DayaBay Reactor Neutrino Experiment

Brandon Seilhan March 28, 2011

Transforming Lives.Inventing the Future.www.iit.edu

Outline

- Neutrinos
 - Flavors and Masses
 - Oscillation
- DayaBay
 - Experiment Goals
 - Short Term Physics Potentials
 - Predicting the Reactor Anti Neutrino Flux
 - "4 Month Sensitivities"

Neutrinos

What is a neutrino?

- No "electric" charge (electro-magnetic force)
- No "color" charge (strong force)
- They do have "flavor" charge (weak force)
- They do have some mass (gravity)

- Relic neutrinos 100/cm³ @ 2K
- Influence nucleo-synthesis and CMB
- Required to explain SN explosions
- Neutrino astronomy is a growing field
- Matter-Antimatter asymmetry
- They are one of the fundamental particles

Brandon Seilhan, IIT

р By Definition: n An electron flavored neutrino is what is W Some created alongside an electron flavored v_e≽ "Short" lepton Distance By Definition: р n An electron flavored neutrino was captured to produce an electron flavored lepton

Flavor and Mass states are related by a unitary mixing matrix.

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$
 $|\nu_{i}\rangle = \sum_{\alpha} U_{\alpha i} |\nu_{\alpha}\rangle$

Flavor and Mass states are related by a unitary mixing matrix.

$$|v_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |v_{i}\rangle$$
 $|v_{i}\rangle = \sum_{\alpha} U_{\alpha i} |v_{\alpha}\rangle$

For the 3 flavor case:

$$\begin{bmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix}$$

Brandon Seilhan, IIT

PMNS Matrix (3 flavor case)

Pontecorvo, Maki, Nakagawa, Sakata

$$U_{\text{PMNS}} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} = \begin{bmatrix} 0.8 & 0.5 & U_{e3} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{bmatrix}$$

6 Free parameters: 3 real mixing angles , 3 complex phases

Brandon Seilhan, IIT

PMNS Matrix (3 flavor case)

Pontecorvo, Maki, Nakagawa, Sakata

$$U_{\text{PMNS}} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} = \begin{bmatrix} 0.8 & 0.5 & U_{e3} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{bmatrix}$$

$$U = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & -c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Brandon Seilhan, IIT

PMNS Matrix (3 flavor case)

1

Pontecorvo, Maki, Nakagawa, Sakata

$$U_{PMNS} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} = \begin{bmatrix} 0.8 & 0.5 & U_{e3} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{bmatrix}$$
$$= \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & -c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\ \end{bmatrix} \begin{bmatrix} e^{i\alpha_{1}/2} & 0 & 0 \\ 0 & e^{i\alpha_{2}/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

U

 $\sin^{2} (2\theta_{12}) = 0.87 \pm 0.03$ $\Delta m_{21}^{2} = (7.59 \pm 0.20) \times 10^{-5} \text{ eV}^{2}$ $\sin^{2} (2\theta_{23}) > 0.92$ $\left| \Delta m_{32}^{2} \right| = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^{2}$ $\sin^{2} (2\theta_{13}) < 0.15, \text{CL} = 90\%$

2010 PDG

Picture Version

Neutrino Oscillation

Is Detected as flavor β

Brandon Seilhan, IIT

Is Detected as flavor β

Brandon Seilhan, IIT

According to Quantum Mechanics...

Propagates with

Propagation of Mass

In the rest frame of the neutrino:

$$-i\frac{\partial}{\partial t}|v_{i}(\tau_{i})\rangle = m_{i}|v_{i}(\tau_{i})\rangle$$

In the rest frame of the neutrino:

$$-i\frac{\partial}{\partial t}|v_{i}(\tau_{i})\rangle = m_{i}|v_{i}(\tau_{i})\rangle$$

