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Preparing for a discovery of unseen dimensions

¥ New phenomena occurring at Terascale energies provide
insights about the nature of fundamental symmetries,
structure of space and time

¥ LHC is an experiment of extraordinary scope and
sophistication that will look for these phenomena amidst
abundant “known” Standard Model processes

¥ Its potential for success depends on the ability to
understand hadronic dynamics in the new energy regime
and implement this dynamics in new physics searches
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LHC: unprecedented richness of hadronic theory

¥ dominance of sea parton
scattering

¥ small typical momentum fractions
x in several key searches
(Higgs, lighter superpartners, ...)

¥ large QCD backgrounds

¥ complicated event signatures;
reliance on differential
distributions

¥ unique low-energy dynamics
(underlying event, multiple
interactions...)
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Perturbative QCD computations

Other experiments:
HERA, Tevatron,
fixed target, ...

mass effects
Charm and bottom

Stability of
perturbation theory

composition
Parton flavor

Multi−scale
regimes

Resummations

saturation?...
DGLAP? BFKL?

Combined with
electroweak 
corrections

Fragmentation
functions

Power−
suppressed
contributions

Predictions for
 LHC observablesperturbative X−sections

Hard scattering:

Universality

Renormalization
group invariance

(N)NLO radiative
corrections

nonperturbative input
Soft scattering:

Parton
distributions

(PDFs)

Global
analysis

to LHC data
Comparison

Parton showering
models

freedom
Asymptotic Confinement

Factorization

observables
Proof for individual

Small−x
effects

A relevant, yet incomplete, picture
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Examples of global connections

¥ Correlations between collider cross sections through shared
parton distribution functions

based on

Implications of CTEQ6.6 global analysis for collider
observables

with Cao, Huston, Lai, Pumplin, Stump, Tung, Yuan; arXiv:0802.0007

¥ Constraints on Higgs boson sector from direct searches and
precision measurements

I QCD backgrounds for Higgs → γγ (with Balazs, Berger, Yuan)

I W boson mass at the Tevatron and LHC
(with Berge, Konychev, Olness, Tung, Yuan, and others)
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PDF-induced correlations in hadron scattering
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PDF-induced correlations in hadron scattering

¥ Dependence on the PDF’s is
strongly correlated for some pairs
of cross sections and
anti-correlated for other pairs

¥ I will discuss the origin of the
correlations, especially for W, Z, tt̄
cross sections

⇒ implications for the monitoring of
parton and collider luminosities,
determination of new physics
parameters

Noteworthy correlations
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Theoretical uncertainties on σW , σZ , σtt̄
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I NNLO PQCD: (Hamberg et al; Harlander, Kilgore;

Anastasiou et al.): σNNLO − σNLO = −2%

I PDF dependence: & 3%
at ≈ 90% c.l.

σtt̄

INLO scale dependence: 11%
(to be reduced at NNLO soon)

Imt dependence: 2− 3% for
mt = 172±1 GeV

I PDF dependence: 3%
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“Standard candle” processes: W, Z, tt̄ production

¥ Event rates for pp → W±X, pp → Z0X at the LHC can be
measured with accuracy δσ/σ ∼ 1% (tens of millions of
events even at low luminosity)

¥ These measurements will be employed to tightly constrain
PDF’s and monitor the LHC luminosity L in real time
(Dittmar, Pauss, Zurcher; Khoze, Martin, Orava, Ryskin; Giele, Keller’;...)

I other methods will initially give δL = 10− 20%

¥ tt̄ event rate can be potentially measured with accuracy
≈ 5%

Tevatron: the accuracy of luminosity monitoring in pp̄ elastic scattering is of
order 5%
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Cross section ratios

¥ LHC collaborations will normalize many cross sections σ to
the “standard candle” cross sections σsc (i.e., measure
r = σ/σsc)

I dependence on L and other systematics may cancel in r

I PDF uncertainties cancel in r for strongly correlated cross
sections; add up in anticorrelated cross sections

¥ Similar cancellations may occur in S/
√

B, asymmetries, etc.

It helps to find a correlated “standard candle” cross section for
each interesting LHC cross section

For example, it is better to normalize σHiggs to σZ (σtt̄) if σHiggs is
correlated (anticorrelated) with σZ
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A mini-poll: Z production at the LHC

Choose all that apply and select the x range

The PDF uncertainty in σZ is mostly due to...

