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New Physics At Hadron Colliders

What new signals do we seek in current high-energy experiments?

e Higgs boson (electroweak symmetry breaking)
e Supersymmetry (and its breaking)
e Dark matter candidate

e Extra spatial dimensions

The relevant experiments are at the Tevatron (Fermilab) and at the Large
Hadron Collider (CERN).



Tevatron at Fermilab collides protons with antiprotons at 2 TeV. Discovered

the top quark in 1995. Collecting more data in “Run I1I” until 2009.

Instantaneous luminosity 1032 cm ~2s~ 1.



Large Hadron Collider (LHC) at CERN expected to start test run at 450 GeV
in May 2008; full 14 TeV to start mid-2008. Instantaneous luminosity 10-100

times larger than Tevatron.



LHC should see new signals:

Higgs boson must be found — or face big theoretical puzzle.

Supersymmetry arises most naturally at this scale.

Hadron colliders come with a very large QCD background to signals of new

physics.
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A Proton-Proton Scattering Event
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1. Parton distribution function (pdf) of quarks and gluons
2. Hard scattering from collision of 2 partons

3. Showering and hadronization



Feynman rules in QCD: Propagators and Vertices

(graphic: Wolfram 1978)
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Too many Feynman diagrams

Already at tree level in pure gauge theory: (Weinzierl)

#gluons | Diagrams

4 4

5! 25

6 220

7 2,485

8 34, 300

9 559, 405

10 | 10,525,900

These numbers are derived from intricate diagram combinatorics.
Factorial growth.

Each diagram is tedious...



Traditional approach: Feynman diagrams

In the end, one finds many cancellations ending with a gauge-symmetric

result.

Symmetry offers clues for improvement. Amplitudes have remarkable

structure!
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Ingredients

twistor
geometry

We are discovering new perspectives.

Complex-valued momentum: find poles and branch cuts.

Construct amplitude from global properties.
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Spinor-Helicity Formalism  (1980's)

Quantum scattering amplitudes have elegant expressions in terms of

spinors.

Unitarity (1990’s)

Unitarity of the scattering matrix gives targeted information about loop

amplitudes.

Twistor Space Geometry (2000's)
Amplitudes can be built from lines and planes in twistor space.

Twistor string theory and its duality to gauge theory suggested this

geometry.
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Helicity Amplitudes Look Nice

Gluon amplitudes at tree level:

A(py,p3.03,0p8,.-.,0f) =0 (1)

A(py,p3,03,p4,---,pf) =0 2)

Maximally Helicity Violating (MHV) Amplitudes:

(13)*
12)(23)...(n—1n)(n1)

A(pL 03,031 -+, 0)) = < (3)

(Parke, Taylor 1986; Berends, Giele 1989)



Momentum and spinors

1
(po, p1,P2,P3) = (;E,px,py,pz)

Change to spinor indices with Pauli matrices:
, = o 1=1,2
Paa O-aa p,u a, a Y
For a null vector (massless particle):

0 = pt'p,, = det(paa)-

Paa — ~ -
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Spinors:

Paa =

€Cab = €;}

>
Q-
I
>0 >
DO [

€ud )\a )\/b

Ya (/b
€. AT A
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Spinor formulas are elegant

Gluons:

(13)*
12)(23)...(n—1n)(n1)

A(PT D3 D3 Pg s s D)) = <

(Parke, Taylor 1986; Berends, Giele 1989)

So, there is also a purely theoretical motivation to study gauge theory

amplitudes.
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A(17,27,37,47 ... . n") =

(Kosower 1990)

1

mun2les)sa [T kE+ D)

(12)(34)[1n](1| Py 3|4]? N (32)(1m)[34](3|P1 3|n]? N (21)(31)(3n)[32][34][1 n](3[P1 3[n]