Which has the solution: $|v_i(\tau_i)\rangle = e^{-im_i\tau_i} |v_i(0)\rangle$

In the rest frame of the neutrino:

$$-i\frac{\partial}{\partial t} |v_i(\tau_i)\rangle = m_i |v_i(\tau_i)\rangle$$

Which has the solution: $|v_i(\tau_i)\rangle = e^{-im_i\tau_i} |v_i(0)\rangle$

Which can be rewritten:

$$\left| v_{i}(\tau_{i}) \right\rangle = e^{-i \frac{m_{i}^{2}L}{2E}} \left| v_{i}(0) \right\rangle$$

$$\mathbf{P}(\mathbf{v}_{\alpha} \to \mathbf{v}_{\beta}) = \left| \mathrm{Amp}(\mathbf{v}_{\alpha} \to \mathbf{v}_{\beta}) \right|^{2} = \left(\sum_{i} \mathbf{U}_{\alpha i}^{*} e^{-\mathrm{i}m_{i}^{2}\frac{\mathrm{L}}{2\mathrm{E}}} \mathbf{U}_{\beta i} \right) \left(\sum_{j} \mathbf{U}_{\alpha j} e^{\mathrm{i}m_{j}^{2}\frac{\mathrm{L}}{2\mathrm{E}}} \mathbf{U}_{\beta j}^{*} \right)$$

$$\operatorname{Amp}(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i} \operatorname{Amp}\left[\begin{array}{c} & I_{\alpha} & & I_{\beta} \\ \bullet & & I_{\alpha i} & & I_{\beta i} \end{array} \right]$$

$$\mathbf{P}(\mathbf{v}_{\alpha} \to \mathbf{v}_{\beta}) = \left| \operatorname{Amp}(\mathbf{v}_{\alpha} \to \mathbf{v}_{\beta}) \right|^{2} = \left(\sum_{i} U_{\alpha i}^{*} e^{-im_{i}^{2} \frac{L}{2E}} U_{\beta i} \right) \left(\sum_{j} U_{\alpha j} e^{im_{j}^{2} \frac{L}{2E}} U_{\beta j}^{*} \right)$$

$$P(v_{\alpha} \rightarrow v_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}\left(\Delta m_{i j}^{2}\frac{L}{4E}\right) + 2\Im\sum_{i>j}\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin\left(\Delta m_{i j}^{2}\frac{L}{2E}\right)$$

$$\operatorname{Amp}(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i} \operatorname{Amp}\left[\begin{array}{c} & l_{\alpha} & & l_{\beta} \\ \bullet & & \ddots & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & &$$

$$\mathbf{P}(\mathbf{v}_{\alpha} \to \mathbf{v}_{\beta}) = \left| \operatorname{Amp}(\mathbf{v}_{\alpha} \to \mathbf{v}_{\beta}) \right|^{2} = \left(\sum_{i} \mathbf{U}_{\alpha i}^{*} e^{-im_{i}^{2} \frac{\mathbf{L}}{2E}} \mathbf{U}_{\beta i} \right) \left(\sum_{j} \mathbf{U}_{\alpha j} e^{im_{j}^{2} \frac{\mathbf{L}}{2E}} \mathbf{U}_{\beta j}^{*} \right)$$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}\left(\Delta m_{i j}^{2}\frac{L}{4E}\right) + 2\Im\sum_{i>j}\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin\left(\Delta m_{i j}^{2}\frac{L}{2E}\right)$$

$$P\left(\overline{v_{\alpha}} \to \overline{v_{\beta}}\right) = \delta_{\alpha\beta} - 4\sum_{i>j} \Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}\left(\Delta m_{ij}^{2}\frac{L}{4E}\right) - 2\Im\sum_{i>j}\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin\left(\Delta m_{ij}^{2}\frac{L}{2E}\right)$$

