY at TeV scale... other new physics scenarios often produce similar
signatures.



Nature may not be kind

® Many regions of model/parameter space (eg large tan 8) where T decay
dominate

B |eptonic T decays make e,l analyses still sensitive even if T
reconstruction isn’t ready

® Such-scenarios typically require more data and good
understanding of detector/backgrounds.

® Ultimately all will be explored...

® But obviously the best bet in the very beginning is

looking for the standard scenarios
tracks, KInK tracks, R-hadrons, long lite-times

B some preserve or mimic the standard SUSY scenario
B cfforts to ensure proper detection (and triggering) of such signatures

® No SUSY at TeV scale... other new physics scenarios often produce similar
signatures.



Sensitivity
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SUSY Discovery Strategy
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® |t will take steps:




SUSY Discovery Strategy

® [t will take steps: £ Fllepon 0 [ZE
10° ttbar+Jets

® |nclusive searches =

Beyond SM Discovery.




SUSY Discovery Strategy

® |t will take steps:

® |nclusive searches =

Beyond SM Discovery.

® Which inclusive channels at
what rates! =

Characterization

. [—susy
Sum of all BG
.| @ ttbar+Jets

500 4000
GeV




SUSY Discovery Strategy

® |t will take steps:

. [—susy

® |Inclusive searches = - R T

2 Same Sign -
........ Leptons 1 s -

Beyond SM Discovery.

® Which inclusive channels at
what rates! =

Characterization

® WVith sufficient data start
reconstructing masses, decay
rates, spins = is it SUSY?

spin-Yz

- 4t
spin-0 gﬂf Tu

) A -‘.-'Li'-a-’.:——_—’%_ ) 2 1
- —Jl:ﬁ.li'lir—-lr-h - - :#:;ﬁ.li,‘hh T _:._b'_:k’_—' - - - -
l yky _‘_ | _‘;.I_.{,_ 3 |4 e 3

L__’;‘zf | _*_.‘_
EIVodd

Events/10 GeV/300 fb™’

+spin—“/z (parton level)
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SUSY Discovery Strategy

® |t will take steps:

. [—susy

® |Inclusive searches = - R T

2 Same Sign -
........ Leptons z °a'

Beyond SM Discovery.

® Which inclusive channels at
what rates! =

Characterization

® \With sufficient data start
reconstructing masses, decay

Events/10 GeV/300 fb™’

A A % spin-%2
rates, spins = is it SUSY? : !
spin-0 “# * l
20 IR . ;1.; L3 )
. PSR ALY i s
® Global Fits = What are the _ #++

+spin—“/z (parton level)

parameters!?

5
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SUSY Dlscovery Strategy

® |t will take steps:

® |Inclusive searches = i, &P (G
Beyond SM Discovery. : A NS e

® Which inclusive channels at
what rates! =

Characterization
® With sufficient dc*a start E
reconstructing masses, decay [
rates, spins - is it SUSY? " 005 b e
2 0 bttty i
® Global Fits = What are the oo | tee

m _0.1 +spm—“/z (parton level)

parameters!?
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First Steps After Discovery

® M. peak correlated
with SUSY “scale”

® The pattern/rate helps
direct where to look

No Lepton Mode
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Estimating Backgrounds

® While SM decay processes (t,W, Z) are understood,
production is not.

® Parton Distribution Functions, Underlying event, hard- - ATLAS TDR |
e y (Parton Shower result)
scatter not tuned at 14 TeV - Parton Shower resultg

"\"\
W %
1"

® And it gets harder when final state has lots of jets... which is
the case for SUSY bkgs.

daldi, (mbi400 GeV)

LYY »‘.\..‘\.
,
\‘\

l"\
I‘\'. h*.

x'-..\'\:\'ﬁ. AR

™,
I'\.\"-«.""- NN

WSO

B |arge uncertainties in cross-sections and kinematic
distributions

ATLAS Preliminary —susv
i 3 " sum aof all BG
(ME results) .'m

A Wrla

B Cannot rely only on MC to estimate backgrounds

A10fb7 /400GeV

B Fortunately 100% error on background rates still leaves

room for discovery.
hist tEI'I'I 200 Inin | | TatdeiPI

Emiries  9GATS
Mt 12313
10* § RIS 1128

Mumber of Events

— Z + = 0 jets, PYTHIA
— Z 4+ = 0 jets, HERWIG B Rt
o SR 500 1000 1500 2000 2500 3000 5
PS(Pythia)

Filter : 2 leptons
p/" > 20 GeV

0 300 e 400 B
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Background Estimation Strategies

® Monte Carlo estimates:

® Make lots of SM measurements, retune the best MC = make new

samples = estimate your background... long process
® |Just try lots of tuning of the MC, compare with data = systematics...

® Re-weight you MC with data...

® Data driven estimates which minimize dependence on MC:
® Extrapolate from signal free = signal rich regions
® Replace one decay (eg Z—Il) with another (eg Z—VV)

® Re-decay: Reconstruct one decay (eg tt—bqq blV), replace a piece w/
another decay from MC (eg bgqg—blV results in tt—blv blv).



Background Estimation Strategies

® Monte Carlo estimates:

Make lots of SM measurements, retune the best MC = make new

samples = estimate your background... long process

® |Just try lots of tuning of the MC, compare with data = systematics...

Re-weight you MC with data...