2 2 2
P5,1 P3,n—1 P3,n—1

(23)(13)(14)[12][34][1 n](1|P1 3]4] (12)(32)(31)(3|P1,3|n][34]
2

— (3 1)2P42,n[3 4][1 n] —

2
P5,1 P3,n—1
n—1
D alia 1115411 (21)2(13)(3|P3 ;_1k;13)  (23)2(31)(1|P;4q1 1k;]1)
—[23][21][34][1n] X 2 + s
. 3,i—1" 3,1 i+1,17 4,1
1=

(28)(21)(13) (1| P41 ,2k;13)  (28)(21)2 (1| P11 2k;13) (3] P; 2]2]

2 p2 2 2 p2
PS,z'Pi,l P3,i—1P3,z'Pz',1

(2 3)2(21)(11P;41 1 ki|3><1pi—|—1,2|2]] )

2 p2 2
P3,z'Pz'—|—1,1Pi,1



Twistor Space

(Penrose 1967)

p,u — (p17p27p37p4) — ()‘17)‘275‘175‘2)
— ()\17)\27,U17N2)7

with

Breaks symmetry between A and .

Nonlocal transformation.

(4)
(5)

(6)
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Simplicity In Twistor Space

Amplitudes are localized on algebraic curves in twistor space (Witten 2003)...

#negative helicities — 1 + #loops = degree of curve

...and further, on intersections of lines and planes (Cachazo, Svrcek, Witten

NN T

2004).
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Twistor String Theory

Witten (2003) proposed a duality between a topological string theory on

twistor space, and supersymmetric Yang-Mills theory. (see also Nair, 1988)

Consequence: gauge theory amplitudes are computable in string theory.

Amplitude computation was confirmed, but not improved.

However: it suggested the localization to lines and planes.
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Twistor Geometry

Points in momentum space <—— lines in twistor space.

So, the lines in twistor space correspond to vertices (points) of a
Feynman-like diagram. Motivates the degeneration of the curve describing

\/\ — g\{/\

MHYV Diagrams are a field theory prescription with an interpretation in

the amplitude.

twistor-space geometry. MHV amplitudes become vertices of these

diagrams. (Cachazo, Svrcek, Witten)



Twistor-geometric “MHV Diagrams” extend to quarks, electroweak vector

boson currents, QED, Higgs,...and even loop amplitudes.

(Georgiou, Glover, Khoze; Dixon, Glover, Khoze; Badger, Glover, Khoze; Schwinn, Weinzierl; Bern, Forde,

Kosower, Mastrolia; Bedford, Brandhuber, Spence, Travaglini; Quigley, Rozali; Ozeren, Stirling;...)

By now there is even a Lagrangian formulation and related twistor-space

actions.

(Mansfield; Ettle, Morris; Boels, Mason, Skinner)
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One loop in twistor space

Elements of loop amplitudes are localized as well. (Brandhuber, Spence, Travaglini;

Cachazo, Svrcek, Witten)

This offered clues for new constructions, in particular for all next-to-MHV

amplitudes. (Bena, Bern, Kosower, Roiban; Cachazo; RB, Cachazo, Feng)
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Helicity amplitudes look nice in terms of spinors.

Bring spinors into complexified momentum space.

X and \ are independent complex spinors.

twistor
geometry

This means that we treat the amplitude as a complex function of the spinor

products (A \’) and [A \’]. We can examine its analytic structure.
We did this and derived new recursion relations for amplitudes.

One new feature: three-point amplitudes do not vanish.
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Complexified Momenta and Three-Particle Amplitudes
P
\ r
q

Momentum conservation: 72 =0 = p-q=0.

(Witten)

2p-q=(pq)lpq) = (pq)=0 or [pg =0.

+) = (pq)®

AP = 1)
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Construction of tree-level amplitudes.

(RB, Cachazo, Feng, Witten)

e Define the following function of a complex variable z:

A(z) = A1, -+ Pe—1,Pk(2), Pht1, - - - Pr—1,Pn(2));

where

pr(2) = pp — 2X6An,  Dn(2) = Do + 2 A6 A,
Pk — )\kS\ka Pn — )\nS\n

The original amplitude is A(0).
e Tree amplitudes have only simple poles! These come from propagators.

e \When we apply the residue theorem, we get an expression for this

amplitude in terms of lower-point amplitudes.
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Calculation of Residues

1 j

A(0) = ZAL(Zij)%AR(Zij)a

where z;; is the solution to P; ;(2;;)? = 0.