Brandon Seilhan, IIT

$$\operatorname{Amp}(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i} \operatorname{Amp}\left[\begin{array}{c} & I_{\alpha} & & I_{\beta} \\ \bullet & & I_{\alpha i} & & Prop(\nu_{i}) & & U_{\beta i} \end{array} \right]$$

$$P(v_{\alpha} \to v_{\beta}) = \left| \operatorname{Amp}(v_{\alpha} \to v_{\beta}) \right|^{2} = \left(\sum_{i} U_{\alpha i}^{*} e^{-im_{i}^{2} \frac{L}{2E}} U_{\beta i} \right) \left(\sum_{j} U_{\alpha j} e^{im_{j}^{2} \frac{L}{2E}} U_{\beta j}^{*} \right)$$

$$P(v_{\alpha} \rightarrow v_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}\left(\Delta m_{i j}^{2}\frac{L}{4E}\right) + 2\Im\sum_{i>j} \left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin\left(\Delta m_{i j}^{2}\frac{L}{2E}\right)$$

 $\begin{aligned} & \mathsf{CPViolating Term If U is imaginary!} P(\overline{v_{\alpha}} \to \overline{v_{\beta}}) \stackrel{\text{CPT}}{=} P(v_{\beta} \to v_{\alpha}) = P(v_{\alpha} \to v_{\beta}, U \to U^{*}) \\ & P(\overline{v_{\alpha}} \to \overline{v_{\beta}}) = \delta_{\alpha\beta} - 4\sum_{i>j} \Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}\left(\Delta m_{ij}^{2}\frac{L}{4E}\right) - 2\Im\sum_{i>j}\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin\left(\Delta m_{ij}^{2}\frac{L}{2E}\right) \end{aligned}$

Brandon Seilhan, IIT

In The 3 neutrino case we have an explicit representation of U

$$U = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & -c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix}$$

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| e^{-im_{1}^{2} \frac{L}{2E}} Amp^{*} (\nu_{\alpha} \to \nu_{\beta}) \right|^{2} = \left| \sum_{i} e^{-i\Delta m_{1}^{2} \frac{L}{2E}} U_{\alpha j} e^{i\Delta m_{i}^{2} \frac{L}{2E}} U_{\beta j}^{*} \right|^{2}$$

$$\begin{split} P\left(v_{\alpha} \rightarrow v_{\beta}\right) &= 4 \left[\left| U_{\alpha 2} U_{\beta 2} \right|^{2} \sin^{2} \left(\Delta m_{21}^{2} \frac{L}{4E} \right) + \left| U_{\alpha 3} U_{\beta 3} \right|^{2} \sin^{2} \left(\Delta m_{31}^{2} \frac{L}{4E} \right) \right. \\ &\left. + 2 \left| U_{\alpha 2} U_{\beta 2} U_{\alpha 3} U_{\beta 3} \right| \sin \left(\Delta m_{21}^{2} \frac{L}{4E} \right) \sin \left(\Delta m_{31}^{2} \frac{L}{4E} \right) \cos \left(\Delta m_{32}^{2} \frac{L}{4E} + \delta_{32} \right) \right] \end{split}$$

$$P(v_{\alpha} \to v_{\beta}) = 4 \left[\left| U_{\alpha 2} U_{\beta 2} \right|^{2} \sin^{2} \left(\Delta m_{21}^{2} \frac{L}{4E} \right) + \left| U_{\alpha 3} U_{\beta 3} \right|^{2} \sin^{2} \left(\Delta m_{31}^{2} \frac{L}{4E} \right) \right]$$
$$+ 2 \left| U_{\alpha 2} U_{\beta 2} U_{\alpha 3} U_{\beta 3} \right| \sin \left(\Delta m_{21}^{2} \frac{L}{4E} \right) \sin \left(\Delta m_{31}^{2} \frac{L}{4E} \right) \cos \left(\Delta m_{32}^{2} \frac{L}{4E} + \delta_{32} \right) \right]$$