® Data driven estimates which minimize dependence on MC:

Extrapolate from signal free — signal rich regions

Replace one decay (eg Z—Il) with another (eg Z—VV)

tras:

Re-decay: Reconstruct one decay (eg tt—bqq blv), replaﬁsaad IRJ&CSPUW//-
another decay from MC (eg bqq—blV results in tt— bbackground estimation

techniques




Background Estimation Strategies

® Monte Carlo estimates:

® Make lots of SM measurements, retune the best MC = make new

samples = estimate your background... long process

® ] e Therereallyisn’t any purely data or MC driven  1atics...
background estimation technique.

e |
" ® MC or data driven, we must reconstruct lots of
® 1 5 )
8 SM signatures in data.
‘ LI\LI CI.IJUIaLC 11 Vil DISI Ial 11 ©C 4 DISI ial 1 Il | ICSIUIID

® Replace one decay (eg Z—Il) with another (eg Z—VV)

® Re-decay: Reconstruct one decay (eg tt—bqq bIV) repla[sgaadmg]c&,/ N




Data Control Samples

Control Target
L7211+ Jets Z—wW, Z-TT, Worly,
W=V + Jets W-=1v (All + Jets)
tt—bbqqlv (leptonic t reco tt—bbqq'v, bbgqTV
only)
tt—bbqgqlv (full reco) tt—bblvlv, bblvTv, bbTVTV
tt—bblvlv (full reco) tt—bblvlv, bblvTv, bbTVTV




Data Control Samples

® SM Backgrounds are produced copiously enough at LHC to
= create good control samples. =

® The different SM control samples are often backgrounds to
each-other = complicates things...

® The general trick is replacing a lepton with neutrino, T, or
missing lepton.

o Understanding lepton efficiency, acceptance, fake-rate in data isa _|
key prerequisite. Requires:

® Extrapolating lepton performance assessed in the clean Z—ll
events to the much busier top, Z/VW+jet environment.

® Modelling how leptons are missed. |

— ® |solating samples of Jets to assess lepton fake rate. —



Understanding Detector

® MET is a garbage collector.

——— L] L L n Wi e "l L ] F B PN SR O

L
S —
L]

® Understanding jet response
is critical. . B [ RS -

® Avoid/understand: ‘

W VG :Lié#&_mlr?
‘{‘//1_1/

® The hardware 1 NNl

® cracks i H F

ST el

® funny events

MET includes cells with E>0 (no CH)
[] No cerrection \A } T
|:| Bad runs were removed :
|:| Noisy events were removed

|:| Bad cells/towers were removed 2 747, J e eSS

Run Il V. Shary @ CALOR04




Jet Calibration with Data

® The primary ATLAS Jet Calibration strategy is rather
ambitious

® Relies heavily on Geant 4 simulation

® Aims for obtaining optimal performance...

® Not necessary for SUSY discovery.

® Determining scale and understanding performance is most
critial for SUSY... don’t need perfect performace.

® Rely on momentum conservation... balance: y+|et for scale,
dijet for uniformity, 2 jett+jet (boot-strap) for high pt, Z+]et
e for validation/systematics

® Simultaneously calibrate and measure resolution & tails

® Use measured jet response for fast simulation -



Jet Calibration with Data
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From Data to Measurement

® Early SUSY discovery analyses will need to be comprehensive:

® Detector sub-systems, reconstruction algs, calibrations: Electrons, Muon,
Jets, Missing Energy.

® |ssues: efficiencies/acceptance, fake rates, scale, resolution, tails.

® Data: must ultimately analyze most of the collected data samples: W
(t]ets), Z (+)ets), top, Jett]et, Y+]et.

B Key is understanding and controlling systematics... not precision.
Different priorities than SM, top, or Higgs measurements.

B These is work should be done with in the context SUSY.
® Once the data is recorded extracting results is a matter of

® man-power + organization

® software + computing infrastructure

® FEarly discovery (eg by winter 2009) is contingent on preparation today.
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Computing in HEP

Full Simulation Fast Simulation
K

Data
Stg} re

Will only simulate
20% of data

High-level Trigger
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The Event Data Model

Refining the data by:Add higher S et
level info, Skim, Thin, Slim Intended for selection.
| KB/event.
Reconstruction Output. TAG Trigger decision, pt of 4

Intended for calibration. best electrons, jets...

ENN KK R/aviant

: . 1

® Not enough disk to have the full data available
B everywhere.
.6 T : :
® So we design our data model to allow different
levels of detail.
ictive”’
|00 KB/event. Analysis.
“Light-weight” Tracks, ~|0 KB/event.
Raw Data Clusters,Electrons, =~ What-ever is necessary
Obiects Jets, ... for a specific analysis/

J 0.5 MB/event. calibration/study.



The Event Data Model

Refining the data by:Add higher e Aot Event.

level info, Skim, Thin, Slim - Intended for selection.
| KB/event.

Reconstruction Output. Til’ decision, pt of 4
~ Intended for calibration. best electrons, jets...
- 500 KB/event.

Gells Hlts Tracks
Clusters,Electrons, Jets, .

Raw Ghannels
|.6 M_U/U‘

'“ muw@d A*’nalyms Inte
100 K L,/@(gmu Anal
sht-weisht” Trz .d@ ~ 10 Kb/event.
'\ E ectrons, Vhat-ever Is necessary

37



Event Data Model (EDM)

EDM Size/ |Max Ideal] - Access-
Contents Primary Intent | Event | Input Lt
Level (KB) |rate (Hz) ibility
Central Reco/
aw LJata ‘

: Raw Channels R?CC;?;:;:ZT;;“ 1600 N/A Reprocessing:
bjects Tier 0/1
vent Cells, Hits, Clusters, CERN CAF

Tracks, MET, Re-reconstruction, Re- 500 (access
LNy, Electron, Jet, Muon, calibration limited), Tier |
ata Tau, Truth (on tape)
nalvsis Clusters, Tracks, Limited Re- Full: Tier |2

.)’ MET, Electron, Jet, | reconstruction (eg Jets, AT

bject . g 100 1000 (disk)
Muon, Tau, Slimmed b-tag), limited re- s
; , , Subset: Tier 3
ata Truth calibration, Analysis
erived | Any of Te abO\;e : Interactive Analysis: Tvoicall TP e
hysics composites (eg top) YR e ypically | regy
+ derived quantities i o i ~10 laptop
ata (sphericity) P 5
Summary. Ex: PT’.” of| Selection Ev.ents for | 108 S
4 best e,Y,H,T,jet analysis




The GRID

*Reprocessing of full data with
* Resources Spread improved calibrations 2 months

Around GRID after data taking.
*Managed Tape Access: RAWY, ESD

eDisk Access: AOD, fraction of ESD
*Derive Ist pass calibrations
within 24 hours.
eReconstruct rest of the data AOD
keeping up with data taking.

raw,  lier |
AOD/

30 Sites Worldwide

Tier 2

*Production of simulated

events.
eUser Analysis: 12 CPU/

. |0 Sites Worldwide Anal)’Zel"
Tler O 20 *Disk Store:AOD
CERN *Primary purpose: calibrations

Analysis

eSmall subset of collaboration
will have access to full ESD.

