

A search for baryon and lepton number violation in *B* decays using the BaBar dataset <u>SMU HEP Seminar</u> Southern Methodist University

M. Bellis

Stanford University

March 7th, 2011

OUTLINE

MOTIVATION

2 BABAR

- **3** Analysis overview
 - Blind analysis
 - Candidate selection
 - Fitting procedure
 - Results
 - Summary

OUTLINE

MOTIVATION

2 BABAR

- Blind analysis
- Candidate selection
- Fitting procedure
- Results
- Summary

<ロ> <同> <同> < 同> < 同>

• Our universe is matter...not anti-matter.

Image: A mathematical states of the state

.∋...>

- Our universe is matter...not anti-matter.
- t = early universe:
 - matter = anti-matter

< □ > < 🗇 >

- Our universe is matter...not anti-matter.
- t = early universe:
 - matter = anti-matter
- t = now:
 - matter \neq anti-matter
- How do we know?
 - Cosmic ray's are mostly matter.
 - γ-ray spectrum.
- Universe is compartmentalized?
 - Very difficult theoretically.

- Andrei Sakharov (1967)
- "Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe."
- Three conditions required for matter (baryon) asymmetry. [1]

- Andrei Sakharov (1967)
- "Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe."
- Three conditions required for matter (baryon) asymmetry. [1]
 - Early universe is out of thermal equilibrium.
 - Rate for $\psi_{B=0} \rightarrow \psi_{B\neq 0}$ is different than for $\psi_{B\neq 0} \rightarrow \psi_{B=0}$.
 - The universe is cooling!

- Andrei Sakharov (1967)
- "Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe."
- Three conditions required for matter (baryon) asymmetry. [1]
 - Early universe is out of thermal equilibrium.
 - Rate for $\psi_{B=0} \rightarrow \psi_{B\neq 0}$ is different than for $\psi_{B\neq 0} \rightarrow \psi_{B=0}$.
 - The universe is cooling!
 - 2 C and CP-violation
 - Decay rates are different for *matter* and *anti-matter*.

- Andrei Sakharov (1967)
- "Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe."
- Three conditions required for matter (baryon) asymmetry. [1]
 - Early universe is out of thermal equilibrium.
 - Rate for $\psi_{B=0} \to \psi_{B\neq 0}$ is different than for $\psi_{B\neq 0} \to \psi_{B=0}$.
 - The universe is cooling!
 - 2 C and CP-violation
 - Decay rates are different for matter and anti-matter.
 - 8 Baryon number violation
 - Implies sum of baryons + anti-baryons is a non-conserved quantity.
- Let's look at these last two...

DIRECT CP-VIOLATION

• Direct CP-violation • $B^0 \rightarrow K^+\pi^-$ • $\bar{B}^0 \rightarrow K^-\pi^+$

< □ > < 同 > < 三 >

BNV 6 / 95

- ∢ ⊒ →

DIRECT CP-VIOLATION

- Direct CP-violation
 - $B^0 \rightarrow K^+ \pi^-$ • $\bar{B}^0 \rightarrow K^- \pi^+$
- Decay rates are different!
- $A_{CP} \approx -0.1$
- Sakharov condition # 2!

- Baryon number violation actually *does* exist in the Standard Model.
 - Sphaleron, a non-perturbative process.
 - Occurs at very high temperatures. T = 100GeV. $(10^{15}$ K)
 - Only found immediately after the big bang.
- Sakharov condition # 3!

- Does this predict our asymmetric universe?
 - B for baryon
 - $B + \overline{B}$ annihilations in the early universe produced photons.
 - Asymmetry parameter (η) .

$$\eta = rac{N_B - N_{ar{B}}}{N_{\gamma}} \ pprox 10^{-9}$$

< 日 > < 同 > < 三 > < 三 >

- Does this predict our asymmetric universe?
 - B for baryon
 - $B + \overline{B}$ annihilations in the early universe produced photons.
 - Asymmetry parameter (η) .

$$\eta = \frac{N_B - N_{ar{B}}}{N_{\gamma}}$$
 $\approx 10^{-9}$

 Combination of observed CP-violation and and theoretical BNV in Standard Model is insufficient by 10 orders of magnitude!!!

- Does this predict our asymmetric universe?
 - B for baryon
 - $B + \overline{B}$ annihilations in the early universe produced photons.
 - Asymmetry parameter (η) .

$$\eta = \frac{N_B - N_{\bar{B}}}{N_{\gamma}}$$
 $\approx 10^{-9}$

- Combination of observed *CP*-violation and and theoretical BNV in Standard Model is insufficient by 10 orders of magnitude!!!
- Additional CP violation? Much work out there...no smoking gun.
- Additional BNV?
- 1974, "Unity of All Elementary Particle Forces.", Georgi and Glashow
 - Proton decay mediated by heavy bosons (X & Y) which couple to *quarks* and *leptons*.
- Many Grand Unified Theories ⇒ BNV
- How would proton decay work?

< 日 > < 同 > < 三 > < 三 >

PROTON DECAY

- X is $q = \frac{1}{3}$ • X $\rightarrow q + q$ • X $\rightarrow q + \ell$
- B-L is conserved quantity.