$$P\left(\overline{\nu_{\alpha}} \to \overline{\nu_{\beta}}\right) = 4\left[\left|U_{\alpha 2}U_{\beta 2}\right|^{2} \sin^{2}\left(\Delta m_{21}^{2} \frac{L}{4E}\right) + \left|U_{\alpha 3}U_{\beta 3}\right|^{2} \sin^{2}\left(\Delta m_{31}^{2} \frac{L}{4E}\right)\right. \\ \left. + 2\left|U_{\alpha 2}U_{\beta 2}U_{\alpha 3}U_{\beta 3}\right|\sin\left(\Delta m_{21}^{2} \frac{L}{4E}\right)\sin\left(\Delta m_{31}^{2} \frac{L}{4E}\right)\cos\left(\Delta m_{32}^{2} \frac{L}{4E} - \delta_{32}\right)\right]\right]$$

$$+2\left|U_{\alpha 2}U_{\beta 2}U_{\alpha 3}U_{\beta 3}\right|\sin\left(\Delta m_{21}^{2}\frac{L}{4E}\right)\sin\left(\Delta m_{31}^{2}\frac{L}{4E}\right)\cos\left(\Delta m_{32}^{2}\frac{L}{4E}-\delta_{32}\right)\right]$$

Brandon Seilhan, IIT
Survival Probability (E dependent)

 $\bar{\nu_e}$ Survival Probability 1.0 8.0 0.6 $E_{\bar{\nu_e}} = 1.8 MeV$ 0.4 $E_{\bar{\nu_e}} = 3.0 MeV$ 0.8 $E_{\bar{
u_e}}\!=\!5.0 MeV$ 0.2 0.6 $E_{\bar{\nu_e}} = 8.0 MeV$ 0.4 $E_{\bar{\nu_{*}}}$ Averaged Over 1.8-8 MeVTotal 0.0° 10² 0.2 10⁴ 10³ 10⁵ Distance [m]

Previous plot averaged over energies. Each energy bin has a slightly different survival probability

Brandon Seilhan, IIT

Signal Size

Brandon Seilhan, IIT

Spectral Distortion

Brandon Seilhan, IIT

Previous Reactor Experiments

$$P\left(\overline{v_{e}} \to \overline{v_{e}}\right) = 1 - \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right) - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \left(\frac{\Delta m_{21}^{2} L}{4E}\right)$$

Look for a deficit of anti-neutrino events by predicting the expected flux.

Brandon Seilhan, IIT

Location

Brandon Seilhan, IIT

Experimental Halls

Brandon Seilhan, IIT

Where Does DayaBay Fit In?

KamLAND Collaboration et al. First Results from KamLAND: Evidence for Reactor Antineutrino Disappearance. Physical Review Letters (2003) vol. 90 (2) pp. 021802

Brandon Seilhan, IIT

Brandon Seilhan, IIT

Brandon Seilhan, IIT

Coincidence Method

Brandon Seilhan, IIT

Neutron Capture + Coincidence Signal

Brandon Seilhan, IIT

Measured IBD Spectrum

The Measured **Spectrum** is the convolution of the **Incoming** Flux and IBD **Cross Section.**

Brandon Seilhan, IIT

Brandon Seilhan, IIT

3 Zone Detector

Target Mass:

20t per Detector

Detector Mass: ~110t

192 (+8 calibration) PMTS

Energy Resolution 12%/ \sqrt{E}

Site	Rate (per AD per Day)	AD's
DBNear	840	2 (40 ton)
LANear	760	2 (40 ton)
Far	90	4 (80 ton)

Detection Efficiency

Prompt e⁺ Signal

I MeV cut for prompt positrons: >99%, uncertainty negligible

Delayed n Signal

6 MeV cut for delayed neutrons: 91.5%, uncertainty 0.22% assuming 1% energy uncertainty

Brandon Seilhan, IIT

Backgrounds

(Normalized to area)

• Fast Neutron

- Proton recoil + neutron capture.
- ⁹Li/⁸He
 - 49.5% / 16% branching fraction for beta decay followed by neutron emission.

Accidental

 Natural Radiation + neutron Capture.