Facility o imited Access to RAW Data.




The GRID

*Reprocessing of full data with

* Resources Spread improved calibrations 2 months

Around G RID after data taking.
*Managed Tape Access: RAWY, ESD 30 Sites Worldwide
eDisk Access: AOD, fraction of ESD .
eDerive |st pass calibrations Tlel” 2
within

oRecor® Ihe ATLAS Computing Model cannot handle analysis activity on the ESD.
keepin

* Analysis must be performed on the AOD.
2d
= |mportant to make sure that the AOD meets analysis requirements.

= |mportant to provide sufficient redundancy and flexibility in AOD to d

recover from unexpected problems.

RAW Ly

CERN *Primary purpose: calibrations

Analvsis eSmall subset of collaboration
Y will have access to full ESD.

Facility o imited Access to RAW Data.




Delayed Response

® ATLAS will collect data at constant rate (200Hz) regardless of luminosity. = 10 events/year.

® Experience from other experiments: speed is critical factor to analyzers...important
ingredient to success of computing model.

e Optimistic estimate of % of 10? events (lyear) analyzed in realistic analysis (~100x slower

today):
Analysis jobrun |1 CPU 25 CPUs 100 CPUs | 1000 CPUs
e (1 MB/s) | (25 MB/s) | (100 MB/s) | (1 GB/s)

Laptop 2 people 4 people WG

1 hr .016% 41% 1.7% 16% Interactive Analysis (final step)
1day (12 hrs) |.2% 9% 20% All Batch Interactive Analysis (final step)
1 wk. (150 hrs) | 2.7% 70% All All Batch Analysis (intermediate step)
1 mo. (700 hrs) | 12% All A\l All Centralize Skim (intermediate step)

® Scaling issues at computing sights will also be an important factor.

B Running analysis on every available CPU will break the system.

B Users need to be smart about their analysis strategy:

® Perform analyses collectively

® Analyze in multiple steps: slow steps a few times = DPD = fast steps many times




Analysis Model

® Given these constraints and the complexity of the tasks
ahead... it is important to have a plan of how to analyze

LHC data.

® Analysis Model: An attempt to ensure physics needs are
met by the ATLAS software.

® Lots of recent developments based on experience from
other experiments:

® Fundamental software framework features
® Organization of our data

® TJools to collaboratively tackle complex tasks



1he Right Data in the

Sig eff versus El_eta

Sig eff versus El_phi

Retuned: €~88%
L e gl
{-I-.I:H'.i."'{_*mﬂarﬂ:l:

Standard: e~80%

Right Place

A Simple Example:

® The standard ATLAS Electron identification selection is coded
into the Electron reconstruction and stored with the Electron

) Difficult to retune.

B Remained the same for 2 years while software/understanding
improved.

® So we made the necessary electron variables available at
analysis time (AOD).

Electron Selection tuned in context of analysis.

8% better selection efficiency for same jet rejection on SUSY
events.

Improvement can be distributed to others w/o reprocessing
the data.




'&‘\‘@Redundant Solutions

ot

Jets Electrons P@issing Et
ESD e\'b,\)“' Qé\ (‘}& ()EF\E.M Missing Et from

All Calo CelIsO : C.a"b'fate cllus:ters Calibrate cells to EM cellelieiee] EITHElD
(not rgy in

« ® Hypothetical Scenario:

® 2 months from target conference, ATLAS discovers low level
I\ calorimeter calibration problem which hinders various

rom
[T (e measurements.

itions.

® Not enough time to correct, reprocess, and redistribute data.




Redundant Solutions

Jets

Electrons

\

Missing Et

| Build Missing Et from

samplings), All
cells in electron
clusters
(available for
analysis)

ESD |
. 8 +
All Calo Cells Callbl.*ate clusters to Calibrate cells to EM calibrated clusters .
i1able f hadronic scale based on =i out of cluster energy in
(nOt avallabie for cells cells. Save in
analysis) components.
AOD Build jets from Choose electron
All Clusters calibrated clusters, cluster size, calibrate | Build Missing Et from
8
(Cali brated apply “out-of-cone”/Jet | electrons based on |individual contributions.
+uncalibrated Alg Corrections samplings in clusters

Build Jets From
uncalibrated clusters,
calibrate based on
energy samplings

Choose electron
cluster, recalibrate cells,
re-calc shower shapes,

re-calibrate electron

Build Missing Et from
re-calibrated hard
objects (eg jet,
electron) + remaining
contributions.