PROTON DECAY

- X is $q = \frac{1}{3}$ • X $\rightarrow q + q$ • X $\rightarrow q + \ell$
- B-L is conserved quantity.
- Hypothesize a flavour/generation dependance to this interaction...
 - $B^0 \rightarrow \Lambda_c^+ \ell^-$ • $B^+ \rightarrow \Lambda^0 \ell^+$

•
$$\ell = \mu$$
 or ϵ

$$\begin{pmatrix} \mathsf{X}_{u\bar{d}} & \mathsf{X}_{c\bar{d}} & \mathsf{X}_{t\bar{d}} \\ \mathsf{X}_{u\bar{s}} & \mathsf{X}_{c\bar{s}} & \mathsf{X}_{t\bar{s}} \\ \mathsf{X}_{u\bar{b}} & \mathsf{X}_{c\bar{b}} & \mathsf{X}_{t\bar{b}} \end{pmatrix}$$
$$\begin{pmatrix} \mathsf{X}_{\bar{u}e^-} & \mathsf{X}_{c\bar{e}^-} & \mathsf{X}_{\bar{t}e^-} \\ \mathsf{X}_{\bar{u}\mu^-} & \mathsf{X}_{\bar{c}\mu^-} & \mathsf{X}_{\bar{t}\mu^-} \\ \mathsf{X}_{\bar{u}\tau^-} & \mathsf{X}_{\bar{c}\tau^-} & \mathsf{X}_{\bar{t}\tau^-} \end{pmatrix}$$

HISTORY

- Experimental work
 - Proton lifetime $> 10^{32}$ years!
 - Tevatron and HERA searches for "true" leptoquarks [2].
 - *M* Mass of the mediating leptoquark (X-boson)
 - λ Yukawa coupling

HISTORY

- Experimental work
 - Proton lifetime > 10³² years!
 - Tevatron and HERA searches for "true" leptoquarks [2].
 - *M* Mass of the mediating leptoquark (X-boson)
 - λ Yukawa coupling
- Theoretical work
 - "Baryon number violation involving higher generations.", Hou, et.al.[3]
 - Uses proton decay to constrain upper limits.
 - $\mathcal{B}(B^0) \rightarrow \Lambda_c^+ \ell^- < 4 imes 10^{-29}$
 - "Despite our findings, we believe it is still worth to look for BNV processes in τ, charm, B, and maybe in the future in top decays."
- This analysis is the first search for $B \to \Lambda_{(c)} \ell$ decays.

BNV 10 / 95

$$\ell = \mu \text{ or } e$$

 \rightarrow

$$B^0 \rightarrow \Lambda_c^+ \ell^-$$

M. Bellis Mar. 2011

 $\ell = \mu \text{ or } e$ $B^0 \rightarrow \Lambda_c^+ \ell^ \rightarrow \qquad e^- e^+$

<ロト <部ト < 注ト < 注ト

≣▶ ≣ ৩৭৫ BNV 11/95

 $\ell = \mu \text{ or } e$

 \rightarrow

 $\rightarrow \Lambda_c^+ \ell^-$

 B^0

 $e^ B^0$ e^+

イロト イ団ト イヨト イヨト

 $\ell = \mu \text{ or } e$ $B^{0} \rightarrow \Lambda_{c}^{+} \ell^{-}$ $\rightarrow \qquad e^{-} \qquad e^{+}$ $\overline{B^{0}} \qquad e^{+}$

<ロト <部ト < 注ト < 注ト

 $\ell = \mu \text{ or } e$ $B^{0} \rightarrow \Lambda_{c}^{+} \ell^{-}$ $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$ e

BNV IN B DECAYS

 $\ell = \mu \text{ or } e$ $\begin{array}{rcl} B^0 & \to & \Lambda_c^+ \ell^- \\ & & \Lambda_c^+ \to p K^- \pi^+ \end{array}$ e^{-} $B^ \begin{array}{ccc} B^{-} & \rightarrow & \Lambda^{0}\ell^{-} \\ & & \Lambda^{0} \rightarrow p\pi^{-} \end{array}$ $B^- \rightarrow \overline{\Lambda^0 \ell^-}$

$$ar{\Lambda^0} o ar{m{
ho}} \pi^-$$

■ ► ■ つへの BNV 11/95

• • = • • = •

- Experimental requirements:
 - Cleanly identify 4 charged particles.
 - Demonstrate they came from a *B* meson.

-

OUTLINE

Motivation

- Blind analysis
- Candidate selection
- Fitting procedure
- Results
- Summary

<ロ> (日) (日) (日) (日) (日)

SLAC AND BABAR

SLAC AND BABAR

SLAC AND BABAR

Image: A matrix and a matrix

BABAR

- BaBar at SLAC
- 1999-2008

BABAR

- BaBar at SLAC
- 1999-2008
- PEP-II asymmetric e^+e^- collider

 - Ran on $\Upsilon(4S)$ Instantaneous $\mathcal{L} = 10^{-34} \text{ cm}^{-2} \text{ s}^{-1}$

< 日 > < 同 > < 三 > < 三 >

• 1 billion *B* mesons

BABAR

- BaBar at SLAC
- 1999-2008
- PEP-II asymmetric e^+e^- collider
 - Ran on $\Upsilon(4S)$
 - Instantaneous $\mathcal{L} = 10^{-34} \text{ cm}^{-2} \text{ s}^{-1}$
- 1 billion B mesons
- Backgrounds (or other physics!)
 - $e^+e^- \rightarrow u\bar{u}/d\bar{d}/s\bar{s}/c\bar{c}$ • $e^+e^- \rightarrow e^+e^-/\mu^+\mu^-/\tau^+\tau^-$
- 400+ papers and counting.
- Excellent momentum and spatial resolution.