1. u, d, ū, d̄ PDF’s
at x < 10−2 (x > 10−2)

2. gluon PDF
at x < 10−2 (x > 10−2)

3. s, c, b PDF’s
at x < 10−2 (x > 10−2)

Leading order

Z0
q̄

q e

ē

Next-to-leading order
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An inefficient application of the error analysis

Ì Compute σZ for 40 (now 44)
extreme PDF eigensets

Ì Find eigenparameter(s)
producing largest variation(s),
such as #9, 10, 30 0 2 4 6 8 10121416182022242628303234363840

PDF set number
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Σ
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t
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s=14 TeV; 40 CTEQ6.1 extreme PDF sets

Î It is not obvious how to relate abstract eigenparameters to
physical PDF’s u(x), d(x), etc.
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CTEQ6.6 theoretical framework
(Michigan State/Taiwan/Washington)

¥ A full NLO analysis (NNLO is nearly completed)

¥ 2700 data points from 35 experiments on DIS, Drell-Yan
process, jet production

¥ Recent improvements in treatment of heavy quark masses in
DIS, etc. (CTEQ6.5), with important impact on W, Z cross
sections

I a general-mass factorization scheme with full
dependence on mc,b

I free parametrization for strange quarks (constrained by CCFR,
NuTeV charged-current DIS data)
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CTEQ6.6 PDF’s
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¥ CTEQ6.6 u, d are above CTEQ6.1 by 2-4%

I The result of suppressed charm contribution to F2(x,Q) at
HERA in the general-mass scheme

¥ very different strange PDF’s
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Multi-dimensional PDF error analysis

aiai0

χ2
0

χ2

¥ Minimization of a likelihood
function (χ2) with respect
to ∼ 30 theoretical (mostly
PDF) parameters {ai} and
> 100 experimental
systematical parameters

I partly analytical and
partly numerical
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Multi-dimensional PDF error analysis

a
+
ia−

i aiai0

∆χ2

χ2
0

χ2

¥ Establish a confidence
region for {ai} for a given
tolerated increase in χ2
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Multi-dimensional PDF error analysis

ai

χ2

Pitfalls to avoid

¥ “Landscape”

I disagreements between
the experiments
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Multi-dimensional PDF error analysis

ai

χ2 Pitfalls to avoid

¥ Flat directions

I unconstrained
combinations of PDF
parameters

I dependence on the PDF
parametrization, free
theoretical parameters
(factorization scale, etc.)

Pavel Nadolsky (MSU) Southern Methodist University March 3, 2008 15



Multi-dimensional PDF error analysis

χ2

ai

The actual χ2 function shows

¥ a well pronounced global
minimum χ2

0

¥ weak tensions between
data sets in the vicinity of
χ2

0 (mini-landscape)

¥ some dependence on
assumptions about flat
directions
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Multi-dimensional PDF error analysis
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Correlation analysis for collider observables
(J. Pumplin et al., PRD 65, 014013 (2002); P.N. and Z. Sullivan, hep-ph/0110378)

A technique based on the Hessian method to relate the PDF
uncertainty in physical cross sections to PDF’s of specific flavors
at known (x, µ)

For 2N PDF eigensets and two cross sections X and Y :

∆X =
1

2

√√√√
N∑

i=1

(
X

(+)
i −X

(−)
i

)
2

cosϕ =
1

4∆X ∆Y

N∑

i=1

(
X

(+)
i −X

(−)
i

) (
Y

(+)
i − Y

(−)
i

)

X
(±)
i are maximal (minimal) values of Xi tolerated along the i-th PDF

eigenvector direction; N = 22 for the CTEQ6.6 set
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Correlation angle ϕ

Determines the parametric form of the X − Y correlation ellipse

X = X0 + ∆X cos θ

Y = Y0 + ∆Y cos(θ + ϕ)

δX

δY

δX

δY

δX

δY

cos ϕ ≈ 1 cos ϕ ≈ 0 cos ϕ ≈ −1

X0, Y 0: best-fit
values

∆X, ∆Y : PDF errors

cosϕ ≈ ±1 :
cosϕ ≈ 0 :

