CHARGES ON STRANGE QUARK NUGGETS IN SPACE

V. Teplitz, A. Bhatia (GSFC) E. Abers (UCLA), D. Dicus (U.T.) W. Repko (MSU), D. Rosenbaum (SMU)

Basic Idea/History

- Witten (1984): 3 quark flavors implies same P.E., but less K.E. by Pauli Principle
- Farhi and Jaffe find SQN B.E./q rises to asymptotic value as N=A/3 rises
- De Rujula and S. Glashow Identify bunch of methods of detecting SQNs
- Alcock, Farhi&Olinto address SQS as NS
- Alford, Rajagopal, Wilczek find pairing in SQNs

Production

- Primordial: depends on cooling by evaporation being less than cooling by neutrino emission and any other mechanisms
- Evap~M^{2/3}; neutrinos~M. M>10²⁰ gives enough v cooling, but there is diffusion prob.
- Collisions of SQS's from NS binaries

Selected Searches

TABLE I: Some Strange Quark Nugget Searches.

Experiment/Observation	Mass Range (g)	Result
AMS^a	$10^{-24} - 10^{-22}$	not done
RHIC^{a}	$< 3 \times 10^{-21}$	not found
Mica Tracks ^{b}	$10^{-20} - 10^{-14}$	$<< \rho_{DM}$
ICE $CUBE^c$	$10^{-3} - 10^{-2}$	not done
Seismometers:		
Future Lunar d	$10^3 - 10^6$	not done
$\operatorname{Apollo}^{e}$	$10^4 - 10^6$	$< \rho_{DM}/10$
USGS Reports ^{c}	$10^6 - 10^8$	$< \rho_{DM}$

Settings

TABLE II: Settings.

Location	Radiation Source		
	Extragalactic	Galactic	Solar
Extragalactic	$(1+z)T_0; CBR$	DBR	
Galactic	$z_{rec} > z \ge 0; \text{DBR}$	$r_{sc} > r > r_{bh}$	
Solar	$r > r_S; \text{DBR}$	$r > r_S$	$r > r_S$

SQN Structure

FIG. 1: Potential for least bound electron. FIG. 2: Approximation to potential for least bound electron.

Our Calculation

- Find Z_N such that rate ambient photons ionize SQN electrons =rate ambient e's replace them.
- LHS falls with increasing Z_N ; RHS rises.
- SQN radius $(r_N) < r_B/Z_N$: Coulomb;
- r_N>r_B/Z_N: electrons feel 2d potential and assume K.E.<<P.E.=Z_N α/r_N (conservative)

Rates

$$\dot{Z_{+}} = \pi b^2 \int_{Z_N e^2/r_N}^{\infty} dE N_{\gamma}(E)$$
$$[N_e(E_B < E) \sigma(\gamma + SQN \rightarrow e + SQN), 1]$$

$$\dot{Z}_{-} = \pi r_N^2 \int_{m_e - E_B}^{\infty} v_e(E) n_e(E) \left[1 + f_e(E, Z_N)\right]$$
$$h(E)g(e + SQN \to SQN + X, E) dE$$

$$f_e = 4\alpha \hbar c Z_N / (r_N E_e)$$

$$\pi b^2 c F_\gamma (E > E_B) = \pi r_N^2 n_e \bar{v}_e (1 + f_e)$$

Parameters

SQN Location	Radiation	n_e	$v_e/10^6$
Solar Xray Flare	$T = 10^3 \text{eV}$	7	50
Galaxy Center	DBR $N_{\gamma} = 1.5 \times 10^5 F_H$.05	8
IGM Today	DBR $N_{\gamma} = F_H$	4×10^{-9}	1
Quiet Sun	T = 0.5 eV	7	50
$\operatorname{IGM}\operatorname{Pre}\operatorname{Recombo}$	$\mathrm{CBR}\ T=0.26\ \mathrm{eV}$	5	30
DBR near sun	$N_{\gamma} = 15 F_H$	7	50
IGM Today	$\text{CBR}\ T = 2.75K$	4×10^{-9}	1