Redundant Solutions

Jets Electrons | Missing Et
ESD @ | | Build Missing Et from
All Calo Cells Callbl.*ate clusters to Calibrate cells to EM calibrated clusters +.
oble f hadronic scale based on =i out of cluster energy in
(nOt aval a!:) € for cells cells. Save in
analysis) components.
AOD Build jets from
All Clusters calibrated clusters,
(Cali brated apply “out-of-cone”/Jet
+uncalibrated Alg Corrections e on
samplings), All - ~  AOD, ng sampﬁ'”n'g

cells in electron ' |

Build Jets From
clusters uncalibrated clusters,
(available for calibrate based on
analysis) energy samplings




Redundant Solutions

Jets Electrons | Missing Et
ESD | | : Bui!d Missing Et from
All Calo Cells Callbl.*ate clusters to Calibrate cells to EM calibrated clusters +.
, ¢ hadronic scale based on =i out of cluster energy in
(nOt avalla!:)le oL cells cells. Save in
anaIyS|s) components.
AOD Build jets from
All Clusters calibrated clusters,
(Cali brated apply “out-of-cone”/Jet
+uncalibrated Alg Corrections —

samplings), All
cells in electron
clusters
(available for
analysis)

200

Build Jets From
uncalibrated clusters,
calibrate based on
energy samplings

Resolution
0.18

- AOD, U/s/ihsam pﬁ’”n“g




Redundant Solutions

Jets

Electrons

\

Missing Et

| Build Missing Et from

samplings), All
cells in electron
clusters
(available for
analysis)

ESD |
. 8 +
All Calo Cells Callbl.*ate clusters to Calibrate cells to EM calibrated clusters .
i1able f hadronic scale based on =i out of cluster energy in
(nOt avallabie for cells cells. Save in
analysis) components.
AOD Build jets from Choose electron
All Clusters calibrated clusters, cluster size, calibrate | Build Missing Et from
8
(Cali brated apply “out-of-cone”/Jet | electrons based on |individual contributions.
+uncalibrated Alg Corrections samplings in clusters

Build Jets From
uncalibrated clusters,
calibrate based on
energy samplings

Choose electron
cluster, recalibrate cells,
re-calc shower shapes,

re-calibrate electron

Build Missing Et from
re-calibrated hard
objects (eg jet,
electron) + remaining
contributions.




EDM Lessons from

BaBar, CDF, DO, H|
ATLAS Analysis Model

Oth er EXP eriments I Workshop (Oct 2006)

e Observation: Tasks naively thought to be addressed by “ESD”’-based analysis or
reprocessing (eg: calibration, alighment, track-fit, re-clustering) are routinely
performed in the highest level of analysis.

= As experiments evolve:
e “ESD” bloated and too difficult to access = dropped

e “AOD” is gradually augmented with some “ESD” quantities (eg: hits in roads/
cells) to provide greater functionality at analysis time.

® Build a flexible data model by merging ESD/AOD format... but keeping separate
levels of detail:
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EDM Lessons from

BaBar, CDF DO, H|
ATLAS Analysis Model

Other Experiments Il i

® Derived Physics Data (DPD) is Traditionally an “ntuple” which can analyzed
standalone (eg in ROOT) without the experiment’s software framework.

® Observation: Any hick-up the experiment software or computing, and physicists by-
pass the framework & copy all of the data into DPD format:

® BaBar: more data in proprietary DPD than AOD. A primary contributor to a
complete redesign of computing model.

® Tevatron: DPD became the AOD. Proprietary frameworks developed by users.
® BaBar (CM2), CMS, and now ATLAS solutions:
® allow the EDM to be easily extendible with UserData

® allow the EDM to be read in both framework and ROOT.



Collaborative Analysis

® Problem: how do you get 2000 physicists to
® perform analysis in consistent ways
® casily share & compare their work

® Similar problem as event reconstruction = fundamental reason for

HEP experiment software frameworks.

® Reconstruction ideas (and some recycling from BaBar!) =

EventView Analysis Framework (next few slides):

® A generic analysis data object:“The EventView”

® A framework for modular analysis.
® A large library of general tools.

=) Not only a common analysis software, but a common language.



The EventView

® Holds the “state” of an
analysis.

® Objects in the AOD + EventView
Labels. Final State Particles

-

® Obijects created in the
coarse of analysis + Labels.

® UserData: Anything other
data generated during
analysis.

Inferred Objects

W

Can be written/read from file

- and shared eYenWh £ PR WG
: R o -,.-_::_: O v‘n o .:=1~ i ek p

“Sphericity’: “Top_Mass™:
“Missing_Et”: “Lep_BJet Th™:



EventView Framework

® Analysis is a series of
EventView Tools executed in
a particular order.

® Framework generates
multiple Views of an event
representing

® Different analysis paths

Analysis Flow

® Different combinatorics
choices

Data Flow
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EventView loolkit

100’s of generalized tools which can
be configured to perform specific
tasks

Tools gradually become standard/
tested/understood

Provide the language for basic analysis
concepts: “inserter”,“looper”,
9 ¢¢

“associator’”’, “calculator”, “combiner”,
“transformer’’.

Easy to build on existing tools: Users
routinely extend the toolkit.

EventViewBuilder Toolkit




‘View" Packages

°
Eve
Pe
High
® EventView popularity:
)
® Intop || most visited Atlas web page for
past 3 months
e #9/125 HyperNews forum in # of
subscribers )

® #2/125 Hypernews forum in postings...

ATLAS now has lots of analysis
packages are mostly configurations of
standard tools.

HighPtView: Generic Analysis package
running in production = Standard:

® Particle selections
® Truth/Trigger Match
e Output

B Serves as benchmark/starting point

for analyses

Many physics groups customizing
HighPtView for specific analyses =

SUSYView, TopView, ...

Performance packages also coming:
egammaView, JetView, MuonView




‘View" Packages

® ATLAS now has lots of analysis
packages are mostly configurations of
standard tools.

SUS

® HighPtView: Generic Analysis package
running in production = Standard:

EventViewBuilder Toolkit

: N
pe® With EventView ATLAS has an analysis framework which

Top

* Makes building complex analyses easier.
* Allows sharing and comparing ideas, code, and results.

* Provides a common language (and tools) across wide array of analyses.
1t

* |s deployed in production, adopted by physics working groups, and

widely used by the physics community.