< □ > < (型 >)

PAIR PRODUCTION

M. Bellis Mar. 2011
BABAR

- Sophisticated particle ID.
- Inner silicon vertex detector.
 - Energy, spatial position (momentum)
- Drift chambers.
 - Energy, momentum
- Cerenkov detector (DIRC)
 - Velocity $(\pi/K \text{ ID})$
- Muon detection in outer region
 - Timing, spatial position
- All fed into a neural net algorithm.
- Gives analysts 6 levels.
 - For each particle type (e, μ, p, π, K)
 - Vary purity/efficiency.
 - Function of kinematics.

 π efficiency

Selector : SuperLooseKMPionMicroSelection

Dataset : run6-r24c

Tables created on 4/2/2009 (Data) , 4/2/2009 (MC)

 π efficiency

K contamination

BNV 18 / 95

 π efficiency

K contamination

 π efficiency

K contamination

OUTLINE

1 Motivation

2 BABAR

- Blind analysis
- Candidate selection
- Fitting procedure
- Results
- Summary

< ロ > < 同 > < 回 > < 回 >

- Unbinned extended likelihood fit.
- Fit using appropriate kinematic variables.

< 日 > < 同 > < 三 > < 三 >

- Unbinned extended likelihood fit.
- Fit using appropriate kinematic variables.
- B mass

Signal process (Monte Carlo)

All background processes (Monte Carlo)

- Unbinned extended likelihood fit.
- Fit using appropriate kinematic variables.
- B mass

•
$$m_{ES} = \sqrt{\frac{1}{4}s - (p_B^*)^2}$$

Signal process (Monte Carlo)

All background processes (Monte Carlo)

20 / 95

M. Bellis Mar. 2011

- Unbinned extended likelihood fit.
- Fit using appropriate kinematic variables.
- B mass

•
$$m_{ES} = \sqrt{\frac{1}{4}s - (p_B^*)^2}$$

•
$$\Delta E = E_B^* - \frac{1}{2}\sqrt{s}$$

Signal process (Monte Carlo)

All background processes (Monte Carlo)

BNV 20 / 95

- Unbinned extended likelihood fit.
- Fit using appropriate kinematic variables.
- B mass
- $m_{ES} = \sqrt{\frac{1}{4}s (p_B^*)^2}$
- $\Delta E = E_B^* \frac{1}{2}\sqrt{s}$
- Discriminating power in 2D plane.
- Signal region is blinded in data analysis!

All background processes (Monte Carlo)

Our blind data

- Blind searches
 - Taken from Roodman, "Blind analysis in particle physics" [4]

< ロ > < 同 > < 回 > < 回 >

Cut Value

э

22 / 95

- Blind searches
 - Taken from Roodman, "Blind analysis in particle physics" [4]
- Experimenter's bias.

< ロ > < 同 > < 回 > < 回 >

Cut Value

э

22 / 95

- Blind searches
 - Taken from Roodman, "Blind analysis in particle physics" [4]
- Experimenter's bias.
- Medical field: double blind trials.
- Electron *e*/*m*, Dunnington (1933)

< □ > < 同 >

Cut Value

э

22 / 95

< E

- Blind searches
 - Taken from Roodman, "Blind analysis in particle physics" [4]
- Experimenter's bias.
- Medical field: double blind trials.
- Electron *e*/*m*, Dunnington (1933)
- History of measurements?

Figure 2: A historical perspective of values of a few particle properties tabulated in this *Review* as a function of date of publication of the *Review*. A full error bar indicates the quoted error; a thick-lined pertion indicates the same but without the "scale factor."

22 / 95

- Blind searches
 - Taken from Roodman, "Blind analysis in particle physics" [4]
- Experimenter's bias.
- Medical field: double blind trials.
- Electron e/m, Dunnington (1933)
- History of measurements?
- How do you guard against this?
- Don't look!

Figure 2: A historical perspective of values of a few particle properties tabulated in this *Review* as a function of date of publication of the *Review*. A full error bar indicates the quoted error; a thick-lined pertion indicates the same but without the "scale factor."

22 / 95

- Hidden signal box.

 - $K_L^0 \rightarrow \mu^{\pm} e^{\mp}$ Ariska, **PRL 70**, 1993

- Hidden signal box.

 - $K_L^0 \rightarrow \mu^{\pm} e^{\mp}$ Ariska, **PRL 70**, 1993
- Kinematics dictates region of interest.

э

- Hidden signal box.

 - $K_L^0 \rightarrow \mu^{\pm} e^{\mp}$ Ariska, **PRL 70**, 1993
- Kinematics dictates region of interest.
- Other approaches: hidden answer, ۰ random noise.

CDMS (2009), dark matter search

Image: A matrix and a matrix

э

ANALYSIS OVERVIEW

- Full dataset (435 fb⁻¹)
 - Constrain vertex of B candidate.
 - Mass/vertex constrain Λ_c/Λ^0 candidate.
- Optimize PID selectors.
- Multivariate discriminator.
 - TMVA.
 - Input variables.
 - Choice of background sample.
 - Check for correlations with ΔE and m_{ES} .
- Check for fit bias.
- Fit the unblinded data.