This gives a recursion relation for amplitudes.
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(RB, Cachazo, Feng)

AN

2(1,...,(n=1)",n") =

| .
Z Aipa(R,1,. .4, —Pn,i)P—QAn_i(+Pn,,?,i+1, n—2,m—1)
i=1 h=+,— .t

S

e The hatted momenta are shifted in such a way that all of these

momenta are on mass shell and momentum is conserved at each node.
e This is possible only with complexified momenta.
e Build arbitrary amplitudes out of 3-point amplitudes.

e Formulas that come from the recursion relation are the most compact

ones available.
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Example: A(17,27,37,4",...,n")
Spinor-helicity:

(Kosower 1990)

nl][12]23]34]H (k1)

(12)(34)] 1n]<1|P1 31412 N (32)(1n)[34](3|P1 3|n]? N (21)(31)(3n)[32][34][1n](3[P1 3[n]

P31 P31
<23><13><14>[12n34n1n]<1|P1 314] (12)(32)(31)(3| Py 3|n][34]
5 —(31)? P4 [34][1n] — 5
P5 1 3,n—1
n—1
(21)2(13)(3|Pg ;_1k;13)  (23)%(31)(1|P;4q 1k;[1)
—[23][21][34][1 n] x E 5 5 + 5 5
- PS,i—IPS,i Pz—l—l 1Pz 1
(23 0AB) (1P ,2k13)  (23)(21)2 (1P 41 2k413) (3P 212]
P??,iPiQ,I P?? z—lp?? zP7,21

P2 p2 P2
3,2 ++1,1 2,1

(23)2(21)(1|P;4 1, 1ki|3><1Pz-+1,2|2]])
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Twistor geometry:

(Cachazo, Svrcek, Witten 2004)

1

HZ::»,““ K+ 1)

n—1
y Z (ii 4+ 1) <32>3<1|Pz,¢|2]3 N (1 2>3<3|Pi—|—1,2|2]3
— (il P ;1214 + 11P; 4 1,212](2| Pa ;2] PZ P2
1=

132 ((13)+2(12)+2(23) L ams) <32><14>)}

[3 2][1 2] [12](n 1) [32](34)



Construction from residues:

(RB, Feng, Roiban, Spradlin, Volovich 2005)

n—1

(i+11)

1 (11Py ; P;yq 213)3
n 2 2
k Lk 1 Pz  P:
Hk:3< + >Z

2,4 i+1,2
i=4

(2] P2 ;i+1)(i| P11 212]
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Another Example: Split-Helicity Amplitudes

(RB, Feng, Roiban, Spradlin, Volovich 2005)

_ _ N1 N2 N3
AL, g (gD ) =)y Y D1D2Ds
k Ag,Bri1

3
Ni = (HP2by Poy+1,ay Pay+1,bg " Popyq+1,g—11007
No = (b1+1by)(bo+1bg) - -(bpy1+1bpyq),
N3 = [ayai+1]---lagap+1],
D = p2, p? P2 R
r = 2,b1 " by1+1l,a1 aq+1,by bpr1+1l,a—1"
Dy = (gqq+1)---(n1)[23][34] - --[¢q—2q —1],
D3y = [2|P2,b1|b1+1><b1|Pbl+1,a1|a1]'"<bk+1|Pbk+1+1,q—1|q—1]
Ap = {a1,..., ap} C {2,..., qg — 2}

Bry1 = Abggq,--- b1y C{a+1,...,n—1}
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The recursion gives new and compact expressions for tree-level amplitudes

in pure gauge theory. (Luo, Wen; RB, Feng, Roiban, Spradlin, Volovich)

The same construction has been applied to loop amplitudes, gravitons, and

massive particles including Higgs, gauge bosons, and fermions.