11 \-VI.I 11 11INVJY W IVIGWw N 7 \GiIWULWY VY i rlué\-ﬂ IN71

HighPtView for specific analyses =

SUSYView, TopView, ...

past 3 months

o #9/125 HyperNews forum in # of

subscribers ® Performance packages also coming:

; , egammaView, |etView, MuonView
® #2/125 Hypernews forum in postings...



Final Remarks

® The LHC will deliver sufficient 14 TeV data in 2008 to allow discovery of SUSY
signatures into the ~| TeV range.

® At the same time, LHC will produce lots of Z,WV, and tops to help understand the
detector and the SM at |4 TeV.

® Actually making such a SUSY measurement in short time-scale is a matter of
organization and preparation within the experiments.

® So ATLAS is feverishly:

® Installing and commissioning the detector.

® Building software which anticipates the fundamental issues.

® Running Data Challenges to test and explore calibration and analysis strategies.
® |f we don’t do this now, we won’t have the chance after we get data.

® But we cannot predict all of details of the physics, detector, computing, or
software challenges that will confront ATLAS or LHC.

® Hopefully having flexible and redundant software which allow physicists work
collectively will allow us to be successful... faster.



Extra Topics
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Trigger Hardware




TileCal L1 Trigger




Trlgge r ® Get from 40MHz beam crossing to 200Hz

storage...
Bunch crossing With pileup & branching fractions, interesting
vt S B [ ewene signatures are = ultimately need 10'' rejection in
memories
TRIGGER
< 75 kHz trigger + analysis.
Derandomizers
Regions of Interest == (F‘nggg;‘t drivers Tl id T2 b |
LEVEL 2 = Readout buffers = ey. identi y Ig PT eptons°

TRIGGER (ROBs)

k :
Ol Kz Successive refinements:

Event bmlder

Full-event buffers
Do ocsst e forms ® Level | Hardware- Output ~ 100 kHz -
Analogue signals from Calo + Muon systems
Data recording (w/ lower granularity).Analyzed by back-end

electronics. 2.5-3 s latency budget (most in
transmission).

® |evel 2 Software- Output ~ | kHz-
Reconstruction of “regions of interest” from
Level |. Add tracking.

® Event Filter Software- Output ~ 200 Hz- Full
Event Reconstruction.




Trlgge r ® Get from 40MHz beam crossing to 200Hz

storage...

Interaction rate
-1 otz With pileup & branching fractions, interesting

Bun;:h&rclavfﬁing
LeveL: 5 'I= Pipeline signatures are = ultimately need 10'! rejection in
memories
TRIGGER
< 75 kHz trigger + analysis.

]
— Derandomizers

— —
Regions of Interest - - - ?F?ggg;lt drivers

The key: identify high pt leptons.

%FEI\({E‘EC,"LE%{ ﬁ = o 0 Readout buffers
ni Successive refinements:
Full-event buffers
BT ELTER ocosem™ e forms ® Level | Hardware- Output ~ 100 kHz -
Analogue signals from Calo + Muon systems
Data recording (w/ lower granularity).Analyzed by back-end

electronics. 2.5-3 s latency budget (most in
transmission).

Extra material: ® |Level 2 Software- Output ~ | kHz-
LHaTIO'PiOHtr Reconstruction of “regions of interest” from
Y S e Level |. Add tracking.

® Event Filter Software- Output ~ 200 Hz- Full
Event Reconstruction.




From my Tile Comm|SS|on|ng
talk at 2005 ATl —

mounted on removable

TI|eC8| OverV|eW o PMT/Front End electronics

“‘drawer” sitting inside in the

EBA LBA A 1 back-beam region of module
LBC EBC / accessible through “finger”.

S

256 = 2 X 64 Long Barrel + 2 X 64 il | ?eiﬂi'ﬁti
Extended Barrel Wedge Modules = -

0.0 ()l ()” 02 ()-1 0.5 ()6

ooo#:ooc LB >fooofooofo
DOI DII /l D2

particle=»Energy deposit in steel
absorber=»sampled by

3 Radial Sampling layers (A, B/C, D) scintillating tiles=»read out by
wavelength shifting fibers

3.0 35 4.0 45




Beginning of the L1 Calo Chain
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D50

TileCal trigger signals

256 16-pair cablesR
——>

VOO -

128
F R

TileCal
Patch

Panels

to separate
calo and
muon signals

Liquid Argon trigger signals R

=
c
®)
=

136
F_>
F

KN
()]
N
VU TUTA

Patch
Panels

Notes:

of modules

¥ Cables up to PreProcessor are
all 16 shielded twisted pairs
¥ F, R denote Front or Rear

Receivers
(64 ch.)

PPM

ADC

x4

- ASIC

1120

> CP

LVDS high-speed
serial links

*JEP

768

to convert

¥ All connectors are D37 except
~ TCPP inputs, which are D50

E to ET

PreProcessor Modules

(64 ch.)

56



Cosmic Trigger with TileCal

® Cosmic coincidence
boards build by U
Chicago

ET scale =2 GeV Misging ET=0 GeV

® Provide first cosmic

events recorded in
ATLAS pit (June 21,
2005)

{rmj

——

® Now providing .
triggers for EM Cal, 1%
Muon, and inner e

detector

Two Highest Energy Adjacent Towersrun1134 | hids |

ntries 2044
Mean 284
RMS 1.329
¥2 f ndf 68.4/77
Width Q.175+ 0.014
MP 2.281+0.022
Area 19056+ 4.5
GSigma 0.5148 + 0.0266

Number of events
=) )
[=] [=]

8

Tower Energy {pC)



Cosmic Ray Seen by Tile Trigger

Lplus005.cern.ch: 2 [chaouki) @@E
-
m root:zatlasvb: homebackup/dag
m |§| Gnuplot

" oawk CTiF(F1==2600 print $2,%31 cosmicData 00, dat” 599) print, $2,643' cosmiclata 01,dat” with