Brandon Seilhan, IIT

Near Site Background Rate

With background to signal ratio of 0.3%

Brandon Seilhan, IIT

The water pools are the first of two systems to veto muons and help suppress backgrounds

• Water Cherenkov detector

- ~1000 total pmt's
- IPMT/8m² (inner)
- IPMT/6-7m² (outer)
- Divided into 2 optically separated regions
 - 2 region design provides independent triggers
 - When combined give a 98% muon efficiency

Brandon Seilhan, IIT

Resistive Plate Chambers

The second system consists of 4 layers of RPC's that cover the entire water pool

- •1512 RPC's
 - 189 modules (8 RPC's per module)
 - Modules overlap to eliminate dead space

•6048 readout strips

- 4 readout strips per RPC
- Each strip is 2m x 25cm
- Zigzag design (6cm pitch)

•4 layer structure

- Trigger on 3 of 4 layers hit
- Alternate direction
- 0.5m spatial resolution

Brandon Seilhan, IIT

Muon Detection Efficiency

RPC

Trigger Threshold

	Layer	≥ 1	<u>≥</u> 2	<u>></u> 3	<u>≥</u> 4
	1	95%			
Total	2	99.75%	90.25%		
Planes	3	99.987%	99.275%	85.74%	
	4	99.999%	99.952%	98.598%	81.45%

Water Pool

Using an 11 pmt multiplicity trigger in the water pool and requiring 3 of 4 RPC layers register a hit gives a combined muon detection efficiency of over 99%

Water Pool + RPC

	Pool Only	Pool+RPC
Near	98.85±0.12%	99.43±0.09%
Far	98.81±0.12%	99.44±0.08%

Brandon Seilhan, IIT

DayaBay -- Tour

Brandon Seilhan, IIT

DayaBay -- Tour

DayaBay -- Tour

© 2010 The Regents of the University of California, Lawrence Berkeley National Laboratory

Brandon Seilhan, IIT

DayaBay -- Tour

© 2010 The Regents of the University of California, Lawrence Berkeley National Laboratory

Brandon Seilhan, IIT
Sensitivity / Schedule

Upcoming Milestones

- Summer 2011: Daya Bay near hall physics ready
- Fall 2012: all near/far halls physics ready

Near Site Physics

- Data is available soon because we will take DBNear site data while commissioning the other two halls.
- High event rate (840 / module / day)
- No Near/Far Cancellation, need a very good understanding of Reactor Flux.
- Non-optimal Baseline.

- First "real" chance to test identicalness.
- Observe reactors:
 - Burn-up
 - Shutdowns
 - Power Fluctuations
- Single site Theta 13 Measurement.

Flux Predictions

Brandon Seilhan, IIT

Fission Rates

Fission Rate of 6 Larget Contributing Isotopes

Brandon Seilhan, IIT

Fission Fractions

Brandon Seilhan, IIT

Rate by Isotope

Using a "standard" core: [0.570:0.078:0.295:0.057]

Fuel Cycle

IBD Rate

Brandon Seilhan, IIT

Reactor Shutdowns

IAEA: OPERATING EXPERIENCE WITH NUCLEAR POWER STATIONS IN MEMBER STATES IN 2004-2009

Brandon Seilhan, IIT

Shutdown Observation

Brandon Seilhan, IIT

Shutdown

Brandon Seilhan, IIT

Theta 13 Sensitivity

Brandon Seilhan, IIT

Live time

Live time takes into account 80% uptime

Brandon Seilhan, IIT

$$\chi^{2} = \min_{\gamma} \sum_{A=1}^{N_{\text{det}}} \sum_{i=1}^{N_{\text{bins}}} \frac{\left[M_{i}^{A} - T_{i}^{A} \left(1 + \alpha_{c} + \sum_{r=0}^{N_{\text{cores}}} \omega_{r}^{A} \alpha_{r} + \beta_{i} + \varepsilon_{D} + \varepsilon_{d}^{A} \right) - \eta_{f}^{A} F_{i}^{A} - \eta_{n}^{A} N_{i}^{A} - \eta_{s}^{A} S_{i}^{A} \right]^{2}}{T_{i}^{A} + \left(\sigma_{\text{b2b}} T_{i}^{A} \right)^{2}}$$