(Badger, Glover, Khoze, Svrcek; Forde, Kosower; Bedford, Brandhuber, Spence, Travaglini; Cachazo,

Svrcek; Bern, Dixon, Kosower; Bern, Bjerrum-Bohr, Dunbar, Ita; Ferrario, Rodrigo, Talavera; Quigley, Rozali;

Ozeren, Stirling; Berger, Bern, Dixon, Forde, Kosower; Benincasa, Boucher-Veronneau, Cachazo; Schwinn,

Weinzierl;...)
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34
We have had to expand our physical intuition to complexified momentum

space.

Construction from the residue theorem is very elegant, but this is not how
the recursion relations were first understood. In fact, they arose

mysteriously in the context of loop amplitudes!

Loop amplitudes have been the principal target of activity for collider
physics: QCD at NLO.



Next-to-Leading-Order Effects Are Large

d?c/dM/dY [pb/GeV]

Rapidity distribution of a Z boson at LHC. «g = 0.121 at M 5.

(Anastasiou, Dixon, Melnikov, Petriello)
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Status at Next-to-Leading-Order

Complexity of a calculation increases with the number of kinematic

variables.

2 — 3 processes are state of the art in QCD at next-to-leading order.

pp — 3 jets, Z + 2 jets, W + 2 jets,
Zbb, H+ 2jets, v jet,
ttH, bbH, tth’, tb H™, ttjet

(Bern, Dixon, Kosower (x2); Kunszt, Signer, Trocsanyi; Kilgore, Giele; Nagy; Campbell, Ellis,
Rainwater; Campbell, Ellis, Maltoni, Willenbrock; Ellis, Veseli; Campbell, Ellis; Campbell; Han,
Valencia, Willenbrock; Figy, Oleari, Zeppenfeld; Berger, Campbell; Figy, Zeppenfeld; Ellis,
Giele, Zanderighi; Del Duca, Maltoni, Nagy, Trocsanyi; Binoth, Guillet, Mahmoudi; Dittmaier,
Kramer, Spira; Dawson, Jackson, Reina, Wackeroth (x3); Beenakker, Dittmaier, Kramer,
Pluemper, Spira, Zerwas (x2); Dawson, Orr, Reina, Wackeroth; Reina, Dawson, Wackeroth;

Wu, Ma, Hou, Zhang, Han, Jiang; Wu, Ma, Zhang, Jiang, Han, Guo; Dittmaier, Uwer, Weinzierl)



Getting the cross section
e Generate diagrams.
e Real radiation corrections: tree amplitudes and pole subtraction.
e Virtual corrections: one-loop amplitudes.

® Integration over phase space.
One-loop amplitudes are the bottleneck.

By improving methods for computing amplitudes, we will pin down signals

and backgrounds of new physics.
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Status at Next-to-Leading-Order

2006: complexity of 2 — 4 in QCD was achieved in the complete 6-gluon

amplitude:

® Semi-numerical method

Ellis, Giele, Zanderighi

e Analytic results completed

Bern, Dixon, Dunbar, Kosower (x2); Bidder, Bjerrum-Bohr, Dixon, Dunbar; RB, Buchbinder, Cachazo,
Feng; Bidder, Bjerrum-Bohr, Dunbar, Perkins (x2); Bedford, Brandhuber, Spence, Travaglini; Bern,
Bjerrum-Bohr, Dunbar, Ita; Bern, Dixon, Kosower; RB, Feng, Mastrolia; Berger, Bern, Dixon, Forde,

Kosower (x2); Xiao, Yang, Zhu (x2)

The analytic techniques apply to any number of particles!