- Punzi figure of merit.
 - Strike a balance between setting upper limit for null results and observation of a small signal.

f.o.m. =
$$\frac{\epsilon_S}{\sqrt{B} + a/2}$$

- a is the significance (sigma) at which you want to make a final claim.
 - For this analysis, a = 5.
- ϵ_S is the efficiency of the signal.
- Don't need to know S (cross section), but we do need an idea of B (background).

- During optimization, make extensive use of MC samples.
- GEANT4 simulation of the detector.
- Simulated signal events (assume no polarization of (Λ_(c))
- Background samples.
- qā
 - $u\bar{u}/d\bar{d}/s\bar{s}/c\bar{c}$
- *BB*
 - B⁺B⁻
 - *B*⁰*B*^{¯0}
- All generics
 - $q\bar{q} + B\bar{B}$ (weighted by relative cross sections)

27 / 95

BHABBA LEAKAGE

- Leakage from Bhabba events.
- Eliminated by requiring # charged tracks > 4.

FIGURE: |p| vs. $\cos(\theta)$ for the π^- coming from the Λ^0 candidate.

PID

- Optimize PID for kinematics.
- e.g. $\Lambda_c^+ \to p K^- \pi^+$
- Loosest PID

PID

- Optimize PID for kinematics.
- e.g. $\Lambda_c^+ \to p K^- \pi^+$
- Loosest PID
- Some set of PID criteria.

PID

- Optimize PID for kinematics.
- e.g. $\Lambda_c^+ \to p K^- \pi^+$
- Loosest PID
- Some set of PID criteria.
- Use Λ⁺_c efficiency and background rejection to optimize selection.

• PID selectors optimized for this signal.

(a) Signal significance for the 216 PID selector combinations.

FIGURE: Optimization criteria for the PID selectors for the $B \rightarrow \Lambda_c^+ \mu$ mode.

PARTICLE ID

- Λ: cτ = 7.89 cm
- Pristine Λ^0 candidates after transverse flight length > 0.2cm.

FIGURE: Invariant mass of the Λ^0 candidate vs. the transverse flight length

TRAINING VARIABLES

- Explored multivariate discriminators.
- TMVA implementaion.
 - Toolkit for Multivariate Data Analysis with ROOT.
 - http://tmva.sourceforge.net/
- Pruned discriminating variables to most sensitive that did not have high correlations with $\Delta E/m_{ES}$.
- Six variables.
 - B cos(θ) CM
 - $B \cos(\theta)$ sphericity wrt ROE sphericity
 - $B \cos(\theta)$ thrust wrt ROE thrust
 - Legendre P2 (historical name)
 - Moments
 - Use ROE tracks, and B-thrust axis
 - Thrust all
 - R2 all
 - Ratio of Fox-Wolfram moments (0 and 2)

▶ < ∃ >

TRAINING VARIABLES (DATA AND MC)

Comparison between signal MC and $q\bar{q}$ MC.

 $\Lambda_c \mu^-$

→ Ξ → → Ξ →

Image: Image:

- Checked correlations with ΔE and m_{ES} .
 - Bootstrap method used to estimate significance of correlation coefficient.
 - Numerical procedure to estimate some estimator.
 - When you only have one data sample.
 - Originally applied to calculating the error of a correlation coefficent!
- Wound up using only 4 of the variables for Λ^0 modes.
- Orthogonally, checked discrimination power using $q\bar{q}$ MC or $q\bar{q} + B\bar{B}$ MC as background training sample.
Bootstrap method

- Efron (1982)
- Numerical procedure to estimate some *estimator*.
- When you only have *one* data sample.
- Originally applied to calculating the error of a correlation coefficent!
- How does it work?

- Given some dataset, \vec{x} , of size *n*.
- Need error of some characteristic of that dataset: $\hat{\rho}$

- Given some dataset, \vec{x} , of size *n*.
- Need error of some characteristic of that dataset: $\hat{\rho}$
- Sample from original dataset to create multiple (1000) datasets of *n* entries.
 - $\vec{x} = (0, 1, 2, 3, 4)$

3 🕨 🖌 🖻

- Given some dataset, \vec{x} , of size *n*.
- Need error of some characteristic of that dataset: ρ̂
- Sample from original dataset to create multiple (1000) datasets of *n* entries.

•
$$\vec{x} = (0, 1, 2, 3, 4)$$

• $\vec{x}_0 = (4, 4, 0, 2, 3)$

- $\vec{x}_1 = (1, 4, 3, 4, 0)$
- $\vec{x}_2 = (3, 4, 2, 1, 4)$
- :

3) (3)

- Given some dataset, \vec{x} , of size *n*.
- Need error of some characteristic of that dataset: $\hat{\rho}$
- Sample from original dataset to create multiple (1000) datasets of *n* entries.

•
$$\vec{x} = (0, 1, 2, 3, 4)$$

• $\vec{x}_0 = (4, 4, 0, 2, 3)$
• $\vec{x}_1 = (1, 4, 3, 4, 0)$
• $\vec{x}_2 = (3, 4, 2, 1, 4)$
• \vdots

- For each dataset, calculate it's own $\hat{\rho}^*$.
- Use this distribution to quote a confidence interval (95% in upcoming examples)

CORRELATION COEFFICIENTS

Look in regions of $\Delta E/m_{ES}$ plane.