$$+\frac{\alpha_c^2}{\sigma_c^2} + \sum_{r=0}^{N_{\text{cores}}} \frac{\alpha_r^2}{\sigma_r^2} + \sum_{i=0}^{N_{\text{bins}}} \frac{\beta_i^2}{\sigma_{shp}^2} + \frac{\varepsilon_D^2}{\sigma_D^2} + \sum_{A=0}^{N_{\text{dets}}} \left[\left(\frac{\varepsilon_d^A}{\sigma_d}\right)^2 + \left(\frac{\eta_f^A}{\sigma_f^A}\right)^2 + \left(\frac{\eta_n^A}{\sigma_n^A}\right)^2 + \left(\frac{\eta_s^A}{\sigma_s^A}\right)^2 \right]$$

Parameter	Uncertainty Description	Value
σ_{b2b}	Bin to bin uncorrelated	0.003
σ_c	Reactor correlated	0.02
σ_r	Reactor uncorrelated	0.02
σ_{shp}	Reactor flux shape	0.02
σ_D	Detector Correlated	0.02
σ_d	Detector uncorrelated	0.0038
σ_{f}	Fast Neutron	1.0
σ_n	Accidental	1.0
σ_s	⁸ He/ ⁹ Li	0.003

SMU Seminar

Detector Correlated

Examples: H/Gd ratio, H/C ratio, neutron capture time, spill in / spill out

Brandon Seilhan, IIT

Detector Uncorrelated

Brandon Seilhan, IIT

Source of uncertainty		Chooz	Daya Bay (relative)		
		(absolute)	Baseline	Goal	Goal w/Swapping
# protons		0.8	0.3	0.1	0.006
Detector	Energy cuts	0.8	0.2	0.1	0.1
Efficiency	Position cuts	0.32	0.0	0.0	0.0
	Time cuts	0.4	0.1	0.03	0.03
	H/Gd ratio	1.0	0.1	0.1	0.0
	n multiplicity	0.5	0.05	0.05	0.05
	Trigger	0	0.01	0.01	0.01
	Live time	0	< 0.01	< 0.01	< 0.01
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%

9Li / 8He

Brandon Seilhan, IIT

Other Backgrounds

Brandon Seilhan, IIT

Bin-to-bin

Brandon Seilhan, IIT

Reactor Flux Shape

In Full running this has a much lower impact because the nearsites will

"measure" the flux much better than 2 %

Brandon Seilhan, IIT

Uncertainty Summary

Brandon Seilhan, IIT

- Oscillation experiments give a unique handle on weakly interacting neutrinos.
- With full running scheduled for Fall 2012 the goal sensitivity can be reached as early as 2014.
- In the near term, interesting physics measurements can be made using near site data taken during commissioning of the remaining sights.

Thank You

Backup

Dry-Run Results

Propagator

Rest
frame
$$P_i = (m_i, 0)$$

 $x = (\tau_i, 0)$ $P_i = (E_i, \vec{p_i})$
 $x = (t, \vec{x})$ Lab
frame $m_i \tau_i = Et - p_i L$

Phase Difference: $\delta \phi = (p_1 - p_2)L - (E_1 - E_2)t$

Average Velocity: $\overline{v} = \frac{p_1 + p_2}{E_1 - E_2}$ $\delta \phi = (p_1 - p_2)L - \frac{(E_1^2 - E_2^2)}{(p_1 + p_2)}L - (E_1 - E_2)\delta t \implies \delta \phi = \frac{\Delta m_{21}^2 L}{2E}$ $prop(v_i) = e^{-i\frac{m_i^2 L}{2E}}$