Measurement of X imposes
tight
loose

constraints onY
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Types of correlations

X and Y can be

¥ two PDFs f1(x1, Q1) and f2(x2, Q2)
(plotted as cosϕ vs x1 & x2)

¥ a physical cross section σ and PDF
f(x,Q) (plotted as cosϕ vs x)

¥ two cross sections σ1 and σ2
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Correlations between f1(x1, Q) and f2(x2, Q) at Q = 85 GeV

Figures from http://hep.pa.msu.edu/cteq/public/6.6/pdfcorrs/
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Correlations between f(x1, Q) and f(x2, Q) at Q = 85 GeV

u(x1, Q) vs. u(x2, Q)
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g(x1, Q) vs. g(x2, Q)
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Can you explain why the gluon correlation pattern looks so
different?
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Correlations between f(x1, Q) and f(x2, Q) at Q = 85 GeV

u(x1, Q) vs. u(x2, Q)
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¥ Momentum sum rule:

∫ 1

0
xg(x)dx +

Nf∑

i=1

∫ 1

0
x [qi(x) + q̄i(x)] dx = 1
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Correlations between f(x1, Q) and f(x2, Q) at Q = 85 GeV

u(x1, Q) vs. u(x2, Q)
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Correlation patterns look similar for g, c, b PDF’s
(no intrinsic charm here!)

c vs. c
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Correlations between f1(x1, Q) and f2(x2, Q) at Q = 85 GeV

d vs u
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s vs ū at Q=2 GeV
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Sometimes there is a clear physics reason behind the correlation
(e.g., sum rules, assumed Regge behavior, data constraints);
sometimes not
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Correlations between g(x1, 2 GeV) and g(x2, 85 GeV)
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because of DGLAP evolution
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Correlations between W, Z cross sections and PDF’s

Tevatron Run-2
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Correlations of Z and tt̄ cross sections with PDF’s

LHC Z, W cross sections are
strongly correlated with g(x), c(x),
b(x) at x ∼ 0.005

∴ they are strongly anticorrelated
with processes sensitive to g(x) at
x ∼ 0.1
(tt̄, gg → H for MH > 300 GeV)
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tt̄ vs Z cross sections at the LHC
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Measurements of σtt̄ and σZ probe the same (gluon) PDF
degrees of freedom at different x values
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Correlations between σ(gg → H0), σZ , σtt̄
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Other topics explored in the CTEQ6.6 paper

¥ Strong sensitivity of σZ/σW to the strangeness PDF and
σW+/σW− to uV − dV

¥ Potential role of σtt̄ as a standard candle observable

¥ Origin of PDF uncertainties in single-top production

¥ Correlation cosines for various Higgs production channels in
SM and MSSM
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LHC studies of electroweak symmetry breaking

P(x2; ~kT2)

P(x1; ~kT1)
S HH�
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¥ A new aspect: multi-scale factorization (resummation)
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Higgs sector in SM and MSSM
¥ Standard Model: 1 Higgs doublet, one scalar field H

I Direct search: mH > 114 GeV at 95% c.l.

I indirect: MH = 80+39
−28 GeV at 68% c.l.

¥ Minimal Supersymmetric Standard Model:
2 Higgs doublets; h0, H0, A0, H±

I mh ≤ mZ | cos 2β|+ rad. corr. . 135 GeV

¥ In these models, expect one or more Higgs bosons with mass
below 140 GeV

¥ Many other possibilities for EW symmetry breaking exist!
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Higgs sector in SM and MSSM
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¥ the goal of direct and indirect
measurements is to
over-constrain the Higgs sector in
SM, greatly constrain SUSY

¥ indirect constraints strongly
depend on MW , mt values,
hence require accurate QCD
predictions for W and t
production

For example, in SM
MW = 80.3827− 0.0579 ln

„
MH

100 GeV

«
− 0.008 ln2

„
MH

100 GeV

«

+0.543

 „
mt

175 GeV

«2

− 1

!
− 0.517

 
∆α

(5)
had(MZ)

0.0280
− 1

!
− 0.085

„
αs(MZ)