-

Image: A matrix and a matrix

CORRELATION COEFFICIENTS

Look in regions of $\Delta E/m_{ES}$ plane.

- Red region of histogram shows 95% confidence interval.
- Black solid line shows value of correlation coefficient for original dataset.
- Blue dashed line is at 0.

э

SUMMARY OF CORRELATION COEFFICIENTS

Decay Mode	Training sample	# vars.	Region 1	Region 2	Region 3
$\Lambda_c^+ \mu^-$	qq	6	(-0.09, 0.02)	(-0.11, 0.01)	(0.07, 0.18)
$\Lambda_c^+ e^-$	$q\bar{q}$	6	(-0.11, 0.03)	(-0.19,-0.07)	(-0.02, 0.11)
$\Lambda^0 \mu^-$	qq	4	(-0.18,-0.02)	(-0.28,-0.12)	(0.07, 0.23)
$\Lambda^0 e^-$	qq	4	(-0.09, 0.08)	(-0.00, 0.15)	(-0.03, 0.16)
$\bar{\Lambda^0}\mu^-$	qq	4	(0.02, 0.15)	(-0.07, 0.07)	(-0.24,-0.11)
$\overline{\Lambda^0}e^-$	qq	4	(-0.12, 0.11)	(-0.25,-0.02)	(-0.26,-0.04)

TABLE: Confidence intervals of correlation coefficients for different modes/regions. Red intervals are inconsistent with 0

Doesn't appear to be able to create a peak!

- Summary of MVA studies.
 - Used MLP neural net implementation in TMVA
 - Used $q\bar{q}$ MC as background training sample.
 - Optimized cut on neural net output for $\Lambda^0\ell$ modes.
 - Loose cut (90% signal efficiency) for $\Lambda_c^+ \ell$ modes.
 - Will include in fit as third variable in fit for $\Lambda_c^+ \ell$ modes.

TABLE: Remaining events after all cuts for each decay mode for both fitting region (still blinded) and estimated signal region.

Decay Mode	Fitting region	Signal region		
$\Lambda_c^+\mu^-$	900	18-25		
$\Lambda_c^+ e^-$	700	14-20		
$\Lambda^0 \mu^-$	350	7-10		
$\Lambda^0 e^-$	220	5-8		
$\bar{\Lambda^0}\mu^-$	220	5-8		
$\overline{\Lambda^0}e^-$	80	1-3		

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FITS

Unbinned extended maximum likelihood method.

$$\mathcal{L} = \frac{e^{-\nu}\nu^n}{n!} \times \prod_i^n \mathcal{P}(\vec{x}, \vec{k})$$

• PDF $\mathcal{P}(\vec{x}, \vec{k})$ provided for signal and background.

- Conversion factor (F) turns number of signal events into branching fraction (B).
 - $\mathcal{B}(B \to \Lambda \ell) = n_{\mathrm{sig}}/\mathcal{F}$

• We include a Gaussian constraint on conversion factor than incorporates systematic errors.

- Takes into account asymmetric errors.
- Incorporates systematics into the upper limit calculation.

$$LH = \frac{(\mathcal{F} - \mathcal{F}_{fit})^2}{2\sigma_{\mathcal{F}}^2} - \sum_i^n \ln \mathcal{L}$$

< 日 > < 同 > < 三 > < 三 >

m_{ES}

- Signal PDF: Crystal Ball function.
- Background PDF: Argus function.
- ΔΕ
 - Signal PDF: Double Crystal Ball function. Constrained to have the same mean.
 - Background PDF: Linear function.
- *NN* output (only in Λ_c fits)
 - Signal PDF: RooKeysPdf. Adaptive kernel estimation.
 - Background PDF: Crystal Ball function.

PDF DESCRIPTIONS

FIGURE: $\Lambda_c \mu$ decay mode. Fits to the signal and generic MC.

$$\mathcal{B}(\mathcal{B}
ightarrow \mathrm{baryon} + \mathrm{lepton}) = rac{N_{\mathrm{sig}}}{\epsilon_{\mathrm{sig}} imes \mathcal{B}_{\mathrm{baryon}} imes N_{Bar{B}} imes 2.0 imes \mathcal{B}_{\mathrm{neut./chgE}}}$$

- N_{sig}: The number of signal events.
- ϵ_{sig} : Signal reconstruction efficiency.
- \mathcal{B}_{baryon} : Baryon branching fraction.
- N_{BB}: The number of BB pairs.
- $\mathcal{B}_{neut./chgB}$: The branching fraction of the $\Upsilon(4S)$ to either a charged or neutral $B\overline{B}$ pair.

$\operatorname{TABLE:}$ Contributions to the systematic uncertainty on the branching fraction.