Several 2 — 4 processes will be needed for LHC physics, especially as

backgrounds to Higgs production.
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Experimenter’'s Wish List at Next-to-Leading Order

(Knuteson, Campbell 2001)

single boson

diboson triboson

heavy flavor

W+ <55
Wbb+ < 3j
Wee+ < 3j
Z+ <5j
Zbb + < 3j
Zcé+ < 3j
v+ <55
vbb + < 3j
yec + < 33

WW + < 5j WWW + < 3j
WWbb+ <3j] WWWbb+ < 3j
WWee+ <35 WWWnryy+ <35
ZZ+ < 5j Zyy+ < 3j
ZZbb+ < 3j WZZ + < 3j
ZZce+ < 3j 227 + < 3j
vy + < 55

Yvbb + < 3j

yyee + < 3j

WZ + < 5j

W Zbb + < 3j

W Zce+ < 3j

W+ <35

Zy+ < 3j

tt + < 3j
tty + < 25
ttW + < 2j
ttz + < 25
ttH + < 25
th+ < 25
bb + < 3j
bbtt



LHC “priority” wishlist at Next-to-Leading Order

(Les Houches physics at TeV colliders 2005, standard model and Higgs working

group: Summary report)

pp — VV 4 jet
pp — ttbb

pp — tt +2jets
pp — VVbb

pp — VV +2jets
pp — V 4 3 jets
pp — VVV

Ve{Z W~}
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Reduction of Loop Integrals

Early shortcuts to computing one-loop amplitudes reduced the tensor
structure of the momentum integral, so there were fewer types of integrals
to carry out. (Brown, Feynman; Passarino, Veltman; 't Hooft, Veltman; Stuart; Van Neerven,
Vermaseren; Melrose; Van Oldenborgh, Vermaseren)

K2 K3

K1 K4

box triangle bubble
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S v
f) _ /d4_2€£ 1 (7)
62(5 — Kl)z(ﬁ — Ky — KQ)Q(K + K4)2
Klﬂ | R Ka
1-loop
— ¢, + C, + C, +

Al—loop _ Z ;1 (8)

For amplitudes involving many particles, this is not yet enough

simplification, although improved reductions exist.



twistor
geometry

All the ingredients come together for general, complete amplitudes at one

loop!
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Unitarity Cuts: Loops from Trees

AATTP = / dp Atei X ARight (©)
where

dp = d*y d*0y 6™ (04 + 0y — K) 5(£2) 5(02) (10)

By unitarity, this is the discontinuity of the amplitude across a branch cut, in

a kinematic region selecting the cut momentum /. (cutkosky 1960)
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Amplitudes from unitarity cuts

4-dimensional cuts suffice to determine certain one-loop amplitudes! (Berm,

Dixon, Dunbar, Kosower 1994)

Match cuts of amplitudes with cuts of master integrals from

Passarino-Veltman reduction: essence of loop momentum integral is done

once and for all.

AAl TP — N T AT (11)
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Earlier versions of the “unitarity method” still involved integral reduction, and

an intelligent ansatz for a given coefficient based on singularities. (Bern, bixon,

Dunbar, Kosower; Bern, Del Duca, Dixon, Kosower)

Apply unitarity method to tree amplitudes that have been continued to

complex momentum space.

Generalized unitarity gives immediate, algebraic results for “box” parts.



Box Coefficients from Quadruple Cuts

(RB, Cachazo, Feng)

Generalized Unitarity: Try replacing all four propagators by delta functions.

This operation isolates any given box.

In four dimensions, these four delta functions localize the integral

completely. This computation is very easy!
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The solutions of loop momenta

The box coefficients computed from quadruple cuts are given by

1
5 Z A’ireeAgreeAgreeA;clree (12)
S
S is the set of all solutions of the on-shell conditions for the internal lines.
S={0|*P=0, (-—K)*=0, ({—K, —Ky)*=0, ({+K4)*=0} (13)
Can these equations always be solved?

In complexified momentum space, there are exactly 2 solutions.