"ok CLiF($1==2600 print $2,%4}' cosmicData_0l,dat”

gnuplots plot [ L1 "< awk “H1tl¥o » 11bU) print »L.30r" cosmiclata_Ul.dat
¥ range iz inwalid

gnuploty plot [1 [1000:] "< awk '{if($1==260) print 3$2,$3}' cosmiclata_01
gruploty plot [1 [A000:] "< auwk '{if($1==260) print $2,$4}' cosmicllata_01
gruploty plot [1 [1000:] "< awk '{if($1==260) print $2.$3}' cosmicData_01
gruploty plot [] [1000:] "< auwk "{if{$1==260) print $2,%3}' cosmicData_01
Januplaty> plot [1 [1 "< awk '{if($1==260) print $2.$3}' cosmicData_01,.dat”
nuplot




Exploring Alternatives

* TileCal Cosmic trigger is
now based on Tower trigger
output.
e |LICalo trigger system will
eventually need these outputs.
* Can we use the TileCal
——ionTrgger QuapH muon output for ATLAS wide
cosmic trigger!?

* Independent of Muon

_ 10 system
Maximum tower energy (pC) . ;

* Can be kept until trigger

upgrade.

g g
= =]
o -

g
o
o

Mumber of events

— Jower Trigger Output

* Preliminary results (real cosmics recorded in the pit):
* Tower trigger: 73% good cosmics
* Muon trigger: 23% good cosmics
=~ 8x less good cosmics with Muon trigger




| | Calo Issues

lecNoise=0.4GeV, Coherent Noise=0, Pileup=0.1Ge
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L] Calibration Issues

e TileCal sends analogue sums of channels in projective towers down long cables to
LI Calo hardware.

e PPMs- Digitize signals, extract time (BCID) and energy in tower.

e PPM Calibration (BCID/E_T) ~ determining expected signal shape

e For optimal BCID/Et performance:
e Timing is most important: Get the expect peak in the correct place (within few ns)
e Shape is 2nd: Make sure expected shape represents the specific channel

e TileCal calibration via charge injection (CIS) into front-end electronics.

i i %(29),X(40) K(41),%(42) X(45),X(46)

e CIS is not Physics pulse BC7
e CIS is ~10% narrower than physics

x(21),X(22) X(23).X(24) X(27).X(28) X(29),X(30) X(31),X(32) X(33),X(34) X{35),X{36)

e Cell>PMT Fibers and front-end optimized so " B-9
that the 5 signals from particle passing o

through a tower simultaneously arrive at for ..m.. N A
Summing. Not the Case for’ CIS. X(1),%(2) | x(3).%(4) b G N R ] X(13),X(14) | X(15),X{16) | X{17),X{18)  X({19),X(20)

e CIS happens after PMT.
e CIS timing is sensitive to clock

T : i \ | 79 m cable
synchronization/ propagation within front- \

end.

input and output signals - mean of the ~100 signals

Input

e CIS includes leakage pulse from capacitors. Output

e Cables distort pulses.




Tool for L1 Calibration

TileCIS
Pac kage on TDAQ CmdLine

* Support for scripting Interpreter

 User friendly interface based

Command line

» Automatic broadcasting when possible. High level messages

i 1;.;;_. - -t'e.:.f‘-.;;.. G TileBuilder

Y. L R et ] I
Sy Foa \

Low level commands

Pipeline

- Central

4 L AL B e A T r Sk A e il g S o sl
S e e = O it 0 sl et R s
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Data Modeling

e Optimal Analysis: Measurement, validation, and evaluation of systematics in
single analysis step = the ML fit L=Mphysics®Rdetector

4 S van
g oo s
g Soweoremmes

119 free parameters in fit; weak (but not
negligible) correlations

Events/2 Mse..‘\,-'*;‘c2
- (7
=

Multi-variate
discriminant

PID

200 | B 0—h*h’ signal variables

candidates

Vertexing,
Flavor

Tagging

Maximum Likelihood Fit

variables

2000}>

1000—

arasssmesrrimeerpreveraeeestl.. | ... 1 External input: PDF parameters from MC or other
2 @ control samples not in fit

i
Ui_
5.2 5.22 5.24 5.26 5.28 E

m, (GeV/c)

* Great deal of software tools developed at BaBar to make such complicated
analyses practical (CPU time) and easy (development/collaboration).

 Knowledge and tools = RooStats (General Stats framework for LHC)




Data Modeling

e Optimal Analysis: Measurement, validation, and evaluation of systematics in

® |deally we should draw as much information on the
nuisance parameters (ie systematics) from the data as
possible, and do this simultaneously with the fit of the
signal component.

® Naive to think all LHC analysis can be done this way.

® But many levatron analyses (especially matrix element
techniques) used similar principles.

® And such modeling is essential for proper assessment of
significance/upper-limits using Likelihood or Toy MC =

proper coverage of systematics.

* ® The tools are in development... d
analyses practical (CPU time) and easy (development/collaboration).

 Knowledge and tools = RooStats (General Stats framework for LHC)



Data Modeling

e Optimal Analysis: Measurement, validation, and evaluation of systematics in

® |deally we should draw as much information on the
nuisance parameters (ie systematics) from the data as
possible, and do this simultaneously with the fit of the
signal component.

® Naive to think all LHC analysis can be done this way.

® But many levatron analyses (especially matrix element
techniques) used similar principles.

® And such modeling is essential for proper assessment of
significance/upper-limits using Likelihood or Toy MC =

proper coverage of systematics. Extras:data

* ® The tools are in development...
analyses practical (CPU time) and easy (development/collaboration).

* Knowledge and tools = RooStats (General Stats framework for LHC)



Data Modeling

® Simplistic view of Matrix element methods in Tevatron top analyses:

® Lsgpig(obs) ~ M(kin) ® R(JES, ...)

® Matrix element maximally uses physicist knowledge of signal/
background processes.

W
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Data Modeling and Jet
Calibration

®  Our typical source of calibration, validation, and correction of Jets: Jet + (Jet, Gamma,Z) balance
and W mass.