			Decay i	mode		
Contribution	$\Lambda_c^+ \mu$	$\Lambda_c^+ e$	$\Lambda^{0}\mu$	$\Lambda^0 e$	$ \bar{\Lambda}^0 \mu$	$ \overline{\Lambda}^0 e$
B counting (%)	0.28	0.28	0.28	0.28	0.28	0.28
Charged/neutral B's (%)	1.24	1.24	1.24	1.24	1.24	1.24
Efficiency (MC stat.) (%)	0.33	0.33	0.30	0.30	0.30	0.30
$\Lambda_{(c)}$ Branching fraction (%)	26.00	26.00	0.78	0.78	0.78	0.78
Tracking eff. (%)	0.50	0.50	0.38	0.38	0.38	0.38
PID eff. (%)	2.70	2.10	2.50	1.70	2.50	1.70
Total (%)	26.21	26.16	3.05	2.54	3.02	2.49

(日)

UPPER LIMIT CALCULATION

- Perform likelihood scan as function of \mathcal{B} .
- Integrate under the curve *above* $\mathcal{B} = 0$.
- Interpret \mathcal{B} at 90% of the area above 0 as upper limit.
- Define \mathcal{B}_{best} be the best solution for the branching fraction.

$$\begin{aligned} \Delta \mathcal{L} &= \ln \mathcal{L}(\mathcal{B}_{\text{best}}) - \ln \mathcal{L}(\mathcal{B}) \\ y &= e^{\Delta \mathcal{L}} \end{aligned}$$

SIGNIFICANCE OF SIGNAL

- Use ratio of likelihoods.
- Best \mathcal{B} and $\mathcal{B} = 0$.

$$\sigma = \sqrt{2 \cdot (\ln \mathcal{L}(\mathcal{B}_{\text{best}}) - \ln \mathcal{L}(\mathcal{B}_{0}))}$$

-∢≣⇒

< 口 > < 同

TOY STUDIES

- Ran 100k's of toy studies to determine *bias* and *sensitivity*.
- Can run 1000 toy studies at a given branching fraction.
- Count what % show a 3σ , 4σ or 5σ observation.

- Summary of toy studies.
 - Possible bias?
 - Negligible, less than errors on yield.
 - Sensitivity to a 5σ discovery

$$egin{array}{lll} \mathcal{B}(B o \Lambda_c \ell) &pprox & 400 imes 10^{-8} \ \mathcal{B}(B o \Lambda^0 \ell) &pprox & 25 imes 10^{-8} \end{array}$$

< 日 > < 同 > < 三 > < 三 >

FITTING PROCEDURE

Simulated data

 $\ensuremath{\operatorname{Figure:}}$ Figure: Fit to simulated data

 $B \to \Lambda_c^+ \mu^-$

BNV 51 / 95

 $B
ightarrow \Lambda_c^+ e^-$

 $B
ightarrow \Lambda^0 \mu^-$

 $B\to \Lambda^0 e^-$

 $B
ightarrow ar{\Lambda}^0 \mu^-$

 $B
ightarrow ar{\Lambda}^0 e^-$

BNV 56 / 95

TABLE: Upper limits on branching fractions at 90% confidence level for the six decay modes.

Decay mode	Upper limit		
$B^0 ightarrow \Lambda_c^+ \mu$	$170 imes 10^{-8}$		
$B^0 o \Lambda_c^+ e$	$500 imes 10^{-8}$		
$B^- o \Lambda^0 \mu$	$6.0 imes10^{-8}$		
$B^- ightarrow \Lambda^0 e$	$8.2 imes10^{-8}$		
$B^- ightarrow ar{\Lambda}^0 \mu$	$6.3 imes10^{-8}$		
$B^- ightarrow ar{\Lambda}^0 e$	$3.1 imes10^{-8}$		

Most signifcant branching fraction:

$$\mathcal{B}(B^0 \to \Lambda_c^+ e^-) = (190^{+130}_{-94}) \times 10^{-8} \text{ at } 2.4\sigma$$

글 🕨 🖌 글

Image: A matrix and a matrix

- Interesting physics analysis.
- Submitted to PRD-RC.

- Interesting physics analysis.
- Submitted to PRD-RC.
- Similar analysis still left to be done.
- Much more physics left in BaBar dataset!

-

- Interesting physics analysis.
- Submitted to PRD-RC.
- Similar analysis still left to be done.
- Much more physics left in BaBar dataset!
- Thanks for your time!

-

- A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. **5**, 32 (1967) [JETP Lett. **5**, 24 (1967 SOPUA,34,392-393.1991 UFNAA,161,61-64.1991)].
- K. Nakamura [Particle Data Group], J. Phys. G 37, 075021 (2010).
- W. S. Hou, M. Nagashima and A. Soddu, Phys. Rev. D 72, 095001 (2005).

A. Roodman, [physics/0312102]. HEP :: Search :: Help Powered by Invenio v1.0.0-rc0+ Problems/Questions to feedback@inspirebeta.net

Backup slides

M. Bellis Mar. 2011

BNV 60 / 95

▲ 伊 ▶ ▲ 三 ▶

• Pruned discriminating variables to most sensitive that did not have high correlations with $\Delta E/m_{ES}$.

▶ ∢ ⊒ ▶

61 / 95

- Six variables.
 - *B* cos(*θ*) CM
 - $B \cos(\theta)$ sphericity wrt ROE sphericity
 - $B \cos(\theta)$ thrust wrt ROE thrust
 - Legendre P2
 - Legendre moments
 - Use ROE tracks, and B-thrust axis
 - Thrust all
 - R2 all
 - Ratio of Fox-Wolfram moments (0 and 2)
 - Whole event variables.
 - Both charged and neutral tracks.