Brandon Seilhan, IIT

3 Neutrino Mixing

In General:
$$\operatorname{Amp}(v_{\alpha} \to v_{\beta}) = \sum_{i} U_{\alpha i}^{*} e^{-im_{i}^{2} \frac{L}{2E}} U_{\beta i}$$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| e^{-im_{1}^{2} \frac{L}{2E}} Amp^{*} (\nu_{\alpha} \rightarrow \nu_{\beta}) \right|^{2} = \left| \sum_{i} e^{-i\Delta m_{1}^{2} \frac{L}{2E}} U_{\alpha j} e^{i\Delta m_{i}^{2} \frac{L}{2E}} U_{\beta j} \right|^{2}$$

$$P(v_{\alpha} \rightarrow v_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}\left(\Delta m_{i j}^{2}\frac{L}{4E}\right) + 2\Im\sum_{i>j}\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin\left(\Delta m_{i j}^{2}\frac{L}{2E}\right)$$

Coverage From DayaBay

Brandon Seilhan, IIT

SMU Seminar

Muon Flux (Hz/m²)

Muon Mean Energy (GeV)

	7	7

Detailed topo map, modified Gaisser formula, and MUSIC

1.16

55

0.73

60

0.041

138

Water Pool Efficiency

Brandon Seilhan, IIT
IBD Cross Section

Brandon Seilhan, IIT

Fuel Cycles

$$^{238}U(n,\gamma)^{239}U$$

$${}^{239}U \xrightarrow{T_{1/2}=23\min} {}^{239}Np$$

$${}^{239}Np \xrightarrow[E_v]{T_{1/2}=2.4 \text{ days}}{E_v^{max}=0.71 \text{ MeV}} \rightarrow {}^{239}Pu$$

$$^{U}N\Big|_{E>1.8 \text{ MeV}} = 0$$

Isotope Yields

Fig. 1. (a) Reactor \bar{v}_e energy spectra for four main fissile isotopes [5]. The shaded region for the isotopes gives the uncertainty in the spectrum. (b) Cross-section of the inverse β -decay reaction [4]. (c) \bar{v}_e observed no-oscillation spectrum for each fissile isotope; this is a convolution of (a) and (b).

Nakajima et al. Nuclear Inst. and Methods in Physics Research (2006)

Brandon Seilhan, IIT

Reactor

Brandon Seilhan, IIT

Core Data

2 - TECHNICAL DESCRIPTION

TECHNICAL DATA

Power NSSS rated thermal output Gross electrical output	2905 MWth 990 Mwe	
Reactor Containment		
Туре	Single Containment	
Inside diameter	37 m	
Wall thickness	0.90 m	
Overall height (from ground level)	59.4 m	
Overall internal volume	60000 m ³	
Overall internal free volume	50000 m ³	
Reactor Core		
Core rated thermal output	2895 MWth	
Core damage frequency	5 x 10 ⁻⁶ reactor-year	
Number of fuel assemblies	157	
Total weight of Uranium	72.5 t	
Rod cluster control available locations (equipped with CRDMs)	61	
Main Primary System		
Number of reactor coolant loops	3	
Number of CRDMs	61	
Reactor coolant system operating pressure	155 bar	
Reactor coolant temperature at RPV inlet	292.4°C	
Reactor coolant temperature at RPV outlet	327.0°0	
Steam pressure at SC outlet at nominal power	~ 67.1 bar	
Steam flow rate	207.1 Dai 1614 kg/s	
Steam humidity at SG outlet	< 0.25%	
Reactor coolant pump type	Model 100	
Reactor coolant pump nominal flow	23790 m ³ /h	
r r r		

Areva Press Release

Brandon Seilhan, IIT

Fuel Pin and Assembly

ORNLTM-9591

Brandon Seilhan, IIT

	Daya Bay Near	Ling Ao Near	Far Hall
Baseline (m)	363	481 from Ling Ao	1985 from Daya Bay
		526 from Ling Ao II	1615 from Ling Ao
Overburden (m)	98	112	350
Radioactivity (Hz)	<50	<50	<50
Muon rate (Hz)	36	22	1.2
Antineutrino Signal (events/day)	840	740	90
Accidental Background/Signal (%)	< 0.2	< 0.2	< 0.1
Fast neutron Background/Signal (%)	0.1	0.1	0.1
⁸ He+ ⁹ Li Background/Signal (%)	0.3	0.2	0.2