® Complex problem... must account for: hadronic response, particle = parton, Underlying Event,
pile-up (minimum bias), ISR/FSR, Clustering Alg, Jet Alg, noise.

® The physics nor detector are well modeled/simulated.
® Typically we separate the problem into: calibration, correction, validation/systematics
®  Why not try to build a jet model:

®  Emeasured = M(Eparcon, UE, ...) & R(Calibration/correction Parameters)

® Include control samples + model in signal fits
e C(Calibration, validation, and systematics in one step!

e Toy MC generated from model is a better representation of Data than full/fast simulation...
faster than fast simulation... requires no tuning.

®  Overlap with Missing Energy Significance techniques.



A Jet Resolution Model

Double Gaussian
Account for dependencies in Resolution function

previous slide into res func. J

Jet %
L=(1—f)G ApT +fG pT Am BmpT
o, A, +Bo, /
Quaderatic in fraction S
f(E)=Af+BfE+CfE2/ Linear in mean
and resolution
Jet Y 1 1 )
Ap,=p; —-pr Gx)= Nexp{—;x }

PP - Eéfj;,-b \ o, = 0/cosh(n)

/g e
coshfn ™) o-Ex|-Larel
JE E

EX =41+ A21n(E9 ELS + (B1+ B2In(E% B
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The LHC General-
purpose Detectors




The LHC General-
purpose Detectors




The LHC General-
purpose Detectors

* Solenoid (2T) + Large
Toroidal Magnate System

e Standalone muon tracking
e Calorimeters outside
solenoid




The LHC General-
purpose Detectors

* Solenoid (2T) + Large
Toroidal Magnate System

e Standalone muon tracking
e Calorimeters outside

* Powerful Solenoid (4T)

e Muon bend in return flux

e Calorimeters inside
solenoid=constraint on HCal

solenoid




900 GeV Run

ATLAS preliminary | | Vs =900 GeV, L = 10%° cm? s

Jets p; > 15 GeV

-
=

B T TP T LT T T T

-
=
5]

-
=
=

Jets pr > 70 GeV

-
=
5]

J/p—uun

-
(=]

Number of events in ATLAS after all cuts
=
— [#]

—
=
-

30 35
Number of days of data taking

-
=
[




How many events of
each type in 100/pb!?

—_— 5 ‘|| Assumed selection efficiency:

| ~10° J/Psi —up +Y —uu.ee Al W= v, Z—= Il : 20%

T Y T T || t+ = Iv+X : 1.5% (no b-tag, inside
mass bin)

similar statistics
to CDF, DO today

Number of events after all cuts

+ lots of minimum-bias and
jets (107 events in 2 weeks
of data taking if 20% of
trigger bandwidth allocated)

| m tt— h+X

10 |:')'1 =1 Th T
1035 and < vac\)/zeksa 100 pb™! = few days | fbl=6 month |5 fb!=3 month at 1032 and

at 103! £=50% at 1032, €=50% nt 1032, €=50% 3 month at 1033, €=50%




SUSY Related




o o A - F gy
TN R

Analysis Strategy

® Large SUSY parameter space... we may optimize our analyses for the wrong place
and miss SUSY in our data.

® Cannot look in too many places:
® More analyses, more susceptible to statistical fluctuations.

® |f we discover something, accounting for correlations between measurements
requires assuming a SUSY model.

® ATLAS is exploring various strategies... must properly account for systematics.

® Example: optimize analyses for greatest discovery potential.

(TeV/c?)

L

E;

1 15 2 10°
m, (TeV/c?)

e N I N R e Y N el 0 e S T e P .-1.1"-|-="-'J' IO N T L .‘.

r*z;\_:S__igniﬁcance of discovery
in 100/pb

*f"ﬂ-jz‘ '—n.i'-:
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SUSY Production at LHC

levatron

GilPbI: pp —82. §8. 11 X5X1. VV. 718. 114

Of course LEP & Tevatron SN N oz

were able to directly look — o
for SUSY.

LHC will have much

g ; 5 S | NN i [GeV]
higher production cross- ' S0 0 0 W0 B0 W0 B0 00
section.

'\\
.,

~_ SwlPbl: pp —£8. 48 1, XX VY 138 74

SUSY is Produce strongly ﬂﬂ

RN
T
~

e

R 19

squarks and gluinos
dominate production

RS .
‘ﬂ VS = 14 TeV

— NLO
-+ LO

m [GeV]

100 150 200 250 300 350 400 450 500




Entries/2 GeV/10fb™

'y
o
w

Lepton Signatu re

__________________

'.:'r':: o

MT (I EmISS
e éusv SU1 - Rome Sample
—=— SUSY SU3 - Rome Sample
—=— SUSY SUbL2 - Rome Sample
—&— SUSY SU6 - Rome Sample

: Sum of all BG
----- ttbar Inclusive [Mc@NLO]
- == W + 6 Jets [AlpGen 2.X]
—— = Z(u u) + 6 Jets [AlpGen 2.05]
Z(vv) + 6 Jets [AlpGen 2.05]
- QCD + 6 Jet [AlpGen 2.X]

T
A& Orr

i

=360 n1i;‘1$ao =500
M, (I, ET ) (GeV)

140

|qn

Regmn

400

200

IOn

IIII|IIII|IIII|IIII _0

(=]

100

600 800 900 1000

Etmiss (GeV)

10°

10

-
<

‘='|||||||

Extrapolation in Data for Single

Perform SUSY selections

Cut on Mt=mass (lepton + MET) and
MET

Complications:

® tt—bblnqqgand tt—bblviv exhibit

different Mt = separate the two

contributions

W+Jets is a background to top

=M1 <100 GeV.--
-M l>1OOGeV

tt-'bequ

(only)
extrapolatlen

100 200 300 400 500 600 700 800 900 1000
Etmiss (GeV)
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Replacement

® Reconstruct Z->|| + jets...