0.118
− 1

«

Pavel Nadolsky (MSU) Southern Methodist University March 3, 2008 29



pp → (H → γγ)X: resummation for signal and background
with Balazs, Berger, Yuan; PLB 635, 235 (2006); PRD 76, 013008 & 013009 (2007)
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Signal and background in H → γγ

¥ To find the narrow Higgs
resonance, it is useful to
understand differences between
fully differential distributions of the
Higgs signal and large QCD
background

¥ resummation is needed for
logarithmic corrections of several
types from all orders in αs

I e.g., αn
s lnk(QT /Q) at QT ¿ Q
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NNLL/NLO distributions for Higgs → γγ signal and
background (ResBos, normalized; MH = 130 GeV, 128 < Q < 132 GeV)
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Transverse energy distribution in H → γγ

¥ A typical γγ pair recoils
against many mini-jets with small
~kTi, rather than against a few
jets with large ~kTi

¥ leading mini-jet contributions
must be summed to all orders in
αs to obtain reliable predictions
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Overview of the resummation procedure

pp
_
 → γγX, √S = 1.96 TeV
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Overview of the resummation procedure

pp
_
 → γγX, √S = 1.96 TeV
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Overview of the resummation procedure

pp
_
 → γγX, √S = 1.96 TeV
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We include large-QT Xsection at NLO, resummed perturbative
coefficients up to three loops (NNLL)
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Resummation for gg + gq → γγX at O(α3
s)

1-loop 2 → 3 diagrams

¥ obtained in the helicity amplitude formalism
(Bern, Dixon, Kosower)

¥ checked against the “sector decomposition”
calculation (Binoth, Guillet, Mahmoudi, 2003)

¥ soft and collinear limits derived in the splitting
amplitude method (Bern, Chalmers, Dixon, Dunbar, Kosower;...)

¥ resummed to all orders in αs
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MW measurement at hadron colliders

¥ The Tevatron (LHC) collaborations intend to measure MW

with accuracy 15 MeV (5 MeV)

¥ Several theoretical factors contribute at this level of
accuracy

I NNLO QCD+NLO EW perturbative contributions

I PDF dependence
with Lai, Pumplin,Tung

I small-pT resummation
with Brock, Konychev, Landry, Yuan

I small-x effects
with Berge, Olness, Yuan

I dependence on mc,b
with Berge, Olness
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Small-x broadening of QT distributions

Complicated small-x dynamics may result in harder QT
distributions at the LHC than predicted by conventional CSS
resummation (Berge, PN, Olness, Yuan, 2004)

⇒ Consequences for MW measurement

        pp  →  Z0 X →  e+e− X  (√ S  = 14 TeV)
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Small-x broadening of QT distributions

New D0 measurements in pp̄ → (γ∗, Z)X (arXiv:0712.0803) provide first
constraints on the magnitude of small-x broadening
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Correlations between PDF’s and nonperturbative
pT function (Lai, P.N., Pumplin, Tung, Yuan, in progress)

The PDF dependence of the power-suppressed resummed
contribution to dσ/dQT is analyzed in a combined PDF+pT fit;
leads to a somewhat larger MW value extracted from the data
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Conclusions

¥ It is exciting to explore rich global connections between the
LHC cross sections and diverse domains of the Standard
Model

I to calibrate the LHC detectors, monitor LHC luminosity

I to explore new forms of QCD factorization (resummations)
and merge them with important EW contributions

I to precisely test the Standard Model, understand the EWSB
mechanism

I to impose limits on new physics parameters using hadron
collider data
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Compact Muon Solenoid as seen by BBC
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Compact Muon Solenoid as seen by BBC
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Credibility of LHC discoveries must be supported by dependable
numerical tools implementing a realistic theoretical framework

The phenomenological “Q Branch” that develops this framework
will be in a high demand for a long time

Ì
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Backup slides
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Tolerance hypersphere in the PDF space

(a)

Original parameter basis

(b)

Orthonormal eigenvector basis

zk

T
diagonalization and

rescaling by

the iterative method

ul

ai

2-dim (i,j) rendition of N-dim (22) PDF parameter space

Hessian eigenvector basis sets


aj
ul

p(i)

s0
s0

contours of constant c2
global 

ul: eigenvector in the l-direction

 p(i): point of largest ai with tolerance T

s0: global minimum
p(i)

zl

A hyperellipse ∆χ2 ≤ T 2 in space of N physical PDF parameters
{ai} is mapped onto a hypersphere of radius T in space of N
orthonormal PDF parameters {zi}
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Tolerance hypersphere in the PDF space