Results $Z_N(M)$

Results: Time to Reach Equilibrium

• IGM Today

COG

 SS at 1 AU and Univ at Recombo

Results: Binding Energies

Setting	$M^{1/3} \tau_{Eq}(\mathbf{y})$	$E_B(eV)$	$E_B(eV)$
		$M > 10^{-10} \mathrm{g}$	$10^{-21} { m g}$
Galactic Center	10^{-4}	39	330
IGM Today: DBR	4.4	26	240
Solar system:			
during X-ray flare	4.5×10^{-6}	3.8×10^4	4.2×10^4
from DBR	0.66		240
Quiet Sun	4.5×10^{-6}	14	18
Recombo with CBR	3.8×10^{-6}	9.5	12
Today from CBR	4.4	8.7×10^{-3}	0.012

Features of Results

- Shape of $Z_N(M)$ expected.
- IGM e-numbers chosen as geometric mean between complete and residual H-ionization.
- Largest Z_N is case of solar X-ray flare.
- Closed form

 $\pi b^2 c F_\gamma(E > E_B) = \pi r_N^2 n_e \bar{v}_e (1 + f_e)$

• Vacuum breakdown for B.E.>2m(el)

Particle Detectors

 $dN_{ev}/dt = n_{SQN} v_{SQN} A$

- Let N(SQN)=ρ(DM)/M; get Aτ/M~10¹⁷
- Note expect primordial M~10²⁴g
- If "lucky," could have shower of SQNs from
 - SQS-SQS collision

Absorption and Emission Lines and Edges

- Explosive events could give trifecta: gamma absorption for E>2m(e); emission at 2m(e); and emission at m(e-) from e+ production.
- There are questions of e+ production in COG, and of pair instability Sne. SQM roles possible
- Possible detection of SQN emission line from e- capture during X-ray flare needs estimate.

Early Universe Effects

- CMB effects such as possible oscillations of Debye cloud around primordial SQNs??
- Entropy prod'n: gamma+SQN->2gamma+SQN?
- SQN catalysis of molecular hydrogen formation before pop III stars?

Summary and Future Work

- Have calculated Z_N, t(eq) and B.E. for 7 settings in limits of SQN radius greater or less than Bohr radius divided by Z_N.
- Need look at transition region.
- Need see if any of effects cited are detectable.

BACKUP

SQM problems

- SQS as NS: pulsar glitches; superburst QPOs.
- Negative results of terrestrial, lunar searches.
- Primordial production seems precluded by neutrino diffusion nixing inhomogeneities

Lunar seismic monitoring network

Figure shows signals from a quake (point event) at the SQN entry point would have signal first arrival times t2<t1<t3<t4<t5.

For a SQN with speed much greater than that of sound, first arrival times would have t4<t2<t5<t1<t3.

- Alcock, C., Fahri, E., and Olinto, A., 1986, Astrophys. J. 310
- Alford, M., Rajagopal, K. & Wilczek, F. 1998, Phys. Lett 422, 247 (Cooper pairs)
- Anderson, D.P., Herrin, E.T., Teplitz, V.L. & Tibuleac, I.M. 2003, Bull. Seis. Soc. of
 - Am. 93, 2363 (USGS seismic reports search)
- Banerdt, W.B., Chui, T., Herrin, E.T., Rosenbaum, D. & Teplitz, V.L., 2004, IDM 2004: 5th International Workshop on the Identification of Dark Matter, World Scientific: Edinburgh, 581 (Earth-Moon comparison)
- Chodos, A. et al. 1974, Phys. Rev D9, 3471 (MIT Bag Model)
- de Rujula, A. \& Glashow, S. 1984 Nature: London 312, 734 (SQN

phenomenology)

- Farhi, E. \& Jaffe, R.L. 1984, Phys. Rev. D30, 2379 (SQM nuclear physics)
- Herrin, E.T., Rosenbaum, D.C. & Teplitz, V.L. 2006, Phys. Rev. D73 043511 (SQN limits)
- Herrin, E.T. \& Teplitz, V.L. 1996, Phys. Rev. D 53 6762 (SQN Monte Carlo)
- Price, P.B., Shirk, E.K. W.Z. Osborne, & Pinsky, L.S. 1988, Phys. Rev. D3813 (Mica) Sandweiss, J. 2004, J. Phys. G30, 551 (AMS)
- Spiering, C. 2001, Proceedings of ICRC2001: 1242 (Ice Cube)
- Witten, E. 1984, Phys. Rev D 30, 279 K. 1979 (Seminal SQM paper)