® Move pl(Z) to MET = Z-

Missin ET (Alen v2.05)

A R:Z-—>vv
tﬁ B: Estimated
>nn + jets LT |
® Statistics limited... can use o #J
1 fb-1 !
W->Iv paad e aa b e a sl g s e g alidey | | 1

200 300 400 500 600 700 800 900 100

Missing E; [GeV]

-1
107" 100

® Must properly account for
lepton acceptance/efficiency




Re-decay

|//quark "m muon
|
Jet ll[h:.'r.‘ " u // Jet lih},‘ &

o~ d 1I||"rl.I.
wh

neutring

antiquark "ﬁ

antiproton beam E proton bearm antiproton beam
- @ @

3 [~ . £ e
neutrino neutrino 5 s ]
2, @

6 % T 3 2 =
electron D electron Jet 2 (b)

® Fully reconstruct an event (eg bbgqln) to obtain hard-scatter
kinematics (eg t—bqq)

® Use MC to produce alternative decay (eg bln) w/ same kinematics.
Replace.

® Result: production from data, decay from generator, response from
simulation



QCD Backgrounds

QCD Multijet 4Jets - No Lepton Mode

—e— Explicit 2 b-tag Jets

—— Without b-tag

® Main source of
Large missing
Et is b-jets

300 350 400
E?’IISS (GeV)

bb + 2 Jets - No Lepton Mode

QCD Multijet 6 Jets - No Lepton Mode
—e— Explicit 2b-tag Jets

—e— Explicit 2 b-tag Jets ——— Without b-tag

—— Without b-tag

350
E_rrmss (GeV)



Monte Carlo Estimation

® Most relevant for 0 lepton where [ z .
other techniques have difficulties | Sti,,“é'i;"msp‘,’fv Normalization | - Pseudo-data

factor

® Vary parameters of Alpgen:

(renormalization scale (at each pT), St:nng:dmsptllesv - n

factorization scale (m Z 2+ pT_Z2), . \‘“°’T;:';f,?"°“,- .
ME partons (pT> 40GeV, dRij>0.7), S| =
MLM Jet Matching (ET> 40 GeV,R = 7 vy

0.7), PDF (CTEQS6L)

® Appears that shapes do not depend on
input... but rates do.

® Use Z->|l in data to determine
determine Z->ll normalization in MC

= Z->vv W->|n W= Iy

0 350
Missing ET [Ge'

® The normalization factor is common
among Z—>|l, Z—>VvV,W —>|v because
they have the same production
mechanisms.




Building a SUSY
Discovery Analysis




Analysis Computing




Example:
Reconstruction

Algorithms:
Per-event

® HEP software frameworks Operations

are designed for event
reconstruction.

® The reconstruction software Event Ddta M.e
is simultaneously developed |
IOQ Qf eole over many

,‘,1.-:."‘

i J':



® The reconstruction application is a
specific configuration of a library of
framework elements.

(@]
Builder

AN @O

Btbrary

Input="TheData”
§ Algorithms+=
| (In="LArgChannels”,Out="Cellsl”)
Algorithms+=
(In="Cellsl” ,Out="Cells2”)
+=CellCorrectionA()
+=CellCorrectionB()

Algorithms+=
(In=“Cells2”,0ut="Clustersl” ,MinEne

rgy=10*GeV)




® The reconstruction application is a EventSelector
specific configuration of a library of Service

framework elements.
Cell 4 MO
Builder
B
g . .
o Calibrator \“

Cluster 4
Builder \

(@]
Builder

AN @

Is

:

ent Data Store

Clusters

“Cluster< .
_+Calibrator ‘

ion A

Input="TheData”
Algorithms+=CellBuilder
(In="LArgChannels” ,Out="Cellsl”)
Algorithms+=CellCalibrator
(In=“Cellsl”,Out="Cells2")
CellCalibrator+=CellCorrectionA()
CellCalibrator+=CellCorrectionB()
Algorithms+=ClusterBuilder
(In=“Cells2”,0ut="Clustersl” ,MinEne

rgy=10*GeV)
A Configura

ion B

o o
et Finder ‘
¥ 4 |

S

a

)




More on HighPtView

HighPtView Ntuple Job

Truth N
EWLO |:_|:|,r_'gr 1 EVLoo FH-T I|

Branch Tool .

.

Truth MuldMuon MuldMuon StacoMu StacoMu
| Insarner Insarter
*

Insarmar Insarer Insariar
Elactran El&actrzn Elaciron Elaciron

- ST 1]y - Inserner Insarer

Fhotan Photan Frotan Photan
Inserer Imsartar Insemar Insamner

TauRec Taulpip TauRec Taulp3p
Insartar InEarmar Inserar Insarter

. - | |
{ el | ] det Jot et
™ Insertars ™ Inserers Insarters M Inserers

— . . -
Truth Maich =l=i Truth Maich =.-1 Truth Match l|=P| Truth Match |

Trigger Trigger Trigger Trigger
Match Match Match Match

AAMTUDIRDUMpr

Trigger

EWLoopar J

Trigger
Insariar

® Analyses are mostly
configuration of standard
EventView tools + some
analysis specific tools.




Comprehensive SUSY
Analysis

® Requires multiple sources o n
® MET resolution, lepton ID, Jet/lepton scale/resolutions
® Various estimates of backgrounds
® Optimization of Analysis procedure
® Many groups of people will each contribute some element.

® Need:

® Consistency in data samples, algorithms, configuration,
selections.

® Communication of results of one step to another.

® Ability to recover from show-stoppers. Make measurements
with detector, calibrations, and software at hand...



Statistical Analysis

® Building Discriminants

® (Calculating Significance/upper limits
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Interactive Analysis

® Need a place to make plots, study, etc
® Book keep large number of samples.

® Everyone knows how... but why do it again?
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