(b)

Orthonormal eigenvector basis

2-dim (i,j) rendition of N-dim (22) PDF parameter space

~∇X
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PDF error for a physical observable X is given by
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Tolerance hypersphere in the PDF space

(b)

Orthonormal eigenvector basis

2-dim (i,j) rendition of N-dim (22) PDF parameter space
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tt̄ production as a standard candle process

Uncertainties in σtt̄ for mt = 171 GeV

Type Current Projected Assumptions

Scale 11% ∼ 3− 5%? mt/2 ≤ µ ≤ 2mt

dependence (NLO) (NNLO+resum.)
PDF 2% 1%? 1σ c.l.

dependence
mt 5% < 3%

dependence δmt = 2 GeV δmt = 1 GeV

Total (theory) 12% ∼ 5%

Experiment 8% (CDF) 5%?

Measurements of σtt̄ with accuracy ∼ 5% may be within reach;
useful for monitoring of LLHC in the first years, normalization of
cross sections sensitive to large-x glue scattering
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Z, W , tt̄ cross sections and correlations

Table: Total cross sections σ, PDF-induced errors ∆σ, and correlation
cosines cos ϕ for Z0, W±, and tt̄ production at the Tevatron Run-2 (Tev2)
and LHC, computed with CTEQ6.6 PDFs.

√
s Scattering σ, ∆σ Correlation cos ϕ with

(TeV) process (pb) Z0 (Tev2) W±(Tev2) Z0 (LHC) W± (LHC)

pp̄ → (Z0 → `+`−)X 241(8) 1 0.987 0.23 0.33

1.96 pp̄ → (W± → `ν`)X 2560(40) 0.987 1 0.27 0.37

pp̄ → tt̄X 7.2(5) -0.03 -0.09 -0.52 -0.52

pp → (Z0 → `+`−)X 2080(70) 0.23 0.27 1 0.956

pp → (W± → `ν)X 20880(740) 0.33 0.37 0.956 1

14 pp → (W + → `+ν`)X 12070(410) 0.32 0.36 0.928 0.988

pp → (W− → `−ν̄`)X 8810(330) 0.33 0.38 0.960 0.981

pp → tt̄X 860(30) -0.14 -0.13 -0.80 -0.74
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Correlations with single-top cross sections

Table: Correlation cosines cosϕ between single-top, W, Z, and tt̄ cross
sections at the Tevatron Run-2 (Tev2) and LHC, computed with
CTEQ6.6 PDFs.

Single-top Correlation cos ϕ with

production channel Z0 (Tev2) W±(Tev2) tt̄ (Tev2) Z0 (LHC) W± (LHC) tt̄ (LHC)

t−channel (Tev2) -0.18 -0.22 0.81 -0.82 -0.79 0.56

t−channel (LHC) 0.09 0.14 -0.64 0.56 0.53 -0.42

s−channel (Tev2) 0.83 0.79 0.18 0.22 0.27 -0.3

s−channel (LHC) 0.81 0.85 -0.42 0.6 0.68 -0.33
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Correlations and ratio of W and Z cross sections
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PDF error band

Radiative contributions, PDF dependence have similar structure
in W, Z, and alike cross sections; cancel well in Xsection ratios
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σZ/σW at the LHC
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The remaining PDF uncertainty in σZ/σW is mostly driven by s(x);
increases by a factor of 3 compared to CTEQ6.1 as a result of
free strangeness in CTEQ6.6
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σ(W+)/σ(W−)
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σ(W+)/σ(W−) = 1.36 + 0.016 (CTEQ6.6), 1.36 (MSTW’06NNLO),
1.35 (MRST’04NLO)
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An example of a small correlation with the gluon
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¥ typical x ∼ 0.01

¥ mostly correlated with u, d
PDF’s

PDF uncertainties in W, Z total cross sections are irrelevant for
some quark scattering processes (single-top, Z ′, ...)
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cos ϕ for various NLO Higgs production
cross sections in SM and MSSM
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