OVERTRAINING TEST

- For one mode $(\overline{\Lambda^0}e^-)$, some correlation with both $\Delta E/m_{ES}$ in generic MC background.
- But none in *signal MC*.
- Previous studies showed MLP classifier was not sensitive to overtraining.
- Questions remain:
 - For the Λ_c modes, which training sample gives us better sensitivity?
 - Is there a danger of creating an artificial peak?

OVERTRAINING TEST

- For one mode $(\overline{\Lambda^0}e^-)$, some correlation with both $\Delta E/m_{ES}$ in generic MC background.
- But none in *signal MC*.
- Previous studies showed MLP classifier was not sensitive to overtraining.
- Questions remain:
 - For the Λ_c modes, which training sample gives us better sensitivity?
 - Is there a danger of creating an artificial peak?
- These are somewhat correlated.
- There may be some concern about two of the training variables: R2 (all), Thrust (all)
- Our approach:
 - For each mode run 4 TMVA training sessions.
 - Train using qq and 4 variables.
 - Train using $q\bar{q}$ and 6 variables.
 - Train using $q\bar{q} + B\bar{B}$ and 4 variables.
 - Train using $q\bar{q} + B\bar{B}$ and 6 variables.
 - Generate sig eff. vs. bkg. rej. using signal MC and all the generic MC.
 - Generate sig eff. vs. bkg. rej. using signal MC and sideband data for comparison.

TRAINING SAMPLE/VARIABLE CHOICE

Curves generated with generic MC and sideband data: $\Lambda_c \mu^-$ (zoomed in)

Curves generated with generic MC and sideband data: $\Lambda_c e^-$ (zoomed in)

BNV 64 / 95

Curves generated with generic MC and sideband data: $\Lambda^0\mu^-$

Curves generated with generic MC and sideband data: $\Lambda^0 e^-$

Curves generated with generic MC and sideband data: $\bar{\Lambda^0}\mu^-$

Curves generated with generic MC and sideband data: $\bar{\Lambda^0}e^-$

- At this point it seems like I can use any of the combinations.
- Little difference amongst them all.
- However...are any of these combinations producing an artifical peak?
- Can see if the MLP (neural net) output is correlated with $m_{ES}/\Delta E$.
- But how to do that?
- Look at correlation coefficents between neural net output and $\Delta E/m_{ES}$ plane.
- How to isolate signal region of $\Delta E/m_{ES}$ plane?

CORRELATION COEFFICIENTS

Look in regions of $\Delta E/m_{ES}$ plane.

BNV 67 / 95

< ロ > < 同 > < 回 > < 回 >

CORRELATION COEFFICIENTS

Look in regions of $\Delta E/m_{ES}$ plane.

- Danger would be a positive, positive, negative correlation, respectively, for these three regions.
- But how to determine if correlation is significant?

- Return to fitting procedure.
- Questions to answer with toy studies.
 - How the upper limit be calculated? review...
 - How will significance of "signal" be determined? review...
 - What is my sensitivity to a signal? NEW!
 - What is the chance of a false positive? NEW!
 - Are there any inherent bias' in the fitting procedure? NEW!

- Return to fitting procedure.
- Questions to answer with toy studies.
 - How the upper limit be calculated? review...
 - How will significance of "signal" be determined? review...
 - What is my sensitivity to a signal? NEW!
 - What is the chance of a false positive? NEW!
 - Are there any inherent bias' in the fitting procedure? NEW!
- Take a look at some trials...

Signal: Fit

Background: Fit

- 1000 trials
- 1400 background (Poisson fluctuated)
- 0 signal

- 1000 trials
- 1400 background (Poisson fluctuated)
- 20 signal (Toy, Poisson fluctuated and fixed number)

э

Image: A matrix and a matrix

- 1000 trials
- 1400 background (Poisson fluctuated)
- 20 signal (Full simulation, Poisson fluctuated and fixed number)

э

Image: A matrix and a matrix

- How to summarize this?
- As a function of number of embedded signal events plot:
 - Number of extracted (fit) events for toy signal.
 - Number of extracted (fit) events for fully simulated signal.
- Because of issues that have only recently come up, I will show this for the *full 3D fit* and for a 2D fit to the $\Delta E/m_{ES}$ plane only.
- Both of these have a loose cut on the NN output (\approx 90% signal efficiency)

▶ ∢ ⊒ ▶

 $\Lambda_c^+\mu^-$ 3D fit

 $\Lambda_c^+\mu^-$ 2D fit

э

< 口 > < 同

 $\Lambda_c^+ e^-$ 3D fit

э

 $\Lambda_c^+ e^-$ 2D fit

< 口 > < 同

 $\Lambda^0\mu^-$ 3D fit

BNV 76 / 95

э

 $\Lambda^0\mu^-$ 2D fit

 $\Lambda^0 e^-$ 3D fit

 $\Lambda^0 e^-$ 2D fit

э

 $\bar{\Lambda^0}\mu^-$ 3D fit

 $\bar{\Lambda^0}\mu^-$ 2D fit

э

< 口 > < 同

 $\bar{\Lambda^0}e^-$ 3D fit

 $\bar{\Lambda^0}e^-$ 2D fit

Λ_c modes.