(Again: nonvanishing 3-point amplitudes.)
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Box Coefficient from Quadruple Cut

1 [0 £4)3 4 05]? 5 6] 5 7)?
2 [01 2][2 £4] [l 1][£1 3][3 4] [6 £3][C3 L2][C2 5] [7 1][1 £4][C4 £3]

coeff = (14)

o (12)3(23)%[56]° 15
T T ) (34) (2| PoalB] (2| Pr1|6(2| Po.a P o ) (2| Pra Pogld) )
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Constructing amplitudes from unitarity cuts

We have a systematic way to evaluate these cuts using spinors. Then apply

the residue theorem to avoid integration. (RB, Buchbinder, Cachazo, Feng; RB, Feng,

Mastrolia)

Integrating with spinors instead of momentum 4-vectors makes use of the

simplicity and structure we saw with tree amplitudes.

This is how we finished computing the cut-constructible part of the 6-gluon

amplitude!



Spinor integration
(RB, Buchbinder, Cachazo, Feng; RB, Feng, Mastrolia; RB, Feng; Anastasiou, RB, Feng, Kunszt, Mastrolia)

e Change loop momentum to spinor variables in unitarity cut integral.

0 — M\ (16)

e Each term of integrand takes the form:

(E) T TLE AR
LRI TT5_ (M@ 1A

(17)

e Evaluate with residue theorem.
e |dentify expressions with cuts of basis integrals and read off coefficients.

e \We have given formulas for the resulting coefficients.
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Triangle coefficients

ClQs, K]

(K2)1—|—n 1 1
2 (VAT (n+ 1)(Ps 1 Ps2)nt1
k+n
y dn-l—l Hj:l <PS,1 — TPS,2|RJ'QS|PS,1 — TPS’2>
+1 k
a Ht:l,t;és<PS’1 — TP 2|Q:Qs|Ps,1 — 7P 2)
—2Qs - K+ 4/ Ag
Ps,1 = Qs+ — %
—2Qs - K — 4/ Ag
PS72 = QS + 2K2 K
As = (2Qs - K)? - 4Q§K2

52

+ {Ps,l — PS,Q}

=0
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Bubble coefficients

clr) = (it Yy A (50, q<s>+zz (BEiemaD(s) - B2 (s))
q=0

r=1 a=q

s—0
n+k
© n . (2« FytH [I ) cimscc+ omiey
B " (s) = —
dTm ! ! K n 1N (K2)t+1 k
T nllnin"K|n]™ (t + 1)(K=<) (e nyn+1 H _ Qp (K + sm) ) 16y — | K —7n' |n]
p= T—0
p(ribil) ) = (—1)bt1 ab ( 1 (Pn.1 — 7P.aln|P, 1]tT!
M =
" e N D R I o e
n+k
(Pr,1 = mPr2l@enlPry = 7P 2)? [ 77 Py = mPro | B (K 4 om)|Pry = 7Py 2)
X
K
<P7’,1 - TPr,2|77K|Pr,1 - TPr,2>n+1 Hp—l p;éruar,l - TPT,2|QP(K + 377)|Pr,1 - TPT,2>
- T—0
B(ribi2) (o) = (—1)b+1 qb 1 (Ppg — 7P 1|0 P o]t
M =
" b|\/;b+1<P b 470 N D (Pry = P K[ Py )P
' /r" 7"7

b TL—I—k:
(Pr2 = 7P 11QenlPro = 7Pr 1) [ [77 " (Pro = 7Pr 1 IR (K + sm)|Prp = 7Py 1)
X

k
<Pr,2 — TPT’1|77K|PT.,2 — TPT,1>n+1 Hp:l p;ér<Pr’2 - 7'PT',1|Qp(I< + 377)|PT',2 - TP’I",1>



What next?

e \Wider applications to massive particles (tree level input!)
e Better programmability
® Increase efficiency

e LHC cross sections

54



55

Summary
Observing new physics at hadron colliders like LHC requires better
hard-scattering (amplitude) computation techniques.

Insights from complex analysis and twistor space, spinor-helicity

formalism, unitarity.

Combine these tools in new and practical ways.

Simple formulas for new amplitudes, better expressions for old ones.

Complex-analytic constructions give recursion relations for amplitudes,

and relate loop amplitudes to tree amplitudes.

Spinor integration is an efficient, systematic alternative to Feynman

diagrams.