- $\Lambda_c^+\mu^-$: (+5,+10)% on extracted signal events (both 2D and 3D).
- $\Lambda_c^+ e^-$: (+3,6)% on extracted signal events (2D only).
- Λ^0 modes are unstable in 3D fits. About 25% fits don't converge.
 - $\Lambda^0 \mu^-$: (-3,0)% on extracted signal events (2D).
 - $\Lambda^0 e^-$: (-10,+2)% on extracted signal events (2D).
 - $\overline{\Lambda^0}\mu^-$: (+1,+4)% on extracted signal events (2D).
 - $\overline{\Lambda^0}e^-$: (0,+5)% on extracted signal events (2D).
- How does this map onto sensitivity?
- Review UL and significance calculation...

• • = • • = •

UPPER LIMIT

- Likelihood scan.
 - *n* = Number of signal events.
 - *n*₀ = Number of signal events, best solution.

•
$$y = -\ln \mathcal{L}(n) - -\ln \mathcal{L}(n_0)$$

< □ > < 同 >

- ∢ ⊒ →

UPPER LIMIT

- Likelihood scan.
 - *n* = Number of signal events.
 - n₀ = Number of signal events, best solution.
 - $y = -\ln \mathcal{L}(n) -\ln \mathcal{L}(n_0)$
- Upper limit
 - Area under likelihood curve.
 - $y = e^{-\ln \mathcal{L}(n) -\ln \mathcal{L}(n_0)}$
 - Integrate under curve to find total area *above* 0.
 - Integrate under curve up above 0 up to to 90% of this area.
 - This is the UL at 90% confidence.
 - Plan to publish curve for others to draw their own conclusions.

< □ ▶ < @

UPPER LIMIT

- 1000 studies
 - Background from PDF (1400 events, Poisson fluctuated)
 - No signal events.

э

SIGNIFICANCE OF SIGNAL

- Likelihood scan.
 - *n* = Number of signal events.
 - *n*₀ = Number of signal events, best solution.

•
$$y = -\ln \mathcal{L}(n) - -\ln \mathcal{L}(n_0)$$

< □ > < 同

- ∢ ⊒ →

SIGNIFICANCE OF SIGNAL

- Likelihood scan.
 - *n* = Number of signal events.
 - n₀ = Number of signal events, best solution.
 - $y = -\ln \mathcal{L}(n) -\ln \mathcal{L}(n_0)$
- Significance
 - If there is no signal in nature, what are the odds that the background fluctuates to give a false peak?
 - How many σ's is the extracted signal yield from 0.
 - Assume \mathcal{L} is Gaussian in region of best solution.

•
$$\mathcal{L}(n) = e^{-n^2/2\sigma^2}$$

•
$$\sigma = \sqrt{2(\ln \mathcal{L}(0) - \ln \mathcal{L}(n_0))}$$

BNV 83 / 95

SIGNIFICANCE OF SIGNAL

- 1000 studies
 - Background from PDF (800 events, Poisson fluctuated)
 - No signal events.
- Negative yields have 0 significance.
- Number of trials greater than some significance?
 - 3σ: 1
 - 4σ: 0
 - 5σ: 0
- APOLOGIES: In upcoming plots, ignore RED axis at top. Currently a plotting artifact that will eventually be calculated correctly.

 $\Lambda_c^+\mu^-$ Toy signal (3D),

< □ > < 同 > <

 $\Lambda_c^+\mu^-$ Toy signal (3D), Full simulation (3D),

< □ > < @ > <
$\Lambda_c^+\mu^-$ Toy signal (3D), Full simulation (3D), Full simulation (2D)

- The 3D and 2D fit, on average, extract same number of events, but the 2D fit has less sensitivity.
- Remind ourselves that the significance depends not just on the number of signal events extracted by the fit, but also the contours of the likelihood function itself.

 $\Lambda_c^+\mu^-$ Full simulation for signal, 12 embedded events (not Poisson fluctuated), 3D fit

 $\Lambda_c^+\mu^-$ Full simulation for signal, 12 embedded events (not Poisson fluctuated), 2D fit

 $\Lambda_c^+\mu^-$ Full simulation for signal, 12 embedded events (not Poisson fluctuated), 3D fit

 $\Lambda_c^+\mu^-$ Full simulation for signal, 12 embedded events (not Poisson fluctuated), 2D fit

- Understand the difference.
- Implication?
- Define sensitivity as number of events (branching fraction) that 90% of the time, gives $>5\sigma$ observation.
- Fitting with 2D loses only some sensitivity (5-15%).
- Other modes?

글 🕨 🖌 글

Image: A matrix and a matrix

 $\Lambda_c^+ e^-$ Full simulation (3D),

- ∢ (⊐) >

 $\Lambda_c^+ e^-$ Full simulation (3D), Full simulation (2D)

• For Λ^0 modes, show only 2D fits (full simulation)

э

91 / 95

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\Lambda^0 \mu^-$ Full simulation (2D)

- ∢ f型 ▶

 $\Lambda^0 e^-$ Full simulation (2D)

<

 $\bar{\Lambda^0}\mu^-$ Full simulation (2D)

- ∢ f型 ▶

 $\bar{\Lambda^0}e^-$ Full simulation (2D)

- ∢ f型 ▶